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Abstract
Iron is the most abundant transition metal in the human body and an essential element required for growth and survival. 
Our understanding of the molecular control of iron metabolism has increased dramatically over the past 20 years due to the 
discovery of hepcidin, which regulates the uptake of dietary iron and its mobilization from macrophages and hepatic stores. 
Anemia and iron deficiency are common in chronic kidney disease. The pathogenesis of anemia of chronic kidney disease 
is multifactorial. Correction of anemia requires two main treatment strategies: increased stimulation of erythropoiesis, and 
maintenance of an adequate iron supply to the bone marrow. However, there are still many uncertainties in regard to iron 
metabolism in patients with chronic kidney disease and in renal replacement therapy. The aim of this review was to summa-
rize the current knowledge on iron metabolism in this population, including new biomarkers of iron status. There is an area 
of uncertainty regarding diagnostic utility of both erythroferrone (ERFE) and hepcidin in end-stage renal disease (ESRD) 
patients. Higher concentration of hepcidin in oligoanuric patients may reflect decreased renal clearance. Furthermore, the 
hepcidin-lowering effect of ERFE in ESRD patients treated with erythropoiesis-stimulating agents (ESAs) may be blunted 
by underlying inflammation and concomitant iron treatment. Thus, future studies should validate the use of ERFE as a bio-
marker of erythropoiesis and predictor of response to iron and ESA therapy in dialysis-dependent patients.
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Introduction

According to World Health Organization (WHO), anemia 
is defined as a hemoglobin concentration below 13 g/dl for 
adult males and below 12 g/dl for non-pregnant women [1]. 
The most common cause of anemia worldwide is iron defi-
ciency, while anemia of inflammation is the second most 
prevalent type. Prevalence of anemia in patients with chronic 
kidney disease (CKD) increases in more advanced stages 
of CKD, affecting the majority of stage G4 patients (eGFR 
of 15 to 30 ml/min) [2, 3]. There are several underlying 
factors contributing to anemia in this population—relative 
erythropoietin deficiency, iron deficiency (both absolute and 
functional), impaired hepcidin clearance, shorter erythrocyte 
lifespan, and nutritional deficiencies (folic acid and vitamin 
B12, among others). CKD stage G5 patients on hemodialysis 

(HD) have additional iron loss (up to 3 g per year) [4] as 
a consequence of chronic bleeding, repeated phlebotomy 
(venipuncture) and blood lost in the dialyzer and the lines. 
Furthermore, both HD and peritoneal dialysis (PD) patients 
are likely to develop chronic subclinical inflammation as a 
result of exposure to dialyzer membrane and drains and non-
biocompatible dialysis fluid, respectively. Anemia in CKD 
patients leads to reduced quality of life and cardiovascular 
performance, cognitive impairment, increased rate of hospi-
talizations and increased mortality [4]. Additionally, anemia 
may contribute to accelerated progression to end-stage renal 
disease (ESRD) [5].

Iron metabolism

Iron is one of the essential elements in all living organisms. 
Approximately 71% of total body iron is found in hemo-
globin and myoglobin in ferrous state  (Fe2+). 25% is con-
tained in storage proteins, ferritin and hemosiderin, in ferric 
state  (Fe3+). The unique properties of iron, which can serve 
as both acceptor and donor of electrons, are responsible for 
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its biologic functions but at the same time determine its tox-
icity. Excess iron may promote formation of reactive oxygen 
species (ROS) and lead to oxidative stress via damage to 
DNA, proteins and lipid membranes (Casu C Hepcidin ago-
nists as therapeutic tools). As a heme cofactor, hemoglobin 
is responsible for transport of oxygen. Furthermore, iron is 
one of the compounds of catalase, peroxidase, cytochromes 
and other enzymes [6, 7]. Daily iron requirements amount 
to approximately 25–30 mg [8, 9], while iron loss (resulting 
from, e.g. menstruation, enterocyte and epidermal desqua-
mation, with traces of iron also found in sweat and urine) 
constitutes 1–2 mg per day. There is no active mechanism 
that enables the elimination of iron. As a result, to main-
tain adequate iron balance, intestinal absorption of the ele-
ment must cover daily iron loss. Healthy balanced diet pro-
vides approximately 10–20 mg of iron, of which 1–4 mg is 
absorbed [6, 10]. Absorption of ferrous iron  (Fe2+) takes 
place in the apical enterocytes of the duodenum with the aid 
of the Divalent Metal Transporter 1 (DMT1), while heme 
can also be absorbed via Heme Carrier Protein 1 (HCP1) [4, 
7]. Ferric iron  (Fe3+) is not easily absorbed; therefore, the 
reduction of  Fe3+ to  Fe2+ is required. This process is ena-
bled by duodenal cytochrome b-like ferrireductase enzyme 
(Dcytb). Absorbed iron can be stored in the enterocytes in 
ferritin-bound form (and usually lost as a result of entero-
cyte desquamation) or transported to the plasma via ferro-
portin (FPN1; also found in macrophages, hepatocytes and 
the placenta), where it binds to transferrin, which requires 
prior iron oxidation by hephaestin, a multicopper ferroxi-
dase present on the basolateral membrane of the enterocyte. 
Transferrin, the essential iron-binding protein produced in 
the liver, can reversibly bind two ferric ions, thus changing 
its conformation to holotransferrin. Usually approximately 
30–40% of transferrin molecules are saturated with iron, 
which means that the majority of transferrin in the plasma 
has conformation called apotransferrin and can buffer excess 
iron, if necessary. Circulating holotransferrin can be taken 
up by cells which have increased iron demands, e.g. erythro-
cyte precursors, via binding to transferrin receptor 1 (TfR1). 
Holotransferrin enters the cytoplasm by means of endocyto-
sis and as a result of pH-associated change in conformation, 
releases iron ions. Ferric iron is once again reduced to  Fe2+ 
and crosses endosomal barrier via DMT1 and is ready to 
be incorporated into various enzymes or storage proteins 
(Fig. 1).

Role of hepcidin

Hepcidin, a 25-amino acid polypeptide discovered in 2000, 
is one of the key elements of systemic iron metabolism 
[11]. Hepcidin is a hormone produced predominantly in 
the hepatocytes and released into the plasma. It binds to 

ferroportin present in the cell membrane of enterocytes and 
macrophages and via tyrosine phosphorylation leads to inter-
nalization of ferroportin and eventually its degradation in the 
lysosomes. As a result, iron transport from the duodenum to 
the blood circulation is diminished, iron release from mac-
rophages and hepatocytes is blocked and, consequently, iron 
recirculation is impaired and serum iron levels decrease [6]. 
Hepcidin production increases in response to iron overload, 
inflammation or infection, while its synthesis is diminished 
as a result of iron deficiency, increased erythropoiesis and 
hypoxia. Hepcidin expression is regulated by numerous 
proteins—bone morphogenetic protein-6 (BMP-6), hemo-
juvelin (HJV), human hemochromatosis protein (HFE), 
transferrin receptors TfR1 and TfR2, among others. They 
are influenced by both liver iron stores and circulatory iron 
in the form of iron-bound transferrin (holotransferrin) [12, 
13]. Increased iron levels stimulate production of BMP-6, 
which binds to its receptor on the surface of hepatocyte and 
forms a complex with HJV (a membrane-bound co-recep-
tor). This process induces SMAD (small mothers of decap-
entaplegic) phosphorylation pathway, leading to increased 
expression of hepcidin genes. HFE forms a complex with 
TfR and beta-2-microglobulin and TfR2, which in a not-
yet-known fashion induces transcription of hepcidin genes. 
Mutations in the abovementioned proteins cause hereditary 
hemochromatosis, which manifests itself in hepcidin defi-
ciency and iron overload [14]. Erythropoiesis stimulating 
factors affect hepcidin synthesis as well—for example, in the 
event of excessive erythropoiesis, erythropoietin (via bind-
ing with EPO receptor on the surface of hepatocytes) and 
growth differentiation factor 15 (GDF-15) decrease expres-
sion of hepcidin [15]. Furthermore, increased erythropoiesis 
is associated with elevated concentration of soluble transfer-
rin receptor (sTfR), which is cleaved from transmembrane 
transferrin receptor expressed mainly in cells with high iron 
demands [15].

Recently, a hormone erythroferrone (ERFE) has been 
linked with erythropoiesis and iron balance. ERFE is synthe-
sized in erythroblasts in response to increased erythropoiesis 
and it suppresses transcription of hepcidin in hepatocytes 
and thus increases iron availability in conditions associated 
with greater iron demand [16]. In murine models, ERFE 
deficiency is associated with mild hypochromic anemia and 
delayed hepcidin suppression following hemorrhage or EPO 
injection, while in certain conditions with ineffective eryth-
ropoiesis, such as β-thalassemia, ERFE concentrations were 
significantly increased [17] (Fig. 2).

Under hypoxic conditions, oxygen deficiency leads to 
diminished transcription of hepcidin genes (and conse-
quently decreased production of hepcidin) via hypoxia-
inducible factors (HIF-1α, HIF-2α) [18]. HIFs activate the 
expression of matriptase-2 (also known as the transmem-
brane protease, serine 6; TMPRSS6), which cleaves HJV 
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from the HFE/TfR2/HJV complex, decreasing hepcidin syn-
thesis [19]. Recently, it has been suggested that iron affects 
the release of fibroblast growth factor 23 (FGF-23)—a 
marker of increased risk of cardiovascular incidents, espe-
cially in CKD patients [20–23]. However, outcomes from 
clinical studies have so far been inconsistent; therefore, the 
impact of iron on FGF23 is unclear [24–26]. Finally, stud-
ies in humans revealed that hepcidin is one of the acute-
phase proteins. It was proved that IL-1α, IL-1β, as well as 
IL-6 stimulate its expression [11, 27] via activation of the 
STAT3 transcription factor [28]—a mechanism responsible 
for iron restriction in the event of bacterial infection. Fur-
thermore, mice with hepcidin antimicrobial peptide (HAMP) 
gene overexpression were affected by inflammation-related 
anemia of chronic diseases [29]. Conditions associated 
with inflammation (e.g. chronic kidney disease) lead to 

hepcidin-mediated iron sequestration in the reticuloendothe-
lial cells and, consequently, decrease iron concentration in 
the system. At the same time, iron distribution becomes 
impaired; hence, iron availability for the synthesis of hemo-
globin is reduced. As a result, anemia of inflammation (ane-
mia of chronic diseases) develops [30]. In addition, in the 
setting of inflammation, patients can have high ferritin lev-
els, low TSAT, and increased iron stores but still experience 
restricted erythropoiesis resulting from “reticuloendothelial 
blockade” [5]. Moreover, functional iron deficiency, a state 
of inadequate delivery of iron to the bone marrow in the 
setting of adequate iron stores, is caused by impaired iron 
mobilization (from the reticuloendothelial system [RES]) 
and/or increased bone marrow iron demand (as might be 
secondary to reduced red cell life span and/or erythropoie-
sis-stimulating agents [ESA] use) [31]. Proinflammatory 

Fig. 1  Iron absorption and 
metabolism. Dcytb duodenal 
cytochrome b-like ferrireduc-
tase, DMT1 divalent metal 
transporter 1, HCP1 heme car-
rier protein 1, FPN1 ferroportin, 
TfR1 transferrin receptor 1
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cytokines are responsible for various processes typical of 
anemia of chronic diseases—they suppress erythropoiesis 
in the bone marrow, impair the production of erythropoietin 
(EPO) [31, 32] and increase the rate of erythrophagocyto-
sis leading to shorter erythrocyte lifespan [6]. Moreover, in 
the event of chronic kidney disease the clearance of hepci-
din is diminished and, as a result, its plasma concentration 
increases.

Assessment of iron status

Understanding the dysregulation of iron metabolism is 
essential for the precise assessment, predicting treatment 
response as well as effective and safe treatment of anemia 
of chronic kidney disease. A number of biomarkers of iron 
status in chronic kidney disease have been used in clinical 
settings. However, many of them are influenced by renal fail-
ure alone and concomitant inflammation. Due to these con-
founding effects on the interpretation of most of biomarkers, 
the assessment of iron status in chronic kidney disease is still 
a challenge [5, 33, 34].

Serum iron, transferrin (Tf), total iron binding capac-
ity (TIBC, calculated as Tf × 1389), transferrin saturation 
(TSAT, calculated serum iron/total iron binding capac-
ity × 100) and serum ferritin are traditionally used in the 

evaluation of iron status and the diagnosis of iron defi-
ciency anemia (IDA) [35]. In general population, decreased 
serum ferritin (< 15 ng/ml) and decreased TSAT (< 16%) 
are used for diagnosis of iron deficiency (ID) and iron defi-
ciency anemia (IDA) in individuals without concomitant 
inflammation [35]. The international guidelines for the 
management of IDA in CKD use the same diagnostic tests; 
however, they recommend different cutoff levels of serum 
ferritin and TSAT for the diagnosis and initiation of iron 
supplementation. Some guidelines recommend higher cutoff 
levels of TSAT (≤ 30%) and serum ferritin (≤ 200–500 ng/
ml) [36, 37], while others, lower TSAT < 20% and serum 
ferritin < 100 ng/ml [38–40]. The reason for the differ-
ence remains unclear, but at least in part, it may reflect 
the consideration of the influence of inflammation on iron 
metabolism disorders in CKD and the distinct prevalence 
of inflammation severity between patient populations in 
different countries. Regardless of the values adopted, the 
numerous limitations of these diagnostic tools in the assess-
ment of iron stores in the storage and functional pools, and 
in predicting the response to treatment should be empha-
sized. The traditional cutoffs of TSAT at ≤ 20% and serum 
ferritin ≤ 100 ng/ml have low sensitivity in iron deficiency 
detection. In Stancu et al.’s [41] study, these indices identi-
fied only 17% patients with CKD stage 3–5 as iron defi-
cient whereas 50% prove to be iron deficient based on bone 
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Fig. 2  Increased erythroferrone production by erythroblasts suppresses hepcidin synthesis in the liver. Low hepcidin concentration increases iron 
availability for erythropoiesis by enhancing iron absorption in the duodenum and iron release from macrophages in the liver and the spleen
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marrow iron staining. Another limitation of these biomark-
ers is scant ability to differentiate between absolute and 
functional iron deficiency. It is assumed that low TSAT 
combined with normal or elevated serum ferritin level is 
diagnostic of functional iron deficiency [42]. However, if 
functional iron deficiency results of supply/demand mis-
match, for example, during treatment with ESA, iron may 
transfer from transferrin faster than it can be mobilized from 
the iron stores, resulted in TSAT decrease [43].

The changes occurring in iron metabolism in CKD 
patients are different from those observed in iron deficiency 
in general population reflecting the effect of inflamma-
tion being a part of uremic state. With the progression of 
kidney disease, the production of transferrin in the liver is 
reduced, and in advanced stages of CKD, transferrin levels 
are reduced by 30% [44, 45]. As an acute-phase reactant, 
TIBC progressively decreases with kidney disease progres-
sion, and it leads to higher TSAT levels independent of iron 
status (13) and reduces its credibility as a measure of iron 
status and a threshold for initiating iron therapy in CKD 
patients [46]. In the meanwhile, in the majority of patients 
with stage 3–5 CKD, TSAT < 20% may correspond to serum 
iron levels below the lower limit and be indicative of iron 
deficiency [47]. It is postulated that more important parame-
ter to assess iron status and prevent iron-limited erythropoie-
sis in CKD patients is iron concentration rather than TSAT. 
In recently published review, to avoid iron deficiency, target 
serum iron of 60 μg/dl was assumed, which corresponds to 
TSAT of 20% in CKD stage 3, and 22–25% in stage 4 or 5. It 
is established in clinical practice that serum iron is the more 
predictive index of iron sufficiency excluding iron-deficient 
erythropoiesis in hemodialysis patients [48].

Ferritin as an acute-phase reactant is frequently ele-
vated in CKD patients irrespective of their iron stores [49]. 
Increased serum ferritin levels are the result of systemic 
inflammation and correlate positively with the severity of 
inflammation [50, 51]. Thus, the interpretation of serum fer-
ritin is complicated by concomitant inflammation [35, 45]. 
Under minor inflammation, the specificity of low serum fer-
ritin concentration of absolute iron deficiency diagnosis is 
high [35, 52], but if apparent inflammation is present, nor-
mal or elevated ferritin levels cannot exclude iron deficiency 
in CKD [35, 52]. Inflammation may also reduce the predic-
tive value of serum ferritin for the response to iron supple-
mentation. The baseline ferritin level may be predictive of 
the response to oral [53] and intravenous [54] iron treatment 
only in patients with minor inflammation expressed as low 
CRP level. Under concomitant inflammation, ferritin loses 
its predictive value of the response to iron therapy. Moreo-
ver, in highly inflamed patients, not only ferritin but also 
other biomarkers of iron metabolism (TSAT, CHr, or sTfR) 
lose their value in predicting treatment response [55–57]. 
In these patients, the values of CRP, but not indices of iron 

status may be predictive of the response to iron supplemen-
tation [55, 57], and there is no correction factor that could 
applied in estimation of iron stores depending on ferritin 
concentration [48].

The limitations of traditional biomarkers of iron metabo-
lism and the response to treatment created the need to search 
for alternative diagnostic tools for iron management in CKD 
patients.

Soluble transferrin receptor (sTfR) is produced by prote-
olysis of the membrane transferrin receptor (TfR). Its release 
into circulation is increased in the setting of iron deficiency; 
hence, sTfR has been evaluated as a potential biomarker 
of iron deficiency. Soluble TfR is not an acute-phase reac-
tant and is less influenced by inflammation than other iron 
metabolism indices [58]. The serum concentration of sTfR 
is increased in hemodialysis patients with iron deficiency 
and correlate inversely with iron available for erythropoiesis; 
however, it is not able to detect occult iron deficiency [42, 
59, 60]. Unfortunately, the interpretation is confounded by 
the use of ESA [35, 45], and appears to represent erythro-
poietic activity rather than iron deficiency [42, 59, 60]. The 
index of sTfR to  log10 ferritin has better than TSAT and fer-
ritin predictive value of iron supplementation responsiveness 
in hemodialysis patients [61]. The limitations of widespread 
measurement of sTfR include not-established standard cut-
offs, costs and availability in the laboratory.

Other biomarkers of iron status include reticulocyte 
hemoglobin content (CHr) and percentage of hypochromic 
red blood cells (%Hypo). CHr provides an expression of iron 
availability for erythropoiesis within 3–4 days [35, 45] and 
CHr < 27.2 pg is diagnostic for iron deficiency [35]. %Hypo 
measures the concentration of hemoglobin in red blood 
cells (RBC), which reflects absolute amount of hemoglobin 
and the RBC size [35, 45] and serves as a sensitive marker 
of iron deficiency [35, 45] and iron status changes in the 
long-term assessment [35, 45]. Both these biomarkers are 
influenced by inflammation [62, 63]. Nevertheless, CHr and 
%Hypo have, compared to TSAT and serum ferritin, better 
sensitivity and specificity to predict iron deficiency in late 
stages of CKD [48]. CHr and %Hypo are predictive of iron 
responsiveness [64, 65] with at least similar test accuracy 
compared with traditional biomarkers in predicting hemo-
globin increase to intravenous iron administration [66]. It 
needs to be highlighted that during iron supplementation 
the temporal changes of CHr and %Hypo differs—CHr can 
normalize within 2–3 days, whereas %Hypo can take even 
months [48]. Unfortunately, both measurements are limited 
by testing requirements. %Hypo must be tested on fresh 
blood samples (within 6 h) and CHr is time sensitive due to 
the maturation of erythrocytes [42].

Hepcidin, given its central role in iron metabolism reg-
ulation, has been evaluated as a biomarker of iron status 
and iron responsiveness in CKD patients. Many studies 
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have confirmed increased hepcidin levels in CKD patients 
[67–69] Serum hepcidin levels have the strongest correla-
tion with serum ferritin, TSAT and sTfR [67, 70–72] and 
are influenced by inflammation [67, 72, 73] iron and ESA 
administration [67, 71, 72, 74] and dialysis clearance [68, 
69, 75]. Due to a significant intra-individual variability, the 
short-term measurement of serum hepcidin is not useful as 
a biomarker of iron status in CKD patients [76, 77]. And 
the interpretation of the serum hepcidin level must take into 
account all confounding factors. Hepcidin is not a good pre-
dictor of the response to iron supplementation in dialysis 
[57] and non-dialysis-dependent patients [78].

Soluble hemojuvelin (sHJV) has been explored as bio-
marker of iron status in patients without [79], and with 
chronic kidney disease [80, 81]. Opposite to cell surface 
HJV, soluble HJV may act as an inhibitor of BMP signaling 
and restrain hepcidin expression [82]. Some studies revealed 
that sHJV may be increased in iron deficiency and decreased 
during iron administration [82–84], suggesting that sHJV 
may be a diagnostic marker of iron status. One important 
concern in soluble HJV assessment is assay validity [81, 82, 
85], and future studies are needed to establish sHJV value as 
biomarker of iron status and response to therapy.

Growth differentiation factor 15 (GDF15), secreted by 
matured erythroblasts, is involved in hepcidin metabolism 
and as such is potentially involved in iron metabolism [86]. 
However, available data on the role of GDF15 as the marker 
of iron status are scarce. In fact, one study suggested that 
GDF15 is increased in iron deficiency [87]; the other did 
not confirm it [88]. Moreover, serum GDF15 levels may be 
influenced by kidney disease, malnutrition and inflammation 
[89] complicating its usefulness as an iron status biomarker.

Plasma neutrophil gelatinase-associated lipocalin 
(NGAL) is known as a predictor of kidney disease pro-
gression and marker of inflammation [90, 91]. In addition, 
NGAL influences iron sequestration; however, the way that 
NGAL influences the iron balance depends on its form. The 
bound form of NGAL decreases and free form of NGAL 
increases the level of serum iron. Few studies evaluated the 
usefulness of NGAL as a biomarker of iron stores in CKD 
patients, suggesting its good specificity and sensitivity in the 
detection of decreased iron stores [92, 93]; however, future 
studies are needed to establish the role as a biomarker of 
iron status.

In summary, we conducted a search in Medline, PubMed, 
and Embase using the keywords: iron, biomarkers, kidney 
failure, CKD, dialysis, hemodialysis, peritoneal dialysis. As 
described in the Preferred Reporting Items for Systematic 
reviews and Meta-Analyses (PRISMA) group [94]. We lim-
ited our search to adult patients and publications in English 
and Polish till 2020. We found 541 articles, but only 102 
articles were analyzed due to lack of information about full 
data, and availability of abstracts only or duplication. The 

available data were very limited due to a high degree of 
heterogeneity. Taking into account the drawbacks and some-
times limited data on the utility of alternative biomarkers 
of iron status in chronic kidney disease, the traditional bio-
markers still remain the hallmarks of the assessment of iron 
metabolism and responsiveness to iron therapy in this patient 
population.

Therapeutic strategies

Therapeutic approach should begin with diagnosis and 
elimination of the underlying condition responsible for iron 
deficiency. Iron supplementation is the next step. Initiation 
of iron in CKD patients with anemia should be based on 
preexisting iron stores and the target Hb level that is desired. 
Even though oral iron is generally considered sufficient in 
CKD patients not on dialysis and PD patients, intravenous 
form is the preferred route, especially in hemodialysis 
patients. Oral iron is associated with poor intestinal absorp-
tion and adverse event-related (mainly gastrointestinal) low 
adherence to therapy [94]. It needs to be emphasized that 
the goal of treatment with iron is not to increase Hb levels 
to the normal range but to reduce the risk of development of 
severe anemia and associated complications and to minimize 
the need for blood transfusions [4]. ESA therapy is gener-
ally initiated in ESRD patients with replete iron stores (i.e. 
TSAT > 30% and/or ferritin > 500 mcg/l) whose Hb levels 
are below 10 g/dl [95]. Failure to increase Hb concentration 
after the first month of ESA treatment is defined by KDIGO 
as ESA hyporesponsiveness—a poor prognostic factor in 
terms of patient mortality [36]. There are several factors 
responsible for ESA hyporesponsiveness—one of them is 
inflammation. A new group of oral agents known as HIF 
prolyl hydroxylase-inhibitors has been developed to improve 
CKD-associated anemia. The beneficial effect of HIF stabi-
lizers on hemoglobin levels has been observed regardless of 
the patient’s iron stores and inflammatory status [17]. How-
ever, the long-term safety of these novel agents, especially 
regarding potential risk of tumorigenesis and worsening of 
proliferative diabetic retinopathy, has yet to be established 
[17, 96]. Additionally, the increased usage of intravenous 
iron in hemodialysis patients during recent years has led to 
increasing concern over the potential development of iron 
overload [97, 98]. Recently, we reported that a substantial 
number of hemodialysis patients have positive labile plasma 
iron after intravenous iron administration, which positively 
correlated with laboratory parameters that are currently in 
routine clinical use for detecting iron overload and with 
higher intravenous iron dose [99]. Thus, we suggest to per-
form further studies to establish the clinical implications 
of labile plasma iron, a component of nontransferrin-bound 
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iron which may be a more accurate indicator of impending 
iron overload monitoring in hemodialysis patients.

Conclusion

CKD patients tend to have subclinical inflammatory-related 
immune activation. The pathogenesis of chronic inflamma-
tion in CKD is still not fully understood, yet the proposed 
underlying factors include oxidative stress, cellular senes-
cence, hypoxia, exogenous factors (such as dialyzer mem-
brane or central venous catheter), immune dysfunction, gut 
dysbiosis and retention of uremic toxins [100]. Inflamma-
tory blockade is associated with resistance to erythropoi-
etin despite iron availability, which is more clearly under-
stood now that the role of hepcidin in iron metabolism 
has been identified. Studies conducted so far revealed that 
serum ERFE concentration increases in response to ESA 
treatment in CKD patients, while the correlation between 
ERFE and hepcidin remains unclear [101]. Despite having 
classical iron biomarkers, we still looking for new ones to 
improve our diagnostic and predictive tools. There is an area 
of uncertainty regarding diagnostic utility of both ERFE and 
hepcidin in ESRD patients [102]. Higher concentration of 
hepcidin in oligoanuric patients may reflect decreased renal 
clearance. Furthermore, the hepcidin-lowering effect of 
ERFE in ESRD patients treated with ESAs may be blunted 
by underlying inflammation and concomitant iron treat-
ment. Up to date, we have no cost-effective analytical tests 
to assess iron metabolism in patients with CKD. Therefore, 
future studies should validate the use of ERFE as a bio-
marker of erythropoiesis and predictor of response to iron 
and ESA therapy in dialysis-dependent patients.
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