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Abstract The accuracy of optical flow estimation algo-
rithms has been improving steadily as evidenced by results
on the Middlebury optical flow benchmark. The typical for-
mulation, however, has changed little since the work of
Horn and Schunck. We attempt to uncover what has made
recent advances possible through a thorough analysis of how
the objective function, the optimization method, and mod-
ern implementation practices influence accuracy. We dis-
cover that “classical” flow formulations perform surprisingly
well when combined with modern optimization and imple-
mentation techniques. One key implementation detail is the
median filtering of intermediate flow fields during optimiza-
tion. While this improves the robustness of classical meth-
ods it actually leads to higher energy solutions, meaning
that these methods are not optimizing the original objective
function. To understand the principles behind this phenom-
enon, we derive a new objective function that formalizes the
median filtering heuristic. This objective function includes a
non-local smoothness term that robustly integrates flow esti-
mates over large spatial neighborhoods. By modifying this
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new term to include information about flow and image bound-
aries we develop a method that can better preserve motion
details. To take advantage of the trend towards video in wide-
screen format, we further introduce an asymmetric pyramid
downsampling scheme that enables the estimation of longer
range horizontal motions. The methods are evaluated on the
Middlebury, MPI Sintel, and KITTI datasets using the same
parameter settings.

Keywords Optical flow estimation · Practices ·
Median filtering · Non-local term · Motion boundary

1 Introduction

The field of optical flow estimation is making steady progress
as evidenced by the increasing accuracy of current meth-
ods on the Middlebury optical flow benchmark (Baker et
al. 2007). After over 30 years of research, these methods
have obtained an impressive level of reliability and accu-
racy (Wedel et al. 2008b, 2009; Werlberger et al. 2009; Xu
et al. 2012; Zimmer et al. 2009). But what has led to this
progress? The majority of today’s methods strongly resem-
ble the original formulation of Horn and Schunck (HS, 1981).
They combine a data term that assumes constancy of some
image property with a spatial term that models how the flow
is expected to vary across the image. An objective function
combining these two terms is then optimized. Given that this
basic structure is unchanged since HS, what has enabled the
performance gains of modern approaches?

The paper has three parts. In the first, we perform a study
of recent optical flow methods and models. The most accu-
rate methods on the Middlebury flow dataset make different
choices about how to model the objective function, how to
approximate this model to make it computationally tractable,

123



116 Int J Comput Vis (2014) 106:115–137

(a) “Old” HS [58] (b) “New” HS (c) Classic++ (d) Classic+NL (e) Ground truth (f) First frame

Fig. 1 Estimated optical flow on the Middlebury test “Army”
sequence. Left to right: a an old implementation of the Horn and
Schunck (HS) method (Sun et al. 2008), b a new implementation
with current practices, c a modern implementation of a robust version,
d an improved model that uses a non-local spatial term to robustly inte-

grate information over a large spatial neighborhood, e ground truth from
the Middlebury website (downsampled and JPEG compressed; original
ground truth is withheld), and f the first frame. Color coding as in (Baker
et al. 2007), shown in Fig. 4c. Average end-point error (EPE): a 0.22,
b 0.12, c 0.09, and d 0.08

and how to optimize it. Since most published methods change
all of these properties at once, it can be difficult to know
which choices are most important. To address this, we define
a baseline algorithm that is “classical”, in that it is a direct
descendant of the original HS formulation, and then system-
atically vary the model and method using different techniques
from the art. The results are surprising. We find that only a
small number of key choices produce statistically significant
improvements and that they can be combined into a very sim-
ple method that achieves reasonable accuracy. More impor-
tantly, our analysis reveals what makes current flow methods
work so well.

Part two examines the principles behind this success. We
find that one algorithmic choice produces the most significant
improvements: applying a median filter to intermediate flow
values during incremental estimation and warping (Wedel
et al. 2008b, 2009). While this heuristic improves the accu-
racy of the recovered flow fields, it actually increases the
energy of the objective function. This suggests that what is
being optimized is actually a new and different objective.
Using observations about median filtering and L1 energy
minimization from Li and Osher (2009), we formulate a new
non-local term that is added to the original, classical objec-
tive. This new term goes beyond standard local (pairwise)
smoothness to robustly integrate information over large spa-
tial neighborhoods. We show that minimizing this new energy
approximates the original optimization with the heuristic
median filtering step. Note, however, that the new objective
falls outside our definition of classical methods.

Once the median filtering heuristic is formulated as a non-
local term in the objective, we immediately recognize how
to modify and improve it. In part three we show how infor-
mation about image structure and flow boundaries can be
incorporated into a weighted version of the non-local term
to prevent over-smoothing across boundaries. By incorporat-
ing structure from the image, this weighted version does not

suffer from some of the errors produced by median filtering
and better preserves motion boundaries. Figure 1 illustrates
optical flow estimates for a range of methods from a “basic”
HS method to our proposed Classic+NL method.

Finally we observe that the classical methods all go
beyond the original HS algorithm by using a spatial pyramid
to cope with large motions. The classical pyramid downsam-
ples the image equally in both the horizontal and vertical
direction, typically until some minimum image dimension is
reached. With today’s wide-aspect ratio video, we point out
that an asymmetric approach can be employed resulting in a
pyramid that downsamples more in the horizontal direction
than in the vertical one. This effectively allows the estimation
of larger horizontal motions. This simple change results in
significant improvements on the wide-aspect-ratio video in
the KITTI (Geiger et al. 2012) and MPI Sintel (Butler et al.
2012) datasets.

At the time of writing our previous conference paper (Sun
et al. 2010a, March), the resulting approach was ranked 1st
in both angular and end-point errors in the Middlebury eval-
uation. At the writing of this paper (Sep. 2012), the method,
Classic+NL, ranks 13th in both AAE and EPE. Several recent
and high-ranking methods directly build on Classic+NL,
such as layered models (Sun et al. 2010b, 2012, 2013), meth-
ods with more advanced motion prior models (Chen et al.
2012; Jia et al. 2011), efficient optimization schemes for the
non-local term (Krähenbühl and Koltun 2012), and better ini-
tialization to deal with large displacement optical flow (Chen
et al. 2013).

Compared to the conference version (Sun et al. 2010a),
this paper includes many more detailed results and analy-
ses. In addition to an expanded literature review we com-
pare our proposed method to the closely related non-local
total variation method (Werlberger et al. 2010). We discuss
the limitations of our method in dealing with occlusions and
fast moving objects. We report results on the MIT HAMA
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data set (Liu et al. 2008) and find that the results are con-
sistent with those on Middlebury. We also test our methods
on the MPI Sintel (Butler et al. 2012) and KITTI (Geiger
et al. 2012) datasets, which offer greater challenges. Using
the same parameters tuned on the Middlebury training set,
our method performs well on these new datasets, particularly
using an asymmetric pyramid.

In summary, the contributions of this paper are to (1)
analyze current flow models and methods to understand
which design choices matter; (2) formulate and compare
several classical objectives descended from HS using mod-
ern methods; (3) formalize one of the key heuristics and
derive a new objective function that includes a non-local
spatial smoothness term; (4) modify this new objective to
produce a competitive method; (5) extend spatial pyramids
to exploit the extra width of high-definition and letterbox
videos. In doing so, we provide a “recipe” for others study-
ing optical flow that can guide their design choices. Finally,
to enable comparison and further innovation, we provide a
public Matlab implementation (http://www.cs.brown.edu/
people/dqsun; last accessed 24 July 2013).

2 Previous Work

It is important to separately analyze the contributions of the
objective function that defines the problem (Sect. 2.1) and the
optimization algorithm and implementation used to minimize
it (Sect. 2.2). The HS formulation, for example, has long
been thought to be highly inaccurate. Barron et al. (1994)
reported an average angular error (AAE) of ∼30◦ on the
“Yosemite” sequence. This confounds the objective function
with the particular optimization method proposed by Horn
and Schunck. Horn and Schunck noted that the correct way
to optimize their objective is by solving a system of linear
equations as is common today. This was impractical on the
computers of the day, hence they used a heuristic method.
In fact, Barron et al. note that the original HS derivatives
were implemented crudely and report a modified version of
HS with AAE around 11◦. When optimized with today’s
methods, the HS objective achieves surprisingly competi-
tive results (Geiger et al. 2012) despite the expected over-
smoothing and sensitivity to outliers. The reported accuracy
of a method is jointly determined by the objective function,
the optimization techniques, the implementation details, and
the parameter tuning/learning (cf. Marr 1982; Szeliski 2010).
We review related research in the context of the first three
aspects below.

2.1 Models

The global formulation of optical flow introduced by Horn
and Schunck (1981) relies on both brightness constancy and

spatial smoothness assumptions, but suffers from the fact that
their quadratic formulation is not robust to outliers. Shul-
man and Herve (1989) use an L1 penalty instead to preserve
flow discontinuities. Black and Anandan (1996) introduce a
robust framework to deal with outliers in both the data and the
spatial terms. Subsequently, many different robust functions
have been explored (Brox et al. 2004; Lempitsky et al. 2008;
Sun et al. 2008) and it remains unclear which is best. We refer
to all these spatially-discrete formulations derived from HS
as “classical.” We systematically explore variations in the
formulation and optimization of these approaches. The sur-
prise is that the classical model, appropriately implemented,
remains fairly competitive.

There are many formulations beyond the classical ones
that we do not consider here. Significant ones use oriented
smoothness (Nagel and Enkelmann 1986; Sun et al. 2008;
Wedel et al. 2009; Zimmer et al. 2011, 2009), rigidity con-
straints (Wedel et al. 2008a, 2009), an over-parameterized
smoothness term (Nir et al. 2008), or image segmentation
(Black and Jepson 1996; Lei and Yang 2009; Xu et al. 2008;
Zitnick et al. 2005). While they deserve similar careful con-
sideration, we expect many of our conclusions to carry for-
ward. Note that one can select among a set of models or meth-
ods for a given sequence (Mac Aodha et al. 2010), instead of
finding a “best” model for all the sequences.

2.2 Methods

Many of the implementation details that are thought to be
important date back to the early days of optical flow. Cur-
rent best practices include coarse-to-fine estimation to deal
with large motions (Bergen et al. 1992; Brox et al. 2004),
texture decomposition (Wedel et al. 2008a,b) or high-order
filter constancy (Adelson et al. 1984; Brox et al. 2004; Glaer
et al. 1983; Lempitsky et al. 2010; Zimmer et al. 2009) to
reduce the influence of lighting changes, incremental warp-
ing (Bergen et al. 1992), warping with bicubic interpolation
(Lempitsky et al. 2008; Wedel et al. 2008b), temporal aver-
aging of image derivatives (Horn 1986; Wedel et al. 2008b),
graduated non-convexity (Blake and Zisserman 1987) to min-
imize non-convex energies (Black and Anandan 1996; Sun
et al. 2008), and median filtering after each incremental esti-
mation step to remove outliers (Wedel et al. 2008b).

This median filtering heuristic is of particular interest as
it makes non-robust methods more robust and improves the
accuracy of all methods we tested. The effect on the objective
function and the underlying reason for its success have not
previously been analyzed. Least median squares estimation
can be used to robustly reject outliers in flow estimation (Bab-
Hadiashar and Suter 1998), but previous work has focused
on the data term.

Related to median filtering, and our new non-local term,
is the use of bilateral filtering to prevent smoothing across

123

http://www.cs.brown.edu/people/dqsun
http://www.cs.brown.edu/people/dqsun


118 Int J Comput Vis (2014) 106:115–137

motion boundaries (Xiao et al. 2006). This approach sepa-
rates a variational method into two filtering update stages, and
replaces the original anisotropic diffusion process with multi-
cue driven bilateral filtering. As with median filtering, the
bilateral filtering step changes the original energy function.

Models that are formulated with an L1 robust penalty are
often coupled with specialized total variation (TV) optimiza-
tion methods (Zach et al. 2007). Here we focus on generic
optimization methods that can apply to most models and find
that the estimated flow fields are as accurate as the reported
results for specialized methods.

Despite recent algorithmic advances, there is a lack of pub-
licly available, easy to use, and accurate flow estimation soft-
ware. The GPU4Vision project (http://gpu4vision.icg.tugraz.
at; last accesed 24 July 2013) has made a substantial effort
to change this and provides executable files for several accu-
rate methods (Wedel et al. 2008a,b, 2009; Werlberger et al.
2009). The dependence on the GPU and the lack of source
code are limitations. Since the publication of our confer-
ence paper, our public Matlab code has been used by both
researchers to develop new optical flow algorithms (Adato et
al. 2011; Chen et al. 2012, 2013; Jia et al. 2011; Krähenbühl
and Koltun 2012) and practitioners to use optical flow for
different applications (Humayun et al. 2011; Lin and Fisher
2012; Niu et al. 2012). Currently other available optical-
flow software includes (http://lmb.informatik.uni-freiburg.
de/resources/software.php; last accessed 24 July 2013 http://
people.csail.mit.edu/celiu/OpticalFlow/; last accessed 24
July 2013 http://www.cse.cuhk.edu.hk/leojia/projects/flow/;
last accessed 24 July 2013).

3 Classical Models

As is common to “classical” methods we only address the
two-frame optical flow estimation problem. We write the
classical optical flow objective function in its spatially dis-
crete form as

E(u, v) =
∑

i, j

{
ρD(I1(i, j)− I2(i +ui, j , j +vi, j ))

+ λ[ρS(ui, j −ui+1, j )+ρS(ui, j −ui, j+1)

+ ρS(vi, j −vi+1, j )+ρS(vi, j −vi, j+1)]
}
, (1)

where u and v are the horizontal and vertical components of
the optical flow field to be estimated from images I1 and I2,
i, j indexes a particular image pixel location, ui, j and vi, j

are elements of u and v respectively, λ is a regularization
parameter, and ρD and ρS are the data and spatial penalty
functions. We consider three different penalty functions: (1)
the quadratic HS penalty ρ(x) = x2; (2) the Charbonnier
penalty ρ(x) = √

x2 + ε2 (Bruhn et al. 2005), a differen-
tiable variant of the absolute value, the most robust con-

vex function; and (3) the Lorentzian ρ(x) = log(1 + x2

2σ 2 ),
which is a non-convex robust penalty used by Black and
Anandan (1996). We refer to the robust formulation with the
Lorentzian penalty as BA (short for Black and Anandan).
Note that this classical model is related to a standard pair-
wise Markov random field (MRF) based on a 4-neighborhood
(Geman and Geman 1984).

In the remainder of this section we define a baseline
method using several techniques from the literature. This
is not the “best” method, but includes modern techniques
and will be used for comparison. We only briefly describe
the main choices, which are explored in more detail in the
following section and the cited references.

Quantitative results are presented throughout the remain-
der of the text. In all cases we report the average end-point
error (EPE) on the Middlebury training and test sets, depend-
ing on the experiment.

3.1 Baseline Methods

To gain robustness against lighting changes, we follow Wedel
et al. (2008b) and apply the Rudin–Osher–Fatemi (ROF;
Rudin et al. 1992) structure texture decomposition method
to pre-process the input sequences and linearly combine the
texture and structure components (in the proportion 20:1).
The parameters are set according to Wedel et al. (2008b).

Optimization is performed using a standard incremental
multi-resolution technique (e. g., Black and Anandan 1996;
Brox et al. 2004) to estimate flow fields with large displace-
ments. The optical flow estimated at a coarse level is used
to warp the second image toward the first at the next finer
level, and a flow increment is calculated between the first
image and the warped second image. The standard deviation
of the Gaussian anti-aliasing filter is set to be 1√

2d
, where d

denotes the downsampling factor. Each level is recursively
downsampled from its nearest lower level. In building the
pyramid, the downsampling factor is not critical as pointed
out in the next section; here we use the settings of Sun et al.
(2008), which uses a factor of 0.8 in the final stages of the
optimization. For the basic pyramid scheme, we adaptively
determine the number of pyramid levels so that the top level
has a width or height of around 20–30 pixels. At each pyra-
mid level, we perform 10 warping steps to compute the flow
increment.

At each warping step, we linearize the data term once,
which involves computing terms of the type ∂

∂x I2(i+uk
i, j , j+

vk
i, j ), where ∂/∂x denotes the partial derivative in the hori-

zontal direction, uk and vk denote the current flow estimate at
iteration k. As suggested by Wedel et al. (2008b), we compute
the derivatives of the second image using the 5-point deriva-
tive filter 1

12 [−1 8 0 − 8 1], and warp the second image and
its derivatives toward the first using the current flow estimate
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by bicubic interpolation. We then compute the spatial deriva-
tives of the first image, compute the average of these and the
corresponding warped derivatives of the second image (cf.
Álvarez et al. 2007; Horn 1986), and use these in place of
∂ I2
∂x . For pixels moving out of the image boundaries, we set
both their corresponding temporal and spatial derivatives to
zero. After each warping step, the flow update is computed,
and then we apply a 5×5 median filter to the newly computed
flow field to remove outliers (Wedel et al. 2008b).

For the Charbonnier (Classic-C) and Lorentzian (Classic-
L) penalty function, we use a graduated non-convexity
scheme (GNC; Blake and Zisserman 1987) as described by
Sun et al. (2008). First, we replace the robust penalty func-
tions by quadratic penalty functions and obtain a quadratic
formulation of the objective function, EQ(u, v). Then we lin-
early combine the quadratic penalty function with the desired
robust penalty function and gradually change the weighting
of the two terms to reach the desired robust penalty func-
tion. In practice, we use a three-stage GNC scheme, with the
objective functions for the first, second, and third stages being
EQ(u, v), 1

2

(
EQ(u, v)+ E(u, v)

)
, and E(u, v) respectively.

The output of a previous stage serves as the initialization to
the next stage. The standard deviations of the corresponding
quadratic penalty function are set to be 1 for the Charbonnier
penalty and, for the Lorentzian, are taken to be the same as
the σ value used in the Lorentzian function. The same reg-
ularization weight λ is used for both the quadratic and the
robust objective functions.

3.2 Baseline Results

The regularization parameter λ is selected among a set of
candidate values to achieve the best average end-point error
(EPE) on the Middlebury training set. For the Charbonnier
penalty function, the candidate set is [1, 3, 5, 8, 10] and 5 is
optimal. The Charbonnier penalty uses ε = 0.001 for both
the data and the spatial term in Eq. 1. The Lorentzian uses
σ = 1.5 for the data term, σ = 0.03 for the spatial term,
and λ = 0.06. These parameters are fixed throughout the
experiments, except where mentioned.

Table 1 summarizes the EPE results of the basic model
with three different penalty functions on the Middlebury test
set, along with the two top performers at the time of per-
forming the evaluation (considering only published papers
when the evaluation table was generated). Table 2 provides
detailed results for each sequence. The classic formulations
with two non-quadratic penalty functions (Classic-C) and
(Classic-L) achieve competitive results despite their sim-
plicity. The baseline optimization of HS and BA (Classic-L)
results in significantly better accuracy than previously
reported for these models (Sun et al. 2008). Note that the
analysis also holds for the training set (Table 3).

Table 1 Models: average rank and end-point error (EPE) on the Mid-
dlebury test set using different penalty functions

Avg. Rank Avg. EPE

Classic-C 34.8 0.408

HS 49.0 0.501

Classic-L 42.7 0.530

Classic-C-brightness N/A 0.726

HS-brightness N/A 0.759

Classic-L-brightness N/A 0.603

HS (Sun et al. 2008) 66.2 0.872

BA (Classic-L) (Sun et al. 2008) 59.6 0.746

Adaptive (Wedel et al. 2009) 28.5 0.401

Complementary OF (Zimmer et al. 2009) 31.6 0.485

Two state-of-the-art methods in Dec. 2010 are included for comparison.
The ranking information was obtained at the writing of the paper (Sep.
2012). Please refer to Table 2 for the EPE results on each sequence

Because Classic-C performs quite well despite its sim-
plicity, we set it as the baseline below. Note that our baseline
implementation of HS has a lower average EPE than many
more sophisticated methods. The HS implementation here
incorporates many algorithmic and implementation details
not present in the original HS method; the core idea of
quadratic data and spatial terms however remains the same. In
our naming convention, one can think of the HS method here
as Classic-Q, meaning that it is the same as the Classic-C
method except that the data and spatial penalty terms are
quadratic.

4 Practices Explored

We now systematically vary the baseline approach by incor-
porating different ideas that have appeared in the literature,
with the goal of illuminating which of these ideas are signif-
icant. This analysis is performed on the Middlebury training
set by changing only one property at a time. Statistical sig-
nificance is determined using a Wilcoxon signed rank test
(Wilcoxon 1945) between each modified method and the
baseline Classic-C method; a p value less than 0.05 indi-
cates a significant difference. Each section below presents
detailed comparisons of all these methods and then summa-
rizes the results in a simple “take away message” about what
we think are the “best practices” based on the data.

4.1 Image Pre-Processing

While it is common to talk about the brightness constancy
assumption as a core feature of most optical flow algorithms,
in practice many other constancy assumptions have been
used. It is common, for example, to pre-filter the images
in a variety of ways ranging from simple smoothing to edge
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Table 2 Models: average end-point error (EPE) on the Middlebury optical flow benchmark (test set)

Rank Average Army Mequon Schefflera Wooden Grove Urban Yosemite Teddy

HS 49.0 0.501 0.12 0.25 0.45 0.24 0.95 0.83 0.24 0.93

Classic-C 34.8 0.408 0.10 0.23 0.45 0.20 0.88 0.47 0.16 0.77

Classic-L 42.7 0.530 0.10 0.24 0.47 0.21 0.92 1.23 0.20 0.87

HS-brightness N/A 0.759 0.21 0.89 1.13 0.42 0.93 0.70 0.18 1.61

Classic-C-brightness N/A 0.726 0.39 0.95 1.12 0.42 0.87 0.48 0.13 1.45

Classic-L-brightness N/A 0.603 0.17 0.64 0.84 0.32 0.90 0.48 0.13 1.34

HS (Sun et al. 2008) 66.2 0.872 0.22 0.61 1.01 0.78 1.26 1.43 0.16 1.51

BA (Classic-L) (Sun et al. 2008) 59.6 0.746 0.18 0.58 0.95 0.49 1.08 1.43 0.15 1.11

Adaptive (Wedel et al. 2009) 28.5 0.401 0.09 0.23 0.54 0.18 0.88 0.50 0.14 0.65

Complementary OF (Zimmer et al. 2009) 31.6 0.485 0.10 0.20 0.35 0.19 0.87 1.46 0.11 0.60

NL-TV-NCC (Werlberger et al. 2010) 23.5 0.388 0.10 0.22 0.35 0.15 0.79 0.78 0.16 0.55

Classic++ 32.7 0.406 0.09 0.23 0.43 0.20 0.87 0.47 0.17 0.79

Classic++Gradient 33.5 0.430 0.08 0.17 0.49 0.21 0.94 0.55 0.17 0.83

Classic+NL 17.2 0.319 0.08 0.22 0.29 0.15 0.64 0.52 0.16 0.49

Classic+NL-Full 17.5 0.316 0.08 0.24 0.28 0.15 0.63 0.49 0.16 0.50

The ranking information was determined at the writing of the paper (Sep. 2012)

Table 3 Pre-processing: average end-point error (EPE) on the Mid-
dlebury training set for the baseline method (Classic-C) using different
image pre-processing techniques

Avg. EPE Significance p value

Classic-C 0.298 – –

HS 0.384 1 0.0078

Classic-L 0.319 1 0.0078

Classic-C-brightness 0.288 0 0.9453

HS-brightness 0.387 1 0.0078

Classic-L-brightness 0.325 0 0.2969

Gradient 0.305 0 0.4609

Gaussian + Dx + Dy 0.290 0 0.6406

Sobel edge magnitude
(Vaudrey and Klette 2009)

0.417 1 0.0156

Laplacian (Lempitsky et al. 2010) 0.430 1 0.0078

Laplacian 1:1 0.301 0 0.6641

Gaussian pre-filtering (σ = 0.5) 0.281 0 0.5469

Texture 4:1 0.286 0 0.5312

Unnormalized texture 0.298 0 0.3750

Significance is always with respect to Classic-C. Please refer to
Tables 4 and 5 for the detailed results on each training sequence
Bold entries highlight statistical significance

detection. For each method, we optimize the regularization
parameter λ for the training sequences. The results are sum-
marized in Table 3, with details of the methods applied to
individual training sequences given in Tables 4 and 5. The
baseline uses a non-linear pre-filtering of the images (ROF) to
reduce the influence of illumination changes between frames

(Wedel et al. 2008b). Table 3 shows the effect of using
no pre-processing, resulting in the standard brightness con-
stancy model (*-brightness). Classic-C-brightness actually
achieves lower EPE on the training set than does Classic-C
but significantly higher error on the test set (Table 1). This
disparity suggests overfitting to the training data and leaves
open the question as to whether the standard brightness con-
stancy assumption, formulated robustly, may still compete
with various types of filter/structure constancy given appro-
priate training data.

Simpler alternatives, such as filter response (or high-order)
constancy (Brox et al. 2004; Bruhn & Weickert 2005; Sun et
al. 2008) can serve the same purpose as ROF texture decom-
position. A variety of pre-filters have been used in the litera-
ture, including derivative filters, Laplacians (Burt et al. 1982;
Lempitsky et al. 2010), and Gaussians. Edges have also been
emphasized using the Sobel edge magnitude (Vaudrey and
Klette 2009).

Gradient only imposes constancy of the gradient vector at
each pixel as proposed by Brox et al. (2004); i. e., it robustly
penalizes the Euclidean distance between image gradients.
We use central difference filters (Dx = [−0.5 0 0.5] and
Dy = DxT ). Gaussian+Dx+Dy assumes separate bright-
ness, horizontal derivative, and vertical derivative constancy.
A weighted combination of robust functions applied to each
term is used as by Sun et al. (2008). Neither of these methods
differ significantly from the baseline texture decomposition
(Classic-C). Two methods are significantly worse: the Sobel
edge magnitude (Vaudrey and Klette 2009) and Laplacian
pre-filtering (5×5) as used by Lempitsky et al. (2010). Sobel
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Table 4 Models and pre-processing: average end-point error (EPE) on the Middlebury training set for the classical model and different penalty
functions

Average Venus Dimetrodon Hydrangea RubberWhale Grove2 Grove3 Urban2 Urban3 Signif. p value

Classic-C 0.298 0.281 0.152 0.165 0.093 0.158 0.627 0.348 0.562 – –

Classic-C-brightness 0.288 0.268 0.166 0.215 0.134 0.146 0.584 0.352 0.437 0 0.9453

HS 0.384 0.337 0.219 0.189 0.118 0.204 0.688 0.463 0.853 1 0.0078

HS-brightness 0.387 0.335 0.226 0.252 0.154 0.185 0.639 0.564 0.743 1 0.0078

Classic-L 0.319 0.294 0.193 0.175 0.095 0.166 0.648 0.374 0.604 1 0.0078

Classic-L-brightness 0.325 0.292 0.207 0.274 0.145 0.158 0.588 0.451 0.484 0 0.2969

By default, the input sequences were preprocessed using ROF texture decomposition; “brightness” means no preprocessing is performed. The
statistical significance is tested using the Wilcoxon signed rank test between each method and the baseline (Classic-C)
Bold entries highlight statistical significance

Table 5 Pre-processing: average end-point error (EPE) on the Middlebury training set for the baseline method (Classic-C) using different
pre-processing techniques

Average Venus Dimetrodon Hydrangea RubberWhale Grove2 Grove3 Urban2 Urban3 Signif. p value

Classic-C 0.298 0.281 0.152 0.165 0.093 0.158 0.627 0.348 0.562 – –

Gradient 0.305 0.288 0.141 0.167 0.092 0.165 0.614 0.385 0.588 0 0.4609

Gaussian 0.281 0.268 0.146 0.226 0.141 0.137 0.582 0.335 0.413 0 0.5469

Gaussian + Dx + Dy 0.290 0.280 0.126 0.174 0.105 0.154 0.588 0.470 0.420 0 0.6406

Dx + Dy 0.301 0.286 0.122 0.166 0.099 0.161 0.616 0.443 0.518 0 1.0000

Sobel edge (Vaudrey
and Klette 2009)

0.417 0.334 0.149 0.184 0.130 0.194 0.757 0.451 1.135 1 0.0156

Laplacian (Lempitsky
et al. 2008)

0.430 0.374 0.170 0.176 0.096 0.175 0.756 0.464 1.232 1 0.0078

Laplacian 1:1 0.301 0.296 0.179 0.193 0.109 0.157 0.606 0.349 0.520 0 0.6641

Texture 4:1 0.286 0.271 0.159 0.175 0.100 0.154 0.587 0.349 0.490 0 0.5312

Unnormalized texture 0.298 0.279 0.152 0.166 0.092 0.158 0.623 0.348 0.563 0 0.3750

The regularization weight λ parameter was tuned for each method to achieve optimal performance. The statistical significance is tested using the
Wilcoxon signed rank test between each method and the baseline (Classic-C)
Bold entries highlight statistical significance

edge magnitude appears to not work well on some of the
sequences, particularly the synthetic ones, and may not be
suitable for a general flow estimation method. Laplacian pre-
filtering (5 × 5) as used by Lempitsky et al. (2010) produces
good results on “RubberWhale”, but poor ones on the syn-
thetic sequences. Note that the parameters for the FusionFlow
method (Lempitsky et al. 2010) were mainly tuned using
the “RubberWhale” sequence. The evaluation results sug-
gest room for improving the FusionFlow method by a better
pre-processing technique. Gaussian pre-filtering (σ = 0.5)
performed well on the synthetic sequences, but poorly on real
ones. Finally, the texture-structure blending ratio is 20:1 in
Wedel et al. (2008b) but 4:1 in Werlberger et al. (2009). We
find that (Texture4:1) performs better (but not significantly)
on the synthetic sequences with a little degradation on the
real ones. By default, the blended result from texture decom-
position is normalized to [−1, 1] by Wedel et al. (2008b)
and [0, 255] in our experiment. Not doing this normalization
(Unnormalized texture) has little effect.

For the Laplacian pre-filtering, we find combining the fil-
tered image with the original image, in the proportion 1:1,
improves accuracy significantly (Laplacian1:1). Similar to
the ROF texture decomposition, such an approach boosts the
high frequency while suppressing the low frequency compo-
nents that contain the lighting change.
Good Practices: Some form of image filtering is useful but
simple derivative constancy is nearly as good as the more
sophisticated texture decomposition method.

4.2 Coarse-to-Fine Estimation and Graduated
Non-Convexity (GNC)

We vary the number of warping steps per pyramid level
and find that 3 warping steps gives similar results as using
the baseline 10 (Table 6), except on “Urban3”, which is
dominated by large motion and occlusions (see Table 7 for
sequence-specific results). For the coarse-to-fine pyramid,
Sun et al. (2008) use a downsampling factor of 0.8 during
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Table 6 Model and methods: average end-point error (EPE) on the
Middlebury training set for the baseline method (Classic-C) using dif-
ferent algorithm and modeling choices

Avg. EPE Significance p value

Classic-C 0.298 — —

3 warping steps 0.304 0 0.9688

Down-0.5 0.298 0 1.0000

w/o GNC 0.354 0 0.1094

Bilinear 0.302 0 0.1016

w/o TAVG 0.306 0 0.1562

Central derivative filter 0.300 0 0.7266

7-point derivative filter
(Bruhn et al. 2005)

0.302 0 0.3125

Deriv-warp 0.297 0 0.9531

Bicubic-II 0.290 1 0.0391

Deriv-warp-II 0.287 1 0.0156

Warp-deriv-II 0.288 1 0.0391

C–L (λ = 0.6) 0.303 0 0.1562

L–C (λ = 2) 0.306 0 0.1562

GC-0.45 (λ = 3) 0.292 1 0.0156

GC-0.25 (λ = 0.7) 0.298 0 1.0000

MF 3 × 3 0.305 0 0.1016

MF 7 × 7 0.305 0 0.5625

2× MF 0.300 0 1.0000

5× MF 0.305 0 0.6875

w/o MF 0.352 1 0.0078

Classic++ 0.285 1 0.0078

Please refer to Table 7 for the detailed results on each sequence
Bold entries highlight statistical significance

non-convex optimization. A traditional downsampling fac-
tor of 0.5 (Down-0.5), however, has nearly identical perfor-
mance. Note that a larger factor means that the pyramid levels
are more similar in size and, for a pyramid with top bottom
levels of the same size, results in more pyramid levels.

Previously, Brox et al. (2004) have reported that a down-
sampling factor of 0.95 produces much better results than
0.5. Note that for each iterative warping estimation step,
Brox et al. use successive over-relaxation (SOR) to itera-
tively solve their linear system of equations and stop the iter-
ation before convergence. With a downsampling factor of
0.95, they effectively increase the number of iterative warp-
ing steps performed by the algorithm, and this likely helps
the overall algorithm converge. For our implementation, we
solve the linear system of equations using the Matlab built-
in backslash function and obtain converged results for each
iterative warping estimation step. Under such a setting, we
find that the downsampling factor has little influence on the
performance.

Removing the GNC procedure for the Charbonnier penalty
function (w/o GNC) results in higher EPE on most sequences
and higher energy on all sequences (Table 8). This suggests
that the GNC method is helpful even for the convex Char-
bonnier penalty function due to the nonlinearity of the data
term.
Good Practices: The downsampling factor does not matter
when using a convex penalty; a standard factor of 0.5 is fine.
Some form of GNC is useful even for a convex robust penalty
like Charbonnier because of the nonlinear data term.

4.3 Interpolation Method and Derivatives

We find that the baseline bicubic interpolation is more accu-
rate than bilinear (Table 6, Bilinear), as already reported
in previous work (Wedel et al. 2008b). Removing temporal
averaging of the gradients (w/o TAVG), using a Central dif-
ference filter [−1 0 1]/2, or using a 7-point derivative filter
[−1 9 − 45 0 45 − 9 1]/60 (Bruhn et al. 2005) all reduce
accuracy compared to the baseline, but not significantly.

The baseline method computes the image derivative by
first computing the derivative of the second image, warp-
ing the intermediate result toward the first image, and then
averaging the warped result with the spatial derivative of
the first image. Another approach is to first warp the second
image toward the first image, compute the derivatives of the
warped image, and then perform the temporal averaging with
the spatial derivatives of the first image (Bruhn et al. 2005).
We find the second approach produces similar results (Deriv-
warp). However, the derivatives computed in either way are
inconsistent with those implicitly interpolated by the bicubic
interpolation. Bicubic interpolation interpolates not only the
image but also the derivatives (Press et al. 2002). Because the
Matlab built-in function interp2 is based on cubic convo-
lution (Keys 1981) and does not provide the derivatives used
in interpolation, we use the spline-based implementation by
Press et al. (2002). With the new implementation (Bicubic-
II), the three different ways to compute the derivatives give
very similar EPE results, all better than the Matlab built-
in function. However, the one with consistent derivatives
(Bicubic-II) gives the lowest energy solution, as shown in
Table 9.
Good Practices: Use spline-based bicubic interpolation with
a 5-point filter. Compute the derivatives during the interpo-
lation to obtain the lowest energy solutions. Temporal aver-
aging of the derivatives is probably worthwhile for a small
computational expense.

4.4 Penalty Functions

We find that the convex Charbonnier penalty performs bet-
ter than the more robust, non-convex Lorentzian on both the
training and test sets. We test using the Charbonnier for the
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Table 7 Model and methods: average end-point error (EPE) on the Middlebury training set for the baseline model (Classic-C) using different
algorithm and modeling choices

Average Venus Dimetrodon Hydrangea RubberWhale Grove2 Grove3 Urban2 Urban3 Signif. p value

Classic-C 0.298 0.281 0.152 0.165 0.093 0.158 0.627 0.348 0.562 – –

3 warping steps 0.304 0.283 0.122 0.163 0.095 0.150 0.622 0.357 0.644 0 0.9688

Down-0.5 0.298 0.280 0.152 0.166 0.092 0.158 0.626 0.349 0.562 0 1.0000

Down-0.95 0.298 0.281 0.151 0.168 0.099 0.165 0.661 0.339 0.523 0 0.9375

w/o GNC 0.354 0.303 0.160 0.171 0.105 0.183 0.835 0.316 0.759 0 0.1094

Bilinear 0.302 0.284 0.144 0.167 0.099 0.160 0.637 0.363 0.563 0 0.1016

w/o TAVG 0.306 0.288 0.149 0.167 0.093 0.163 0.647 0.345 0.593 0 0.1562

Central 0.300 0.272 0.156 0.169 0.092 0.159 0.608 0.349 0.597 0 0.7266

7-point (Bruhn et al. 2005) 0.302 0.282 0.168 0.171 0.091 0.163 0.601 0.360 0.584 0 0.3125

Deriv-warp 0.297 0.283 0.153 0.165 0.092 0.159 0.636 0.333 0.552 0 0.9531

Bicubic-II 0.290 0.276 0.132 0.152 0.083 0.142 0.624 0.338 0.571 1 0.0391

Deriv-warp-II 0.287 0.264 0.155 0.152 0.085 0.145 0.616 0.333 0.546 1 0.0156

Warp-deriv-II 0.288 0.267 0.155 0.151 0.085 0.147 0.630 0.328 0.542 1 0.0391

C–L (λ = 0.6) 0.303 0.290 0.158 0.171 0.094 0.158 0.611 0.367 0.579 0 0.1562

L–C (λ = 2) 0.306 0.281 0.174 0.173 0.096 0.164 0.662 0.343 0.557 0 0.1562

GC-0.45 (λ = 3) 0.292 0.280 0.145 0.165 0.092 0.154 0.612 0.340 0.546 1 0.0156

GC-0.25 (λ = 0.7) 0.298 0.283 0.128 0.169 0.094 0.150 0.617 0.353 0.594 0 1.0000

MF 3 × 3 0.305 0.287 0.155 0.168 0.094 0.162 0.616 0.372 0.583 0 0.1016

MF 7 × 7 0.305 0.281 0.152 0.173 0.095 0.174 0.676 0.330 0.557 0 0.5625

2× MF 0.300 0.279 0.152 0.167 0.093 0.163 0.650 0.339 0.555 0 1.0000

5× MF 0.305 0.278 0.152 0.171 0.093 0.172 0.682 0.329 0.561 0 0.6875

w/o MF 0.352 0.307 0.168 0.199 0.113 0.217 0.705 0.423 0.684 1 0.0078

Classic++ 0.285 0.271 0.128 0.153 0.081 0.139 0.614 0.336 0.555 1 0.0078

The statistical significance is tested using the Wilcoxon signed rank test between each method and the baseline (Classic-C)
Bold entries highlight statistical significance

Table 8 Energy (×106, Eq. 1) for the optical flow fields computed on the Middlebury training set, evaluated using convolution-based bicubic
interpolation (Keys 1981)

Sum Venus Dimetrodon Hydrangea RubberWhale Grove2 Grove3 Urban2 Urban3

Classic-C 9.388 0.589 0.748 0.866 0.502 1.816 2.317 1.126 1.424

w/o GNC 9.689 0.593 0.750 0.870 0.506 1.845 2.518 1.142 1.465

w/o MF 8.044 0.517 0.701 0.668 0.449 1.418 1.830 1.066 1.395

Note that Classic-C uses graduated non-convexity (GNC), which reduces the energy, and median filtering, which increases it

Table 9 Energy (×106, Eq. 1) for the optical flow fields computed on the Middlebury training set, evaluated using spline-based bicubic interpolation
(Press et al. 2002)

Sum Venus Dimetrodon Hydrangea RubberWhale Grove2 Grove3 Urban2 Urban3

Bicubic-II 8.761 0.552 0.734 0.835 0.481 1.656 2.167 1.061 1.275

Deriv-warp 8.917 0.559 0.745 0.840 0.484 1.682 2.201 1.073 1.333

Warp-deriv 9.035 0.563 0.745 0.845 0.486 1.694 2.238 1.117 1.347

Note the derivatives consistent with the interpolation method (Bicubic-II) produce the lowest energy solution
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Fig. 2 Different penalty functions for the spatial terms: Charbonnier
(ε = 0.001), generalized Charbonnier (a = 0.45 and a = 0.25), and
Lorentzian (σ = 0.03)

data term and Lorentzian for the spatial term (C–L) and vice
versa (L–C). The two approaches perform better than using
the Lorentzian for both terms but worse than using the Char-
bonnier for both terms.

One reason might be that non-convex functions are more
difficult to optimize, causing the optimization scheme to find
a poor local optimum. Another reason might be that the
MAP estimator actually favors the “wrong” penalty func-
tions (Nikolova 2007; Schmidt et al. 2010).

We investigate a generalized Charbonnier penalty func-
tion ρ(x) = (x2 + ε2)a that is equal to the Charbonnier
penalty when a = 0.5, and non-convex when a < 0.5
(see Fig. 2). We optimize the regularization parameter λ

again. We find a slightly non-convex penalty with a = 0.45
(GC-0.45) performs consistently better than the Charbonnier
penalty, whereas more non-convex penalties (GC-0.25 with
a = 0.25) show no improvement.
Good Practices: The less-robust Charbonnier is preferable to
the highly non-convex Lorentzian and a slightly non-convex
penalty function (GC-0.45) is better still.

4.5 Median Filtering

Figure 3 illustrates the median filtering step within the coarse-
to-fine incremental estimation process. The baseline 5 × 5
median filter (MF 5×5) is better than both MF 3×3 (Wedel
et al. 2008b) and MF 7×7, but the difference is not significant
(Table 6). When we perform 5 × 5 median filtering twice
(2× MF) or five times (5× MF) per warping step, the results
are worse. Finally, removing the median filtering step (w/o
MF) makes the computed flow significantly less accurate
with larger outliers as shown in Table 6 and Fig. 4.

One interesting result with HS is that repeatedly applying
median filtering (20 times) at every warping step improves
the HS formulation and the improvement is statistically sig-
nificant (HS 20× MF in Table 10).

refine warp

median filtering

+

Fig. 3 The median filtering is performed after every incremental warp-
ing step (i. e., once at every image pyramid level). The output of the
median filtering is upsampled and used as the initial estimate for the
next larger pyramid level

(a) With median filtering (b) Without median filtering (c) Key

Fig. 4 Estimated flow fields on sequence “RubberWhale” using
Classic-C with and without (w/o MF) the median filtering step. a (w/
MF) energy 502, 387, b (w/o MF) energy 449, 290, c color key (Baker
et al. 2007). The median filtering step helps reach a solution free from
outliers but with a higher energy. The flow fields have been normal-
ized by their maximum magnitude resulting in different contrasts. The
outliers in the result without median filtering (b) make the flow appear
lower contrast

Good Practices: Median filtering the intermediate flow
results once after every warping iteration is the single most
important implementation detail here; 5 × 5 is a good filter
size.

4.6 Best Practices

Combining the analysis above into a single approach means
modifying the baseline to use the slightly non-convex gen-
eralized Charbonnier and the spline-based bicubic interpola-
tion. This leads to a statistically significant improvement over
the baseline (Table 6, Classic++). This method is directly
descended from HS and BA, yet updated with the current
best optimization practices known to us. This simple method
ranks 32th out of 73 methods in both EPE and AAE on the
Middlebury test set at the writing of the paper (Sep. 2012).
However, as we will see soon, this method is somehow not
“simple”. Instead of the original objective, a different objec-
tive is being optimized with the median filtering step. The
same is true for the reported results of both HS and BA.
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Table 10 Additional results for HS: average end-point error (EPE) on the Middlebury training set

Average Venus Dimetrodon Hydrangea RubberWhale Grove2 Grove3 Urban2 Urban3 Signif. p value

HS 0.384 0.337 0.219 0.189 0.118 0.204 0.688 0.463 0.853 – –

HS 20× MF 0.365 0.299 0.214 0.184 0.104 0.196 0.699 0.431 0.792 1 0.0469

The statistical significance is tested using the Wilcoxon signed rank test between each method and HS
Bold entries highlight statistical significance

5 Models Underlying Median Filtering

Our analysis reveals the practical importance of median
filtering during optimization. This effectively denoises the
intermediate flow fields, preventing gross outliers, and mak-
ing even non-robust methods like HS more robust. We ask
whether there is a principle underlying this heuristic?

One interesting observation is that flow fields obtained
with median filtering have substantially higher energy than
those without (Table 8; Fig. 4). If the median filter is helping
to optimize the objective, it should lead to lower energies.
Higher energies and more accurate estimates suggest that
incorporating median filtering changes the objective function
being optimized.

The insight that follows from this is that the median fil-
tering heuristic is related to the minimization of an objec-
tive function that differs from the classical one. In particular
the optimization of Eq. 1, with interleaved median filtering,
approximately minimizes

E(u, v) =
∑

i, j

{
ρD(I1(i, j) − I2(i + ui, j , j + vi, j ))

+λ[ρS(ui, j − ui+1, j )+ ρS(ui, j − ui, j+1)

+ρS(vi, j − vi+1, j ) + ρS(vi, j − vi, j+1)]
}

+λN

∑

i, j

∑

(i ′, j ′)∈Ni, j

(|ui, j −ui ′, j ′ |+|vi, j − vi ′, j ′ |), (2)

where Ni, j is the set of neighbors of pixel (i, j) in a possibly
large area and λN is a scalar weight. The term in braces is the
same as the flow energy from Eq. 1, while the last term is new.
This non-local term (Buades et al. 2005; Gilboa and Osher
2008) imposes a particular smoothness assumption within a
specified region of the flow field.1 Here we take this term to
be a 5 × 5 rectangular region to match the size of the median
filter in Classic-C. Figure 5 shows the neighborhood for the
standard pairwise model and the non-local term.

It is usually difficult to directly optimize the objective (2)
with a large spatial term. A common practice is to relax the
objective with an auxiliary flow field as

1 Bruhn et al. (2005) also integrated information over a local region in
a global method but did so for the data term.

Fig. 5 From left to right, neighborhood structure for the center (red)
pixel for the standard pairwise model, the unweighted non-local model,
the unweighted non-local model with a larger neighborhood, and the
weighted non-local model. The standard pairwise model connects a cen-
ter pixel with its nearest neighbors, while the non-local term connects
a pixel with many pixels in a large spatial neighborhood. By assigning
larger weights (thicker red edges) to neighbors that are more likely to
be on the same surface (blue circles), the weighted non-local model
incorporates spatial scene structure information

E A(u, v, û, v̂) =
∑

i, j

{
ρD(I1(i, j) − I2(i + ui, j , j + vi, j ))

+λ[ρS(ui, j − ui+1, j )+ ρS(ui, j − ui, j+1)

+ρS(vi, j − vi+1, j ) + ρS(vi, j − vi, j+1)]
}

+λC (||u − û||2 + ||v − v̂||2)
+λN

∑

i, j

∑

(i ′, j ′)∈Ni, j

(|ûi, j − ûi ′, j ′ | + |v̂i, j

−v̂i ′, j ′ |), (3)

where û and v̂ denote an auxiliary flow field and λC is a scalar
weight. A third (coupling) term encourages û, v̂ and u, v to
be the same (cf. Wedel et al. 2009; Zach et al. 2007). Here the
notation implies a pixelwise sum of squared errors between
the auxiliary and main flow fields.

The connection to median filtering (as a denoising
method) derives from the fact that there is a direct relation-
ship between the median and L1 minimization. Consider a
simplified version of Eq. 3 with just the coupling and non-
local terms, where

E(û)=λC ||u−û||2+λN

∑

i, j

∑

(i ′, j ′)∈Ni, j

|ûi, j −ûi ′, j ′ |. (4)

While minimizing this is similar to median filtering u, there
are two differences. First, the non-local term minimizes the
L1 distance between the central value and all flow values in
its neighborhood except itself. Second, Eq. 4 incorporates
information about the data term through the coupling equa-
tion; median filtering the flow ignores the data term.
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The formal connection between Eq. 4 and median filter-
ing2 is provided by Li and Osher (2009) who show that min-
imizing Eq. 4 is related to a different median computation

û(k+1)
i, j = median(Neighbors(k) ∪ Data) (5)

where Neighbors(k) = {û(k)

i ′, j ′ } for (i ′, j ′) ∈ Ni, j and û(0) =
u as well as

Data = {ui, j , ui, j ± λN
λC

, ui, j ± 2λN
λC

. . . , ui, j ± |Ni, j |λN
2λC

},
where |Ni, j | denotes the (even) number of neighbors of
(i, j). Note that the set of “data” values is balanced with
an equal number of elements on either side of the value ui, j

and that information about the data term is included through
ui, j . Repeated application of Eq. 5 converges rapidly (Li and
Osher 2009).

Observe that, as λN /λC increases, the weighted data val-
ues on either side of ui, j move away from the values of
Neighbors and cancel each other out. As this happens, Eq. 5
approximates the median at the first iteration

û(1)
i, j ≈ median(Neighbors(0) ∪ {ui, j }). (6)

Equation 3 thus combines the original objective with an
approximation to the median, the influence of which is con-
trolled by λN /λC . Note in practice the weight λC on the cou-
pling term is usually small or is steadily increased from small
values (Wedel et al. 2008b; Zach et al. 2007). We optimize
the new objective (3) by alternately minimizing

EO (u, v) =
∑

i, j

{
ρD(I1(i, j) − I2(i + ui, j , j + vi, j ))

+λ[ρS(ui, j − ui+1, j )+ ρS(ui, j − ui, j+1)

+ρS(vi, j − vi+1, j ) + ρS(vi, j − vi, j+1)]
}

+λC (||u − û||2 + ||v − v̂||2) (7)

and

EM (û, v̂) = λC (||u−û||2+||v − v̂||2)
+λN

∑

i, j

∑

(i ′, j ′)∈Ni, j

(|ûi, j −ûi ′, j ′ |+|v̂i, j −v̂i ′, j ′ |). (8)

We find that optimization of the coupled set of equations is
superior in terms of EPE performance than optimization of
the objective in Eq. 2.

The alternating optimization strategy first holds û, v̂ fixed
and minimizes Eq. 7 w. r. t. u, v. Then, with u, v fixed, we
minimize Eq. 8 w. r. t. û, v̂. Note that Eqs. 4 and 8 can be min-
imized by repeated application of Eq. 5; we use this approach
with five iterations. We perform 10 steps of alternating opti-
mizations at every pyramid level and change λC logarithmi-
cally from 10−4 to 102. During the first and second GNC

2 Hsiao et al. (2003) established the connection in a slightly different
way.

Table 11 Average end-point error (EPE) on the Middlebury training
set is shown for the new model with alternating optimization (Classic-
C–A)

Avg. EPE Significance p value

Classic-C 0.298 – –

Classic-C-A 0.305 0 0.8125

Classic-C-A-noRep 0.309 0 0.5781

Classic-C-A-II 0.296 0 0.7188

Classic-C-A-CGD 0.305 0 0.5625

Please refer to Table 13 for the detailed EPE results on each training
sequence

stages, we set u, v to be û, v̂ after every warping step (this
replacement step helps reach solutions with lower energy
and EPE than without performing this step; see Classic-C–
A-noRep in Tables 11, 12). In the end, we take û, v̂ as the
final flow field estimate. The other parameters are λ = 5,

λN = 1.
Alternately optimizing this new objective function (Class

ic-C–A) leads to similar results as the baseline Classic-C
(Tables 11, 13). We also compare the energy of these solu-
tions using the new objective and find the alternating opti-
mization produces the lowest energy solutions, as shown in
Table 12.

We find that approximately optimizing the new objec-
tive by changing λC logarithmically from 10−4 to 10−1

has slightly better EPE results but higher energy solutions
(Classic-C–A-II). We also try replacing the absolute value
by the Charbonnier penalty function and using the conjugate
gradient descent method (http://www.gaussianprocess.org/
gpml/code/matlab/util/minimize.m; last accessed 24 July
2013) to solve Eq. 4 but obtain results with slightly worse
EPE performance and higher energy.

In summary, we show that the heuristic median filtering
step in Classic-C can now be viewed as energy minimization
of a new objective with a non-local term. The explicit for-
mulation emphasizes the value of robustly integrating infor-
mation over large neighborhoods and enables the improved
model described below.

6 Improved Model

By formalizing the median filtering heuristic as an explicit
objective function, we can find ways to improve it. While
median filtering in a large neighborhood has advantages as
we have seen, it also has problems. A neighborhood centered
on a corner or thin structure is dominated by the surround and
computing the median results in oversmoothing as illustrated
in Fig. 1.
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Table 12 Energy (×106, Eq. 3) for the computed flow fields on the Middlebury training set

Sum Venus Dimetrodon Hydrangea RubberWhale Grove2 Grove3 Urban2 Urban3

Classic-C 13.013 0.817 0.903 1.202 0.674 2.166 3.144 1.954 2.153

Classic-C w/o MF 14.629 0.886 0.945 1.299 0.725 2.315 3.513 2.234 2.712

Classic-C-A 12.489 0.784 0.889 1.139 0.666 2.064 2.976 1.922 2.049

Classic-C-A-noRep 13.076 0.790 0.894 1.165 0.670 2.092 3.143 2.005 2.317

Classic-C-A-II 13.308 0.830 0.915 1.235 0.686 2.223 3.247 1.990 2.182

Classic-C-A-CGD 13.466 0.833 0.909 1.224 0.674 2.213 3.357 2.020 2.236

The alternating optimization strategy (Classic-C-A) produces the lower energy solutions than the median filtering heuristic

Table 13 Average end-point error (EPE) on the Middlebury training set for the proposed new objective with the non-local term and alternating
optimization (Classic-C–A) and its improved models

Average Venus Dimetrodon Hydrangea RubberWhale Grove2 Grove3 Urban2 Urban3 Signif. p value

Classic-C 0.298 0.281 0.152 0.165 0.093 0.158 0.627 0.348 0.562 – –

Classic-C–A 0.305 0.281 0.140 0.159 0.092 0.167 0.676 0.334 0.594 0 0.8125

Classic-C–A-noRep 0.309 0.279 0.139 0.161 0.093 0.157 0.653 0.370 0.619 0 0.5781

Classic-C–A-II 0.296 0.278 0.153 0.166 0.091 0.168 0.656 0.329 0.531 0 0.7188

Classic-C–A-CGD 0.305 0.281 0.148 0.161 0.093 0.159 0.697 0.344 0.560 0 0.5625

The statistical significance is tested using the Wilcoxon signed rank test between each method and the baseline (Classic-C)

Examining the non-local term suggests a solution. For a
given pixel, if we know which other pixels in the area belong
to the same surface, we can weight them more highly. The
modification to the objective function is achieved by intro-
ducing a weight into the non-local term (Buades et al. 2005;
Gilboa and Osher 2008):

∑

i, j

∑

(i ′, j ′)∈Ni, j

w
i ′, j ′
i, j (|ûi, j − ûi ′, j ′ | + |v̂i, j − v̂i ′, j ′ |), (9)

where w
i ′, j ′
i, j represents how likely pixel i ′, j ′ is to belong to

the same surface as i, j .

Of course, we do not know w
i ′, j ′
i, j , but can approximate

it. We draw ideas from Sand and Teller (2008); Xiao et al.
(2006); Yoon and Kweon (2006) to define the weights accord-
ing to their spatial distance, their color-value distance, and
their occlusion state as

w
i ′, j ′
i, j ∝exp

{
− |i−i ′|2+| j− j ′|2

2σ 2
1

− |I(i, j)−I(i ′, j ′)|2
2σ 2

2 nc

}o(i ′, j ′)
o(i, j)

, (10)

where I(i, j) is the color vector in the Lab space, nc is the
number of color channels, σ1 = 7, σ2 = 7, and the occlusion
variable o(i, j) is calculated using Eq. 22 in Sand and Teller
(2008) as

o(i, j)=exp

{
−d2(i, j)

2σ 2
d

−
(
I (i, j)− I (i +ui, j , j +vi, j )

)2

2σ 2
e

}
, (11)

where d(i, j) is the one-sided divergence function, defined
as

d(i, j) =
{

div(i, j), div(i, j) < 0
0, otherwise

(12)

in which the flow divergence div(i, j) is

div(i, j) = ∂

∂x
u(i, j) + ∂

∂y
v(i, j), (13)

where ∂
∂x and ∂

∂y are respectively the horizontal and vertical
flow derivatives. The occlusion variable o(i, j) is near zero
for occluded pixels and near one for non-occluded pixels.
We set the parameters in Eq. 11 as σd = 0.3 and σe = 20;
this is the same as Sand and Teller (2008). Note that the
occlusion state nonlinearly depends on the unknown flow
field and we calculate the occlusion state using the latest flow
estimate.

Examples of such weights are shown for several 15 ×
15 neighborhoods in Fig. 6; bright values indicate higher
weights. Note the neighborhood labeled d, corresponding
to the rifle. Since pixels on the rifle are in the minority, an
unweighted median oversmooths (Classic++ in Fig. 1). The
weighted term instead robustly estimates the motion using
values on the rifle. A closely related piece of work is by Ren
(2008), who uses the intervening contour to define affinities
among neighboring pixels for the local Lucas and Kanade
(1981) method. However it only uses this scheme to estimate
motion for sparse points and then interpolates the dense flow
field.
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Fig. 6 Neighbor weights of the proposed weighted non-local term at
different positions in the “Army” sequence. We use color, spatial dis-
tance, and occlusion cues to determine whether the neighboring pixels
are likely to belong to the same surface. Among these cues, color is the
most powerful (see Table 14 and text for an evaluation of the cues)

We approximately solve for û (and similarly v̂) using the
following weighted median problem

min
ûi, j

∑

(i ′, j ′)∈Ni, j ∪{i, j}
w

i ′, j ′
i, j |ûi, j − ui ′, j ′ |, (14)

using the formula (3.13) in Li and Osher (2009) for all the
pixels (Classic+NL-Full). Note if all the weights are equal,
the solution is just the median. In practice, we can adopt a
fast version (Classic+NL) without performance loss: Given
a current estimate of the flow, we detect motion boundaries
using a Sobel edge detector and dilate these edges with a
5×5 mask to obtain flow boundary regions. In these regions
we use the weighting in Eq. 10 in a 15 × 15 neighborhood.
In the non-boundary regions, we use equal weights in a 5×5
neighborhood to compute the median.

To further reduce the computation, we can adopt a two-
stage GNC process and perform three warping steps per pyra-
mid level. This fast version (Classic+NL-Fast) has nearly the
same overall performance, with a slight decline in perfor-
mance on the “Urban3” sequence, which has large motions;
with an iterative warping scheme, large motions require more
iterations.

Tables 14 and 15 show that the weighted non-local term
(Classic+NL) improves the accuracy on both the training
and the test sets, especially in the motion boundary regions.
Note that the fine detail of the “rifle” is preserved in Fig. 1e.
At the writing of this paper (Sep. 2012), Classic+NL ranks
13th in both AAE and EPE. Figures 7 and 8 show some of
the results on the Middlebury dataset.

Table 14 Average end-point error (EPE) on the Middlebury training
set is shown for the improved model and its variants

Avg. EPE Significance p value

Classic+NL 0.221 – –

Classic+NL-Full 0.222 0 0.8203

Classic+NL-Fast 0.221 0 0.3125

RGB 0.240 1 0.0156

HSV 0.231 1 0.0312

LUV 0.226 0 0.5625

Gray 0.253 1 0.0078

w/o color 0.283 1 0.0156

w/o occ 0.226 0 0.1250

w/o spa 0.223 0 0.5625

σ2 = 5 0.221 0 1.0000

σ2 = 10 0.224 0 0.2500

λ = 1 0.236 0 0.1406

λ = 9 0.244 0 0.1016

11 × 11 0.223 0 0.5938

19 × 19 0.220 0 0.8750

Please refer to Table 16 for the detailed results
Bold entries highlight statistical significance

Table 15 Average end-point error (EPE) on the Middlebury test set for
the Classic++ model with two different preprocessing techniques and
its improved model

Avg. rank Avg. EPE Avg. EPE near
boundary

Classic++ 32.7 0.406 0.980

Classic++Gradient 33.5 0.430 1.042

Classic+NL 17.2 0.319 0.689

Classic+NL-Full 17.5 0.316 0.676

Please refer to Table 2 for the detailed EPE results

We study some variants of the weighted non-local term
(Classic+NL). Tables 14 and 16 show the importance of each
term in determining the weight and influence of the parameter
setting on the final results. Using different color spaces results
in some performance decline. Using grayscale pixel values
(Gray) or not using the static image information (w/o color)
results in significant degradation in performance. Without
occlusion (w/o occ) or spatial distance (w/o spa) cues does
not degrade the performance significantly. The method is
robust to the setting of σ2 for the color cue and 5 and 10
perform similarly as the default 7. The default λ is 3, while 1
and 9 result in some loss in performance. We also study the
maximum size of the neighborhood for the non-local term
and find 11 × 11 gives similar performance while 19 × 19 is
slightly better.
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(a) “Old” HS [58] (b) “New” HS (c) Classic++ (d) Classic+NL (e) Ground truth (f) First frame

Fig. 7 Results on the Middlebury test set. Top to bottom: “Teddy”,
“Wooden”, and “Grove”. Classic+NL uses information from the color
image to detect and preserve fine motion details. Note that the ground

truth visualization from the Middlebury website has been compressed
and has lower quality than the actual ground truth

(a) Classic+NL (b) Ground truth (c) First frame (d) Classic+NL (e) Ground truth (f) First frame

Fig. 8 Results on other Middlebury test sequences. Top left “Mequon”; top right “Schefflera”; bottom left “Urban”; bottom right “Yosemite”

6.1 Closely-Related Work

Werlberger et al. (2010) independently propose a non-local
term for optical flow estimation and the spatial term is similar

to our non-local term. They use zero mean normalized cross
correlation as the data term to deal with lighting changes.
Their work is motivated by the success of the non-local reg-
ularization (Buades et al. 2005) in image restoration and
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Table 16 Average end-point error (EPE) on the Middlebury training set for the proposed new objective with the weighted non-local term and its
variants

Average Venus Dimetrodon Hydrangea RubberWhale Grove2 Grove3 Urban2 Urban3 Signif. p value

Classic+NL 0.221 0.238 0.131 0.152 0.073 0.103 0.468 0.220 0.384 – –

Classic+NL-Full 0.222 0.252 0.135 0.156 0.074 0.097 0.469 0.214 0.382 0 0.8203

Classic+NL-Fast 0.221 0.233 0.117 0.151 0.076 0.098 0.464 0.210 0.421 0 0.3125

RGB 0.240 0.243 0.131 0.155 0.081 0.109 0.501 0.236 0.468 1 0.0156

HSV 0.231 0.245 0.131 0.152 0.074 0.110 0.492 0.222 0.424 1 0.0312

LUV 0.226 0.241 0.131 0.149 0.074 0.104 0.460 0.223 0.427 0 0.5625

Gray 0.253 0.253 0.133 0.158 0.086 0.125 0.547 0.242 0.479 1 0.0078

w/o color 0.283 0.258 0.128 0.157 0.087 0.155 0.633 0.303 0.543 1 0.0156

w/o occ 0.226 0.243 0.131 0.152 0.073 0.103 0.488 0.230 0.386 0 0.1250

w/o spa 0.223 0.237 0.132 0.154 0.073 0.102 0.475 0.213 0.398 0 0.5625

σ2 = 5 0.221 0.240 0.131 0.151 0.073 0.104 0.466 0.208 0.392 0 1.0000

σ2 = 10 0.224 0.238 0.132 0.153 0.073 0.102 0.485 0.228 0.384 0 0.2500

λ = 1 0.236 0.245 0.151 0.164 0.080 0.120 0.430 0.243 0.459 0 0.1406

λ = 9 0.244 0.249 0.137 0.160 0.091 0.111 0.577 0.201 0.426 0 0.1016

11 × 11 0.223 0.240 0.131 0.151 0.074 0.103 0.451 0.234 0.397 0 0.5938

19 × 19 0.220 0.238 0.132 0.154 0.073 0.103 0.470 0.210 0.384 0 0.8750

The statistical significance is tested using the Wilcoxon signed rank test between each method and the baseline (Classic+NL)
Bold entries highlight statistical significance

stereo. Our work is inspired by the success of the heuristic
median filtering step in flow estimation and we formalize the
median filtering heuristic as a non-local regularization term.
The use of the GPU and C++ makes their implementation
faster than our implementation in Matlab. Classic+NL has
lower average EPE on the Middlebury test sequences; 0.319
versus 0.388 (cf. Table 2). Readers can visually compare the
results of both methods on the Middlebury website.

6.2 Results on the MIT Dataset

To test the robustness of these models on other data, we
applied HS, Classic-C, and Classic+NL to sequences from
the MIT dataset (Liu et al. 2008), and compared the estimated
flow fields to the human labeled ground truth. Note only five
of the eight test sequences of Liu et al. (2008) are available
on-line; these are tested here.

Figure 9 and Table 17 show the results on these sequences,
which are very different in nature from the Middlebury set
and include an outdoor scene as well as a scene of a fish tank.
The results are compared with the CLG method (Bruhn et al.
2005) used by Liu et al. (2008). It is important to point out
that the CLG method was tuned to obtain the optimal results
on the test sequences. Our method had no such tuning and we
used the same parameters as those used in all the other exper-
iments. This suggests that training on the Middlebury data
results in a method that generalizes to other sequences. The
only place where this fails is on the “fish” sequence where

there is transparent motion in a liquid medium; the statis-
tics in this sequence are very different from the Middlebury
training data.

6.3 Performance on MPI Sintel and KITTI Datasets

We evaluate the methods above (corresponding to our pub-
licly released code) on the MPI Sintel (Butler et al. 2012)
and the KITTI (Geiger et al. 2012) datasets using the default
parameter settings in our conference paper (Sun et al. 2010a).
As summarized by Tables 17 and 19, the conclusions con-
tradict our findings reported above. On the MPI Sintel
dataset, HS outperforms Classic++, which in turn outper-
forms Classic+NL-fast. The only consistent result is Clas-
sic+NL, which achieves the best performance. On the KITTI
dataset, HS outperforms Classic+NL.

We ask how these datasets differ from both Middlebury
and the MIT dataset. What could lead to these inconsistent
conclusions? One answer surprisingly lies in the unequal
width and height of the images.

6.4 Asymmetric Pyramids for Wide-Aspect-Ratio Video

Our original implementation downsamples the image equally
in the horizontal and vertical dimensions. The method auto-
matically determines the number of pyramid levels using the
smaller of the height and width of the input image. This
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(a) HS (b) Classic-C (c) Classic+NL (d) Ground truth (e) First frame

Fig. 9 Results on MIT sequences. Top to bottom “Table”, “Hand”, “Toy”, “Fish”, and “CameraMotion”

Table 17 Results on the MIT dataset (Liu et al. 2008)

Average Table Hand Toy Fish Camera
Motion

CLG 1.239 0.976 4.181 0.456 0.196 0.385

HS 2.129 1.740 6.108 0.620 1.309 0.869

Classic-C 1.345 1.064 3.428 0.482 1.061 0.690

Classic+NL 1.106 0.91 2.75 0.487 0.772 0.611

Average end-point error (EPE). The CLG (Bruhn et al. 2005) method
was tuned for each sequence (Liu et al. 2008)

scheme works well when the width-to-height ratio is close
to 1, i. e., the Middlebury sequences. In contrast, the MPI
Sintel images are 1, 024 × 436 and the KITTI images are
around 1, 226×370. The small vertical dimension limits the
height of the pyramid, but we find that the large horizontal
dimension means that the sequences contain very large hor-
izontal motions. As a result, at the top level of the pyramid,
the horizontal motions can be much larger than a pixel.

To address this we can use an unequal downsampling fac-
tor in each direction to ensure that the motion at the top pyra-

Table 18 Average end-point error (EPE) on the MPI Sintel training set

Classic+NL Classic+NL-fast Classic++ HS

Final 7.998 8.806 8.601 8.386

Clean 6.035 7.445 6.765 7.238

Classic+NLP Classic+NL-FastP Classic++P HSP

Final 7.459 7.379 7.928 8.291

Clean 4.942 5.078 5.363 6.899

mid level is small in both directions (or at least similar). For
the MPI Sintel and KITTI data sets, we use a downsampling
factor of 0.5 in the horizontal direction and determine the
downsampling factor in the vertical direction and the pyra-
mid level number, so that the size of top pyramid level is
around 16 × 16.

For MPI Sintel and KITTI this scheme results in a 7-level
pyramid (instead of a 5-level pyramid in the standard sym-
metric scheme). This results in a significant improvement on
both the the MPI Sintel and the KITTI data set, as summa-
rized by Tables 18, 19 and 20. We denote the method with
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Table 19 Average end-point error (EPE) on the MPI Sintel test set

Classic+NL Classic+NL-fast Classic++ HS

Final 9.153 10.088 9.959 9.610

Clean 7.961 9.129 8.721 8.739

Classic+NLP Classic+NL-FastP Classic++P HSP

Final 8.291 8.439 8.836 9.377

Clean 6.731 6.940 7.209 8.309

MDP-Flow2 FC-2Layers-FF AHOF

Final 8.445 8.137 11.927

Clean 5.837 6.781 12.642

Only published results are shown, including MDP-Flow2 (Xu et al.
2012), FC-2Layers-FF (Sun et al. 2013) and AHOF (Werlberger et al.
2009)

Table 20 Percentage of pixels with EPE larger than 3 pixels in non-
occluded (Out-Noc) and all Out-All areas and average EPE in non-
occluded (Avg-Noc) and all Avg-All areas on the KITTI test set

Method Out-Noc (%) Out-All (%) Avg-Noc
(pixel)

Avg-All
(pixel)

HS 19.92 28.86 5.8 11.7

Classic+NL 24.64 33.35 9.0 16.4

HSP 14.77 24.08 4.0 9.0

Classic+NL-FastP 12.42 22.27 3.2 7.8

Classic+NLP 10.60 20.66 2.8 7.2

Classic++P 10.16 20.29 2.6 7.1

the new asymmetric pyramid by adding an “P” at the end of
the name.

On MPI Sintel, the results of the four methods are con-
sistent with those on the Middlebury data set. Note that even
Classic++P outperforms the previous Classic+NL. Clas-
sic+NLP outperforms MDP-flow2 (Xu et al. 2012) on the
final set, but not on the clean set. MDP-flow2 uses feature
matching to deal with fast moving objects. Feature match-
ing tends to work well on the clean set, but not the final
set due to motion and optical blur in the latter. Figure 10
shows an example visual comparison between results using
Classic+NLP and Classic+NL. The asymmetric pyramid
leads to significant improvement in areas that undergo large
motions.

On the KITTI set, Classic++P performs best among
all our tested methods, both in the training and the test
sets. Note that the KITTI sequences have been collected
on a moving vehicle in an urban environment. The flow
fields tend to be smooth with few flow boundaries. The
image-independent smoothness assumption in Classic++P
is better suited to such data. Figure 11 shows some results
for Classic+NL-FastP and Classic+NL-fast; note the dra-

matic improvement resulting from the asymmetric pyra-
mid.

It is important to note that, apart from the change of pyra-
mid method, all other parameters remain the same and are
trained using the Middlebury training sequences.

6.5 Computational Time

Table 21 summarizes the running time of the evaluated
methods on typical sequences from three different data sets
in matlab on a 64-bit Linux desktop with 8GB memory.
The additional cost from HS to Classic++ comes from the
GNC stage and the non-convex penalty function. The addi-
tional cost from Classic++ to Classic+NL comes from the
weighted median filtering step for detected motion bound-
aries. Applying the weighted median operation on all the pix-
els (Classic+NL-Full) increases the running time by more
than three times with little performance gain. Using fewer
iterations (Classic+NL-Fast) can significantly reduce the
computational cost with little performance loss, especially
on sequences with small motion. Note that we solve the
weighted median problem at each pixel individually and do
not reuse the sorting results from neighboring pixels. Future
work should consider reformulating the weighted median fil-
tering so that a convolution-type operation can be used to
reduce the computational cost.

6.6 Limitations

Classic+NL produces larger errors in occlusion regions on
some sequences, such as “Schefflera” shown in Fig. 12. The
classical flow formulation assumes that every pixel at the
current frame has a corresponding pixel at the next frame.
However, this assumption breaks down in regions of occlu-
sion. Pixels that are occluded by some foreground objects
in one frame do not have corresponding pixels in the next,
resulting in large errors with classical formulations. In con-
trast, a layered model (Wang and Adelson 1994) may pro-
vide a principled way to reason about occlusions. The motion
model developed in this paper has enabled a recent layered
approach (Sun et al. 2010b) to achieve a consistent improve-
ment over the Classic+NL method, in particular near occlu-
sion and motion boundary regions.

Small, fast moving objects also cause problems for the
classical coarse-to-fine estimation used by Classic+NL, as
shown in Fig. 10. The work by Brox and Malik (2011) on
large displacement optical flow has inspired recent work
(Chen et al. 2013; Steinbrücker et al. 2009; Xu et al. 2012)
to embed feature matching into the coarse-to-fine estimation
framework. Chen et al. (2013) show that, with proper ini-
tialization, Classic+NL can also handle large displacement
optical flow on the Middleburydataset.

123



Int J Comput Vis (2014) 106:115–137 133

Fig. 10 Example results on MPI Sintel dataset. From top to bottom:
first frame, second frame, results by Classic+NL (5-level), results by
Classic+NLP (7-level), and ground truth. The asymmetric pyramid
leads to a significant improvements in large regions undergoing large
motion (head of the dragon on the left and background on the right).

EPE results: “temple2” (left), 18.04 by Classic+NL (5-level) and 12.92
by Classic+NLP (7-level); “cave2” (right), 52.208 by Classic+NL (5-
level) and 26.565 by Classic+NLP (7-level). Note that the estimated
motion for fast-moving objects still contains large errors
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Fig. 11 Example results on the KITTI dataset. From top to bottom: first
frame, second frame, results by Classic+NL-fast (5-level), results by
Classic+NL-FastP (7-level), and ground truth for the non-occluded fea-
ture points. EPE results in non-occluded sparse feature points: “000002”

(left), 12.124 by Classic+NL-fast (5-level) and 2.444 by Classic+NL-
FastP (7-level); “000030” (right), 20.554 by Classic+NL-fast (5-level)
and 0.615 by Classic+NL-FastP (7-level)

Table 21 Running time (in minutes) for computing one optical flow
field from an image pair from different benchmark datasets using differ-
ent methods in matlab on a 64-bit Linux desktop with 8GB memory

Middlebury MPI Sintel KITTI

HS 1.62 1.8 2.56

Classic++ 5.83 7.2 8.48

Classic+NL 9.81 14 14.78

C+NL-fast 1.8 2.5 2.89

C+NL-full 26.7 29 42

Used sequences: 640×480 Urban from Middlebury, 1024×436 alley_1
from MPI Sintel, and 1226 × 370 training image 0 from KITTI

7 Conclusions

When implemented using modern practices, classical opti-
cal flow formulations can produce fairly competitive results

(a) First frame (b) Ground truth (c) Estimated flow field

Fig. 12 Occlusions are not explicitly modeled by Classic+NL and may
cause problems in the estimated flow field. Dark pixels in the ground
truth indicate occlusions

on existing datasets. To understand the techniques that
help such basic formulations work well, we quantitatively
studied various aspects of flow approaches from the lit-
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erature, including their implementation details. Among
the best practices, we found that using median filtering
to denoise the flow after every warping step is key to
improving accuracy, but that this increases the energy of
the final result. Exploiting connections between median
filtering and L1-based denoising, we showed that algo-
rithms relying on a median filtering step are approxi-
mately optimizing a different objective that regularizes the
flow field over a large spatial neighborhood. Understand-
ing this enables us to design and optimize improved mod-
els that weight the neighbors adaptively in an extended
image region. The Matlab code is publicly available
at http://www.cs.brown.edu/people/dqsun; last accessed 24
July 2013.

There has been much debate about whether methods
that perform well on Middlebury will generalize to other
sequences. Here we tuned the parameters of the method on
the Middlebury training set and tested on Middlebury, MIT
HAMA, MPI Sintel, and KITTI. The conclusions on the Mid-
dlebury dataset are consistent with those on the MIT HAMA
dataset. The one significant difference we found between
Middlebury and the MPI Sintel and KITTI datasets was
the aspect ratio of the images. This allowed us to make a
change to the method by introducing a novel asymmetric
image pyramid that downsamples more rapidly in the hor-
izontal direction than the vertical direction. With only this
change we found that our conclusions on Middlebury hold
for MPI Sintel as well. The KITTI data set is somewhat
different in nature and seems to favor methods with more
spatial smoothing. As a result, the image-independent Clas-
sic++, which produces more smooth flow fields, performs
slightly better than the image-dependent Classic+NL, with
its sharp boundaries. It is open whether these conclusions
will hold for data taken under totally different conditions,
such as medical images. While the results on Middlebury
generalize surprisingly well, we suspect that training the
parameters for a specific dataset will improve results fur-
ther.

Acknowledgments DS and MJB were supported by a gift from Intel
Corp. and NSF CRCNS award IIS-0904875. DS was also supported by
Kitware, Nvidia, Google, and the Intel Science and Technology Center
for Visual Computing. We thank the CVPR and IJCV reviewers for
constructive comments, especially the connection between our original
“area” term and non-local regularization and test on additional datasets,
P. Yadollahpour for his early work on implementing the HS method, S.
Zuffi for suggesting the color version of the non-local term, J. Wulff for
running some experiments, T. Brox, A. Wedel, and M. Werlberger for
clarifying details about their papers, and D. Scharstein for maintaining
the online optical flow benchmark.

Open Access This article is distributed under the terms of the Creative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.

References

Adato, Y., Zickler, T., & Ben-Shahar, O. (2011). A polar representation
of motion and implications for optical flow. In IEEE International
Conference on Computer Vision and Pattern Recognition (pp. 1145–
1152).

Adelson, E. H., Anderson, C. H., Bergen, J. R., Burt, P. J., & Ogden,
J. M. (1984). Pyramid methods in image processing. RCA Engineer,
29(6), 33–41.

Álvarez, L., Castaño-Moraga, C. A., García, M., Krissian, K., Mazorra,
L., Salgado,A. & Sánchez, J. (2007). Symmetric optical flow. EURO-
CAST (pp. 676–683). Springer, Berlin.

Bab-Hadiashar, A., & Suter, D. (1998). Robust optic flow computation.
International Journal of Computer Vision, 29(1), 59–77.

Baker, S., Scharstein, D., Lewis, J., Roth, S., Black, M. J. & Szeliski,
R. (2007). A database and evaluation methodology for optical flow.
In IEEE International Conference on Computer Vision.

Barron, J., Fleet, D., & Beauchemin, S. (1994). Performance of optical
flow techniques. International Journal of Computer Vision, 12(1),
43–77.

Bergen, J., Anandan, P., Hanna, K., & Hingorani, R. (1992). Hierar-
chical model-based motion estimation. In European Conference on
Computer Vision (Vol. 588, pp. 237–252).

Black, M., & Jepson, A. (1996). Estimating optical-flow in segmented
images using variable-order parametric models with local deforma-
tions. IEEE Transaction on Pattern Analysis Machine Intelligence,
18(10), 972–986.

Black, M. J., & Anandan, P. (1996). The robust estimation of multiple
motions: Parametric and piecewise-smooth flow fields. Computer
Vision and Image Understanding, 63, 75–104.

Blake, A., & Zisserman, A. (1987). Visual reconstruction. Cambridge,
MA: The MIT Press.

Brox, T., Bruhn, A., Papenberg, N. & Weickert, J. (2004). High accuracy
optical flow estimation based on a theory for warping. In European
Conference on Computer Vision (Vol. IV, pp. 25–36).

Brox, T., & Malik, J. (2011). Large displacement optical flow: Descrip-
tor matching in variational motion estimation. IEEE Transaction on
Pattern Analysis Machine Intelligence, 33(3), 500–513.

Bruhn, A., Weickert, J. (2005). Towards ultimate motion estimation:
Combining highest accuracy with real-time performance. In IEEE
International Conference on Computer Vision (Vol. 1, pp. 749–
755).

Bruhn, A., Weickert, J., & Schnörr, C. (2005). Lucas/Kanade meets
Horn/Schunck: Combining local and global optic flow methods.
International Journal of Computer Vision, 61(3), 211–231.

Buades, A., Coll, B., & Morel, J. (2005). A non-local algorithm for
image denoising. In IEEE International Conference on Computer
Vision and Pattern Recognition (Vol. 2, pp. 60–65).

Burt, P. J., Yen, C. & Xu, X. (1982). Local correlation measures for
motion analysis: A comparative study. In Proceedings of IEEE Pat-
tern Recognition and Image Processing (pp. 269–274).

Butler, D. J., Wulff, J., Stanley, G. B., & Black, M. J. (2012). A natu-
ralistic open source movie for optical flow evaluation. In European
Conference on Computer Vision (Vol. IV, pp. 611–625).

Chen, Z., Jin, H., Lin, Z., Cohen, S. & Wu, Y. (2013). Large displace-
ment optical flow from nearest neighbor fields. In IEEE International
Conference on Computer Vision and Pattern Recognition.

Chen, Z., Wu, Y., & Wang, J. (2012). Decomposing and regularizing
sparse/non-sparse components for motion field estimation. In IEEE
International Conference on Computer Vision and Pattern Recogni-
tion (pp. 1176–1183).

Geiger, A., Lenz, P. & Urtasun, R. (2012). Are we ready for autonomous
driving? The KITTI vision benchmark suite. In IEEE International
Conference on Computer Vision and Pattern Recognition (pp. 3354–
3361).

123

http://www.cs.brown.edu/people/dqsun


136 Int J Comput Vis (2014) 106:115–137

Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distribu-
tions, and the Bayesian restoration of images. IEEE Transaction on
Pattern Analysis Machine Intelligence, 6(6), 721–741.

Gilboa, G., & Osher, S. (2008). Nonlocal operators with applications
to image processing. SIAM Multiscale Modeling and Simulation, 7,
1005–1028.

Glaer, F., Reynolds, G., & Anandan, P. (1983). Scene matching by hier-
archical correlation. In IEEE International Conference on Computer
Vision and Pattern Recognition (pp. 432–441).

Horn, B. (1986). Robot vision. Cambridge, MA: MIT Press.
Horn, B., & Schunck, B. (1981). Determining optical flow. Artificial

Intelligence, 16(1–3), 185–203.
Hsiao, I., Rangarajan, A., & Gindi, G. (2003). A new convex edge-

preserving median prior with applications to tomography. IEEE
Transactions on Medical Imaging, 22(5), 580–585.

Humayun, A., Mac Aodha, O. & Brostow, G. J. (2011). Learning to find
occlusion regions. In IEEE International Conference on Computer
Vision and, Pattern Recognition (pp. 2161–2168).

Jia, K., Wang, X. & Tang, X. (2011). Optical flow estimation using
learned sparse model. In IEEE International Conference on Com-
puter Vision (pp. 2391–2398).

Keys, R. G. (1981). Cubic convolution interpolation for digital image
processing. IEEE Transactions on Acoustics, Speech and Signal
Processing, 29(6), 1153–1160.

Krähenbühl, P., & Koltun, V. (2012). Efficient nonlocal regularization
for optical flow. In European Conference on Computer Vision (Vol.
I, pp. 356–369).

Lei, C., Yang, Y.-H. (2009). Optical flow estimation on coarse-to-fine
region-trees using discrete optimization. In IEEE International Con-
ference on Computer Vision (pp. 1562–1569).

Lempitsky, V., Roth, S., Rother, C. (2008). FusionFlow: Discrete-
continuous optimization for optical flow estimation. In IEEE Inter-
national Conference on Computer Vision and, Pattern Recognition.

Lempitsky, V., Rother, C., Roth, S., & Blake, A. (2010). Fusion moves
for Markov random field optimization. IEEE Transaction on Pattern
Analysis Machine Intelligence, 32(8), 1392–1405.

Li, Y., & Osher, S. (2009). A new median formula with applications to
PDE based denoising. Communications in Mathematical Sciences,
7(3), 741–753.

Lin, D., & Fisher, J. (2012). Low level vision via switchable Markov
random fields. In IEEE International Conference on Computer Vision
and Pattern Recognition (pp. 2432–2439).

Liu, C., Freeman, W. T., Adelson, E. H., & Weiss, Y. (2008). Human-
assisted motion annotation. In IEEE International Conference on
Computer Vision and Pattern Recognition.

Lucas, B., & Kanade, T. (1981). An iterative image registration tech-
nique with an application to stereo vision. In International Joint
Conferences on Artificial Intelligence (pp. 674–679).

Mac Aodha, O., Brostow, G. J., & Pollefeys, M. (2010). Segmenting
video into classes of algorithm-suitability. In IEEE International
Conference on Computer Vision and Pattern Recognition (pp. 1778–
1785).

Marr, D. (1982). Vision: A computational investigation into the human
representation and processing of visual information. New York:
W.H. Freeman.

Nagel, H.-H., & Enkelmann, W. (1986). An investigation of smooth-
ness constraints for the estimation of displacement vector fields from
image sequences. IEEE Transaction on Pattern Analysis Machine
Intelligence, 8(5), 565–593.

Nikolova, M. (2007). Model distortions in Bayesian MAP reconstruc-
tion. AIMS Journal on Inverse Problems and Imaging, 1, 399–422.

Nir, T., Bruckstein, A. M., & Kimmel, R. (2008). Over-parameterized
variational optical flow. International Journal of Computer Vision,
76(2), 205–216.

Niu, Y., Feng, W., & Liu, F. (2012). Enabling warping on stereoscopic
images. ACM Transactions on Graphics, 31(6), 183.

Press, W. H., Vetterling, W. T., Teukolsky, S. A., & Flannery, B. P.
(2002). Numerical recipes in C++: The art of scientific computing.
New York: Cambridge University Press.

Ren, X. (2008). Local grouping for optical flow. In IEEE International
Conference on Computer Vision and Pattern Recognition.

Rudin, L. I., Osher, S., & Fatemi, E. (1992). Nonlinear total variation
based noise removal algorithms. Physica D: Nonlinear Phenomena,
60(1–4), 259–268.

Sand, P., & Teller, S. (2008). Particle video: Long-range motion esti-
mation using point trajectories. International Journal of Computer
Vision, 80(1), 72–91.

Schmidt, U., Gao, Q., & Roth, S. (2010). A generative perspective
on MRFs in low-level vision. In IEEE International Conference on
Computer Vision and Pattern Recognition (pp. 1751–1758).

Shulman, D. & Herve, J.-Y. (1989). Regularization of discontinuous
flow fields. In Workshop on Visual Motion (pp. 81–86).

Steinbrücker, F., Pock, T. & Cremers, D. (2009). Large displacement
optical flow computation without warping. In IEEE International
Conference on Computer Vision (pp. 1609–1614).

Sun, D., Roth, S., & Black, M. J. (2010a). Secrets of optical flow esti-
mation and their principles. In IEEE International Conference on
Computer Vision and Pattern Recognition (pp. 2432–2439).

Sun, D., Roth, S., Lewis, J. P. & Black, M. J. (2008). Learning optical
flow. In European Conference on Computer Vision (Vol. III, pp. 83–
97).

Sun, D., Sudderth, E. B., & Black, M. J. (2010b). Layered image motion
with explicit occlusions, temporal consistency, and depth ordering.
In Advances in Neural Information Processing Systems (pp. 2226–
2234). Cambridge, MA: MIT Press

Sun, D., Sudderth, E. B., & Black, M. J. (2012). Layered segmentation
and optical flow estimation over time. In IEEE International Confer-
ence on Computer Vision and Pattern Recognition (pp. 1768–1775).

Sun, D., Wulff, J., Sudderth, E. B., Pfister, H., & Black, M. J. (2013). A
fully-connected layered model of foreground and background flow.
In IEEE International Conference on Computer Vision and Pattern
Recognition (pp. 1768–1775).

Szeliski, R. (2010). Computer vision: Algorithms and applications. New
York: Springer.

Vaudrey, T. & Klette, R. (2009). Residual images remove illumination
artifacts! In Pattern Recognition (Proceedings of DAGM) (pp. 472–
481). Berlin: Springer.

Wang, J. Y. A., & Adelson, E. H. (1994). Representing moving images
with layers. IEEE Transactions on Image Processing, 3(5), 625–
638.

Wedel, A., Pock, T., Braun, J., Franke, U. & Cremers, D. (2008a).
Duality TV-L1 flow with fundamental matrix prior. In Image and
Vision Computing New Zealand.

Wedel, A., Pock, T., Zach, C., Cremers, D., & Bischof, H. (2008b).
An improved algorithm for TV-L1 optical flow. In Dagstuhl Motion
Workshop (pp. 23–45).

Wedel, A., Pock, T. & Cremers, D. (2009). Structure- and motion-
adaptive regularization for high accuracy optic flow. In IEEE Inter-
national Conference on Computer Vision (pp. 1663–1668).

Werlberger, M., Pock, T., & Bischof, H. (2010). Motion estimation
with non-local total variation regularization. In IEEE International
Conference on Computer Vision and Pattern Recognition (pp. 2464–
2471).

Werlberger, M., Trobin, W., Pock, T., Wedel, A., Cremers, D. & Bischof,
H. (2009). Anisotropic Huber-L1 optical flow. In Proceedings of the
British Machine Vision Conference (pp. 108.1–108.11).

Wilcoxon, F. (1945). Individual comparisons by ranking methods. Bio-
metrics Bulletin, 1(6), 80–83.

Xiao, J., Cheng, H., Sawhney, H., Rao, C., & Isnardi, M. (2006).
Bilateral filtering-based optical flow estimation with occlusion
detection. In European Conference on Computer Vision (Vol. I,
pp. 211–224).

123



Int J Comput Vis (2014) 106:115–137 137

Xu, L., Chen, J., & Jia, J. (2008). A segmentation based variational
model for accurate optical flow estimation. In European Conference
on Computer Vision (Vol. I, pp. 671–684).

Xu, L., Jia, J., & Matsushita, Y. (2012). Motion detail preserving opti-
cal flow estimation. IEEE Transaction on Pattern Analysis Machine
Intelligence, 34(9), 1744–1757.

Yoon, K., & Kweon, I. (2006). Adaptive support-weight approach
for correspondence search. IEEE Transaction on Pattern Analysis
Machine Intelligence, 28(4), 650–656.

Zach, C., Pock, T. & Bischof, H. (2007). A duality based approach for
realtime TV-L1 optical flow. In Pattern Recognition (Proceedings of
DAGM) (pp. 214–223).

Zimmer, H., Bruhn, A., & Weickert, J. (2011). Optic flow in harmony.
International Journal of Computer Vision, 93(3), 368–388.

Zimmer, H., Bruhn, A., Weickert, J., Valgaerts, L., Salgado, A., Rosen-
hahn, B. & Seidel, H.-P. (2009). Complementary optic flow. In
Energy Minimization Methods in Computer Vision and Pattern
Recognition (pp. 207–220).

Zitnick, C., Jojic, N., & Kang, S. B. (2005). Consistent segmentation
for optical flow estimation. In IEEE International Conference on
Computer Vision (Vol. 2, pp. 1308–1315).

123


	A Quantitative Analysis of Current Practices in Optical Flow Estimation and the Principles Behind Them
	Abstract 
	1 Introduction
	2 Previous Work
	2.1 Models
	2.2 Methods

	3 Classical Models
	3.1 Baseline Methods
	3.2 Baseline Results

	4 Practices Explored
	4.1 Image Pre-Processing
	4.2 Coarse-to-Fine Estimation and Graduated Non-Convexity (GNC)
	4.3 Interpolation Method and Derivatives
	4.4 Penalty Functions
	4.5 Median Filtering
	4.6 Best Practices

	5 Models Underlying Median Filtering
	6 Improved Model
	6.1 Closely-Related Work
	6.2 Results on the MIT Dataset
	6.3 Performance on MPI Sintel and KITTI Datasets
	6.4 Asymmetric Pyramids for Wide-Aspect-Ratio Video
	6.5 Computational Time
	6.6 Limitations

	7 Conclusions
	Acknowledgments
	References


