Skip to main content
Log in

Seed production, infestation, and viability in Acacia tortilis (synonym: Vachellia tortilis) and Acacia robusta (synonym: Vachellia robusta) across the Serengeti rainfall gradient

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Tree recruitment in savannas proceeds in multiple stages characterized by successive filters occurring at the seed and seedling stages. The “demographic bottleneck” hypothesis suggests that such filters ultimately restrict tree density and prevent trees from dominating grasses in savannas, but many of the demographic transitions underlying this assumption have not been quantified. We investigated how short- (1–2 years) and long-term (40 + years) rainfall patterns influenced seed production, infestation, and viability for two dominant species, Acacia robusta and Acacia tortilis across the Serengeti ecosystem mean annual precipitation gradient over a two-year period. We found that neither production, nor infestation, nor viability was influenced by rainfall. Pod production differed between species and increased with tree height in A. robusta. Mean infestation proportion in 2013 was higher (mean ± SE; 0.28 ± 0.08) in A. tortilis than in A. robusta (0.11 ± 0.05) but the trend reversed in 2014, when A. tortilis (0.33 ± 0.10) had lower infestation than A. robusta (0.61 ± 0.09). Under laboratory conditions, A. tortilis and A. robusta seeds had maximum germination (= viability) proportions of 70 and 20%, respectively. Mean seed viability was more than five-fold higher (0.46 ± 0.19) in A. tortilis than in A. robusta (0.08 ± 0.10). Our study has produced important estimates for seed stage demographic dynamics that can be used for modeling tree dynamics in Serengeti system, and savannas in general.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmed MAJ (2008) Effect of bruchid beetles (Burchidius Arabicus Decelle) infestation on the germination of Acacia tortilis (Forssk.) Hayne) Seeds. Am J Environ Sci 4:285–288

    Article  Google Scholar 

  • Andersen GL, Krzywinski K, Gjessing HK, Pierce RH (2016) Seed viability and germination success of Acacia tortilis along land-use and aridity gradients in the Eastern Sahara. Ecol Evol 6:256–266

    Article  PubMed  Google Scholar 

  • Anderson TM, Morrison T, Rugemalila D, Holdo R (2015) Compositional decoupling of savanna canopy and understory tree communities in Serengeti. J Veg Sci 26:385–394. doi:10.1111/jvs.12241

    Article  Google Scholar 

  • Ashman TL et al (2004) Pollen limitation of plant reproduction: ecological and evolutionary causes and consequences. Ecology 85:2408–2421

    Article  Google Scholar 

  • Ashton PS, Givnish T, Appanah S (1988) Staggered flowering in the Dipterocarpaceae: new insights into floral induction and the evolution of mast fruiting in the aseasonal tropics. Am Nat 132:44–66

    Article  Google Scholar 

  • Barnes ME (2001) Seed predation, germination and seedling establishment of Acacia erioloba in northern Botswana. J Arid Environ 49:541–554. doi:10.1006/jare.2001.0805

    Article  Google Scholar 

  • Baum CF (2008) Stata tip 63: modeling proportions. Stata J 8:299

    Google Scholar 

  • Bond WJ (2008) What limits trees in C4 grasslands and savannas? Annu Rev Ecol Evol Syst 39:641–659. doi:10.1146/annurev.ecolsys.39.110707.173411

    Article  Google Scholar 

  • Brenes-Arguedas T, Coley PD, Kursar TA (2009) Pests vs. drought as determinants of plant distribution along a tropical rainfall gradient. Ecology 90:1751–1761

    Article  PubMed  Google Scholar 

  • Bucini G, Hanan NP (2007) A continental-scale analysis of tree cover in African savannas. Glob Ecol Biogeogr 16:593–605

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer Science & Business Media, New York

    Google Scholar 

  • Clark CJ, Poulsen JR, Levey DJ (2013) Roles of seed and establishment limitation in determining patterns of Afrotropical tree recruitment. PLoS ONE 8:e63330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danthu P, Roussel J, Dia M, Sarr A (1992) Effect of different pretreatments on the germination of Acacia senegal seeds. Seed Sci Technol 20:111–117

    Google Scholar 

  • Danthu P, Ndongo M, Diaou M, Thiam O, Sarr A, Dedhiou B, Ould Mohamed Vall A (2003) Impact of bush fire on germination of some West African acacias. For Ecol Manag 173:1–10. doi:10.1016/S0378-1127(01)00822-2

    Article  Google Scholar 

  • De Bie S, Ketner P, Paasse M, Geerling C (1998) Woody plant phenology in the West Africa savanna. J Biogeogr 25:883–900

    Article  Google Scholar 

  • De Menezes LC, Klein J, Kestring D, Rossi MN (2010) Bottom-up and top-down effects in a pre-dispersal seed predation system: are non-predated seeds damaged? Basic Appl Ecol 11:126–134

    Article  Google Scholar 

  • Dempewolf J, Trigg S, DeFries R, Eby S (2007) Burned-area mapping of the Serengeti–Mara region using MODIS reflectance data. IEEE Geosci Remote Sens Lett 4:312–316

    Article  Google Scholar 

  • ESRI (2013) ArcGIS 10.2.1 for desktop, 10.2.1.3497 edn. ESRI Inc, Redlands

    Google Scholar 

  • February EC, Higgins SI, Bond WJ, Swemmer L (2013) Influence of competition and rainfall manipulation on the growth responses of savanna trees and grasses. Ecology 94:1155–1164

    Article  PubMed  Google Scholar 

  • Goheen JR, Keesing F, Allan BF, Ogada D, Ostfeld RS (2004) Net effects of large mammals on Acacia seedling survival in an African Savanna. Ecology 85:1555–1561. doi:10.1890/03-3060

    Article  Google Scholar 

  • Gordon-Gray KD (1965) Acacia robusta Burch. and Acacia clavigera E. Mey. in Natal, South Africa. Brittonia 17:202–212

    Article  Google Scholar 

  • Greene D, Johnson E (1994) Estimating the mean annual seed production of trees. Ecology 75:642–647

    Article  Google Scholar 

  • Harcombe PA (1987) Tree life tables: simple birth, growth, and death data encapsulate life histories and ecological roles. BioScience 37:557–568

    Article  Google Scholar 

  • Holdo RM, Holt RD, Fryxell JM (2009) Opposing rainfall and plant nutritional gradients best explain the wildebeest migration in the Serengeti. Am Nat 173:431–445. doi:10.1086/597229

    Article  PubMed  Google Scholar 

  • Holdo RM, Anderson TM, Morrison T (2014) Precipitation, fire and demographic bottleneck dynamics in Serengeti tree populations. Landscape Ecol 29:1613–1623

    Article  Google Scholar 

  • Hulme PE (1998) Post-dispersal seed predation: consequences for plant demography and evolution. Perspect Plant Ecol Evol Syst 1:32–46

    Article  Google Scholar 

  • Johnson KA, Goody RS (2011) The original Michaelis constant: translation of the 1913 Michaelis-Menten paper. Biochemistry 50:8264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kebbas S, Lutts S, Aid F (2015) Effect of drought stress on the photosynthesis of Acacia tortilis subsp. raddiana at the young seedling stage. Photosynthetica 53:288–298

    Article  CAS  Google Scholar 

  • Kestring D, Menezes LC, Tomaz CA, Lima GP, Rossi MN (2009) Relationship among phenolic contents, seed predation, and physical seed traits in Mimosa bimucronata plants. J Plant Biol 52:569–576

    Article  CAS  Google Scholar 

  • Knight TM et al (2005) Pollen limitation of plant reproduction: pattern and process. Ann Rev Ecol Evol Syst 36:467–497

    Article  Google Scholar 

  • Kyalangalilwa B, Boatwright JS, Daru BH, Maurin O, Bank M (2013) Phylogenetic position and revised classification of Acacia sl (Fabaceae: Mimosoideae) in Africa, including new combinations in Vachellia and Senegalia. Bot J Linn Soc 172:500–523

    Article  Google Scholar 

  • Lahoreau G, Barot S, Gignoux J, Hoffmann WA, Setterfield SA, Williams PR (2006) Positive effect of seed size on seedling survival in fire-prone savannas of Australia, Brazil and West Africa. J Trop Ecol 22:719–722

    Article  Google Scholar 

  • Lamprey H, Halevy G, Makacha S (1974) Interactions between Acacia, bruchid seed beetles and large herbivores*. Afr J Ecol 12:81–85

    Article  Google Scholar 

  • Leishman MR (2001) Does the seed size/number trade-off model determine plant community structure? an assessment of the model mechanisms and their generality. Oikos 93:294–302

    Article  Google Scholar 

  • LePage PT, Canham CD, Coates KD, Bartemucci P (2000) Seed abundance versus substrate limitation of seedling recruitment in northern temperate forests of British Columbia. Can J For Res 30:415–427

    Article  Google Scholar 

  • Linzey AV, Washok KA (2000) Seed removal by ants, birds and rodents in a woodland savanna habitat in Zimbabwe. Afr Zool 35:295–299

    Article  Google Scholar 

  • Loth PE, de Boer WF, Heitkönig IMA, Prins HHT (2005) Germination strategy of the East African savanna tree Acacia tortilis. J Trop Ecol 21:509–517. doi:10.1017/s026646740500252x

    Article  Google Scholar 

  • Luo Y, He F, Yu S (2013) Recruitment limitation of dominant tree species with varying seed masses in a subtropical evergreen broad-leaved forest. Commun Ecol 14:189–195

    Article  Google Scholar 

  • Mduma SAR, Sinclair ARE, Turkington ROY (2007) The role of rainfall and predators in determining synchrony in reproduction of savanna trees in Serengeti National Park, Tanzania. J Ecol 95:184–196. doi:10.1111/j.1365-2745.2006.01188.x

    Article  Google Scholar 

  • Michaelis L, Menten ML (1913) Die kinetik der invertinwirkung. Biochem z 49:352

    Google Scholar 

  • Midgley J, Bond W (2001) A synthesis of the demography of African acacias. J Trop Ecol 17:871–886

    Article  Google Scholar 

  • Miller MF (1996) Acacia seed predation by bruchids in an African Savanna. Ecosyst J Appl Ecol 33:1137–1144

    Article  Google Scholar 

  • Miller MF, Coe M (1993) Is it advantageous for Acacia seeds to be eaten by ungulates? Oikos 66:364–368

    Article  Google Scholar 

  • Miller JT, Seigler D, Mishler BD (2014) A phylogenetic solution to the Acacia problem. Taxon 63:653–658

    Article  Google Scholar 

  • Moore G et al (2011) The Acacia controversy resulting from minority rule at the Vienna Nomenclature Section: Much more than arcane arguments and complex technicalities. Taxon 60:852–857

    Google Scholar 

  • Mucunguzi P (1995) Effects of bruchid beetles on germination and establishment of Acacia species. Afr J Ecol 33:64–70

    Article  Google Scholar 

  • Mucunguzi P, Oryem-Origa H (1996) Effects of heat and fire on the germination of Acacia sieberiana D.C. and Acacia gerrardii Benth. in Uganda. J Trop Ecol 12:1–10. doi:10.1017/s0266467400009275

    Article  Google Scholar 

  • Münzbergová Z, Herben T (2005) Seed, dispersal, microsite, habitat and recruitment limitation: identification of terms and concepts in studies of limitations. Oecologia 145:1–8

    Article  PubMed  Google Scholar 

  • Nathan R, Muller-Landau HC (2000) Spatial patterns of seed dispersal, their determinants and consequences for recruitment. Trends Ecol Evol 15:278–285

    Article  CAS  PubMed  Google Scholar 

  • Or K, Ward D (2003) Three-way interactions between Acacia, large mammalian herbivores and bruchid beetles—a review. Afr J Ecol 41:257–265. doi:10.1046/j.1365-2028.2003.00451.x

    Article  Google Scholar 

  • Or K, Ward D (2004) The effects of seed quality and pipecolic and djenkolic acids on bruchid beetle infestation in water deficit-stressed Acacia trees. J Chem Ecol 30:2297–2307. doi:10.1023/b:joec.0000048790.85830.79

    Article  CAS  PubMed  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, DebRoy S, Sarkar D (2011) R Development Core Team. 2010. nlme: linear and nonlinear mixed effects models. R package version 3.1-97. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • RDevelopment Core Team (2011) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rodríguez-Pérez J, Wiegand K, Ward D (2011) Interaction between ungulates and bruchid beetles and its effect on Acacia trees: modeling the costs and benefits of seed dispersal to plant demography. Oecologia 167:97–105. doi:10.1007/s00442-011-1964-6

    Article  PubMed  Google Scholar 

  • Rohner C, Ward D (1999) Large mammalian herbivores and the conservation of Arid Acacia stands in the middle east. Conserv Biol 13:1162–1171. doi:10.1046/j.1523-1739.1999.97300.x

    Article  Google Scholar 

  • Rugemalila DM, Anderson TM, Holdo RM (2016) Precipitation and elephants, not fire, shape tree community composition in Serengeti National Park, Tanzania. Biotropica. doi:10.1111/btp.12311

    Google Scholar 

  • Salazar A, Goldstein G, Franco AC, Miralles-Wilhelm F (2011) Seed limitation of woody plants in Neotropical savannas. Plant Ecol 213:273–287. doi:10.1007/s11258-011-9973-4

    Article  Google Scholar 

  • Sankaran M, Ratnam J, Hanan NP (2004) Tree-grass coexistence in savannas revisited - insights from an examination of assumptions and mechanisms invoked in existing models. Ecol Lett 7:480–490. doi:10.1111/j.1461-0248.2004.00596.x

    Article  Google Scholar 

  • Sankaran M et al (2005) Determinants of woody cover in African savannas. Nature 438:846–849. doi:10.1038/nature04070

    Article  CAS  PubMed  Google Scholar 

  • Seghieri J, Floret C, Pontanier R (1995) Plant phenology in relation to water availability: herbaceous and woody species in the savannas of northern Cameroon. J Trop Ecol 11:237–254

    Article  Google Scholar 

  • Shaw MT, Keesing F, Ostfeld RS (2002) Herbivory on Acacia seedlings in an East African Savanna. Oikos 98:385–392. doi:10.1034/j.1600-0706.2002.980303.x

    Article  Google Scholar 

  • Sinclair A, Mduma SA, Arcese P (2000) What determines phenology and synchrony of ungulate breeding in Serengeti? Ecology 81:2100–2111

    Article  Google Scholar 

  • Svenning JC, Wright SJ (2005) Seed limitation in a Panamanian forest. J Ecol 93:853–862

    Article  Google Scholar 

  • Takakura K (2002) The specialist seed predator Bruchidius dorsalis (Coleoptera: Bruchidae) plays a crucial role in the seed germination of its host plant, Gleditsia japonica (Leguminosae). Funct Ecol 16:252–257

    Article  Google Scholar 

  • Thiele KR et al (2011) The controversy over the retypification of Acacia Mill. with an Australian type: a pragmatic view. Taxon 60:194–198

    Google Scholar 

  • Thomson FJ, Moles AT, Auld TD, Ramp D, Ren S, Kingsford RT (2010) Chasing the unknown: predicting seed dispersal mechanisms from plant traits. J Ecol 98:1310–1318

    Article  Google Scholar 

  • Thomson FJ, Moles AT, Auld TD, Kingsford RT (2011) Seed dispersal distance is more strongly correlated with plant height than with seed mass. J Ecol 99:1299–1307

    Article  Google Scholar 

  • Walters M, Milton SJ (2003) The production, storage and viability of seeds of Acacia karroo and A. nilotica in a grassy savanna in KwaZulu-Natal, South Africa African. J Ecol 41:211–217

    Google Scholar 

  • Warton DI, Hui FK (2011) The arcsine is asinine: the analysis of proportions in ecology. Ecology 92:3–10

    Article  PubMed  Google Scholar 

  • Williams RJ, Myers BA, Eamus D, Duff GA (1999) Reproductive phenology of woody species in a North Australian tropical Savanna1. Biotropica 31:626–636

    Article  Google Scholar 

  • Witkowski E, Garner R (2000) Spatial distribution of soil seed banks of three African savanna woody species at two contrasting sites. Plant Ecol 149:91–106

    Article  Google Scholar 

  • Wright SJ (1992) Seasonal drought, soil fertility and the species density of tropical forest plant communities. Trends Ecol Evol 7:260–263

    Article  CAS  PubMed  Google Scholar 

  • Wyatt JL, Silman MR (2004) Distance-dependence in two Amazonian palms: effects of spatial and temporal variation in seed predator communities. Oecologia 140:26–35

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the Tanzanian Wildlife Research Institute (TAWIRI) and Tanzanian National Parks (TANAPA) for their help in facilitating our field work through the provision of permits to work in Serengeti. Reginald Sukums, Mawazo Nzunda, and Jeremiah Sarakikya assisted with field data collection. Funding was provided by the National Science Foundation (DEB‐1145787 and DEB-1145861).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deusdedith M. Rugemalila.

Additional information

Communicated by Shayne Martin Jacobs.

Appendices

Appendix 1

See Tables 5, 6.

Table 5 Summary table showing the rainfall data used (MAP and MCP), number of trees that were included in pod production analysis
Table 6 Model fits (AIC, the Akaike Information criterion) for the effect of MAP, SPECIES, INFESTATION, YEAR, and their interaction on seed mass of infested and non-infested seeds using generalized linear mixed-effects models

Appendix 2: Seed mass variation in Acacia robusta (acarob) and Acacia tortilis (acator) as a function of seed infestation status

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rugemalila, D.M., Morrison, T., Anderson, T.M. et al. Seed production, infestation, and viability in Acacia tortilis (synonym: Vachellia tortilis) and Acacia robusta (synonym: Vachellia robusta) across the Serengeti rainfall gradient. Plant Ecol 218, 909–922 (2017). https://doi.org/10.1007/s11258-017-0739-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-017-0739-5

Keywords

Navigation