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Abstract
Mesopredators including coyotes (Canis latrans) and red foxes (Vulpes vulpes) often co-occur in urban environments, but 
how niche partitioning facilitates their coexistence remains unclear. Highly urbanized areas can be spatial refuges for smaller 
mesopredators (i.e., spatial human shield effect), however these species also may coexist through temporal niche partitioning. 
We used camera traps (n = 110 sites) across an urbanization gradient in Chicago to examine coyote-fox interactions from 
2011 to 2018. We analyzed spatial partitioning through multi-season occupancy models and structural equation modeling 
(SEM), and quantified temporal overlap between canids and with humans. Coyotes most often occurred in natural areas, 
and urbanization reduced their colonization rates and increased their extinction rates. Initial occupancy for red foxes was 
negatively impacted by urbanization, but their extinction rates depended on a surprising interaction between coyotes and 
humans. When coyotes were rare, fox extinction was related positively to human activity; but when coyotes were more 
common, fox extinction was related negatively to human activity. This outcome may reflect a human shield effect at a 
within-site scale. The SEM further supported the negative impact of urbanization on both canids, and lack of an effect of 
coyotes on the distribution of foxes. Diel activity of coyotes and red foxes indicated temporal niche partitioning intensified 
at more urbanized sites. Our results suggest the spatial human shield effect is not operating across sites in Chicago. Instead, 
coyotes and red foxes may share green spaces, especially in highly urbanized areas, where species coexistence is promoted 
by temporal niche partitioning.
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Introduction

Urbanization acts as a strong filter that can cause local 
extinctions of wildlife species while also providing 
opportunities for urban adapters and exploiters (McKinney 
2002). Urbanization decreases and fragments habitat, which 
can restrict wildlife movements (Crooks 2002; Ordeñana 

et al. 2010; Magle et al. 2012) and increase vehicle collisions 
(Tigas et al. 2002). However, remaining green spaces can 
be suitable habitat and serve as movement corridors (Magle 
et al. 2010; Gallo et al. 2017), and maintaining a variety of 
green spaces can promote habitat heterogeneity and gamma 
diversity for urban areas (Gallo et al. 2017; Tryjanowski et al. 
2017). Anthropogenic foods may be alternative resources 
for urban wildlife, especially if natural foods are limited 
(Newsome and Eeden 2017). Reliance on human foods or 
use of human structures can lead to human-wildlife conflicts, 
however, including property destruction, wildlife attacks, and 
wildlife mortality (Hadidian et al. 2010; Cusa et al. 2015; 
Poessel et al. 2017).

Urbanization also alters predator distributions and 
mediates species interactions (Fischer et al. 2012; Wang 
et  al. 2015; Greenspan et  al. 2018). Some mammalian 
mesopredators have increased in urban settings leading 
to excessive predation on native prey species, increased 
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interference competition, and intraguild predation (Crooks 
and Soule 1999; Crooks et  al. 2010). Fundamentally, 
intraguild predation consists of a dominant predator 
excluding and killing a competing, subordinate predator 
that shares common prey (Polis and Myers 1989; Prugh and 
Sivy 2020). Theory suggests the two species can coexist 
when resource levels are intermediate, whereas scarce 
resources favor the subordinate predator (assuming it is a 
better exploitative competitor), and abundant resources 
favor the dominant predator (Holt and Polis 1997; Robinson 
et al. 2014; Lonsinger et al. 2017). However, interactions 
between subordinate and dominant predators may be altered 
in urban areas (Sévêque et al. 2020). For instance, bobcats 
(Lynx rufus) avoided areas recently used by pumas (Puma 
concolor) in less urban environments but did not show 
the same avoidance in more developed areas, even though 
pumas kill bobcats (Lewis et al. 2015). Higher levels of 
urbanization may also offer relief to subordinate predators 
due to the “spatial human shield effect”. This hypothesis 
suggests that subordinate predators will use areas with 
increased human activity due to dominant predators avoiding 
these spaces (Moll et al. 2018; Parsons et al. 2019). For 
instance, in east-central Illinois, red foxes (Vulpes vulpes) 
were killed by coyotes (Canis latrans) in rural areas, but 
predation was much lower in urban areas where they were 
able to avoid coyotes (Gosselink et al. 2007).

Land conversion and the extirpation of wolves (Canis 
lupus) have allowed coyotes to expand their geographic 
range across eastern North America (Hody and Kays 
2018). In Illinois, an increase in coyote populations started 
in rural areas around the 1970s and expanded into major 
cities, like Chicago, in the 1990s (Gosselink et al. 2007; 
Gehrt et al. 2009). Coyotes are a generalist species that have 
adjusted well to urban areas and become the top predator 
in many of these systems (Gompper 2002; Gehrt and Riley 
2010; Greenspan et al. 2018). Although vehicle collisions 
can contribute to >50% of coyote mortalities in cities 
(Gehrt and Riley 2010), shifting activity to nocturnal hours 
by coyotes can decrease risk (Murray and St. Clair 2015). 
Even though coyotes have successfully colonized urban 
environments, they still usually prefer natural habitats within 
them (Crooks 2002; Gehrt and Riley 2010; Gese et al. 2012). 
For example, coyotes in Chicago often select areas with 
forest preserves and golf courses away from higher levels of 
human activity and development (Gehrt et al. 2009; Gallo 
et al. 2017; Wurth et al. 2020).

Harvest reports in Illinois, which mainly track trends in 
rural areas, indicate a strong decline of red foxes as coyote 
populations have increased over time (Gosselink et al. 2007; 
Bauder et al. 2022). Coyotes and red foxes are intraguild 
competitors that share similar prey resources, such as small 
mammals and lagomorphs (Gese et  al. 1996; Gosselink 
et al. 2007; Peterson et al. 2021). However, red foxes may 

find refuge from coyotes in moderate levels of urbanization 
(Gosselink et al. 2003, 2007). Red foxes have acclimated to 
urbanization, inhabiting many cities in North America and 
Europe (Soulsbury et al. 2010; Mueller et al. 2018; Scholz 
et al. 2020). Furthermore, red foxes are positively associated 
with urbanization in cities with sufficient green spaces (Fidino 
et al. 2021). As urbanization increases, however, suitable 
habitat may become limited and restrict competing species 
to using the same green spaces (LeFlore et al. 2019; Parsons 
et al. 2019). To decrease potential negative interactions, red 
foxes might shift their diel activity to reduce overlap with 
coyotes (LeFlore et al. 2019; Malhotra et al. 2022; Parsons 
et al. 2022). Such temporal niche partitioning may facilitate 
species coexistence in areas where habitat is limited.

We explored coyote and red fox interactions across 
an urbanization gradient in Chicago, Illinois. We asked 
whether spatial partitioning and the human shield effect 
was operating and determined if temporal niche partitioning 
reduced the risk of intraguild predation, especially in 
highly urban areas with limited green spaces. Due to 
their preference for including natural habitat within their 
territory and a desire to avoid humans (Riley et al. 2003; 
Gallo et al. 2017; Mueller et al. 2018), we predicted that 
coyotes would mainly inhabit natural areas and lower levels 
of urbanization. We expected coyotes to restrict red foxes 
spatially and therefore predicted foxes would use moderate 
levels of urbanization to avoid coyotes (Lesmeister et al. 
2015). We also expected that both species would avoid high 
levels of urbanization, when possible, reflecting a limit to 
their tolerance of humans (Gehrt and Riley 2010; Soulsbury 
et al. 2010). If coyotes and red foxes were forced to use the 
same areas, we predicted foxes would shift their temporal 
activity to avoid coyotes (LeFlore et al. 2019; Parsons et al. 
2022). Furthermore, we expected both species to have low 
temporal overlap in activity with humans (Riley et al. 2003; 
Moll et al. 2018).

Methods

Study area

We conducted our study across the Chicago metropolitan 
area in Illinois, USA. Chicago is the third largest city in the 
United States with a population of 2.7 million people and 9.5 
million people throughout the entire metropolitan area (U.S. 
Census Bureau 2020). Although highly urbanized, Chicago 
also includes fragmented natural habitat in part due to 
>81,000 ha of land protected under the Chicago Wilderness 
coalition (Wang and Moskovits 2001). The southwest portion 
of Lake Michigan is to the east of the city, whereas natural 
areas encompass parts of the west, north, and south sides of 
the city and metropolitan area. Natural areas contain forests, 
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oak (Quercus spp.) savannahs, tallgrass prairies, wetlands, 
and the lakeshore (Wang and Moskovits 2001). However, 
toward the fringes of the metropolitan area the landscape 
becomes highly modified with row-crop agriculture (Lehrer 
et al. 2021) with limited natural habitat despite being the 
rural component of the urbanization gradient.

Study design and sampling

We collected data using cameras traps (Bushnell, Trophy 
Cam, Overland Park, Kansas) along three 50-km transects 
(Fig. 1; Magle et al. 2014; Fidino et al. 2016). Transects 

started from the city center and extended to the northwest, 
west, and southwest. We subdivided each transect into 10 
5-km stretches and randomly placed camera traps within 2 
km of each transect within a green space (Gallo et al. 2017). 
No more than four green spaces were chosen within each 
5-km stretch (Fidino et al. 2016; Gallo et al. 2017). All 
camera traps were located ≥1 km from other camera traps. 
We strapped cameras to trees ~1.5-2.0 m above the ground 
and placed a synthetic fatty acid tablet (USDA, Pocatello 
Supply Depot, Idaho) as lure within 3-5 m, in line with the 
camera. We sampled a total of 110 sites throughout our 
study.

Fig. 1  Map of camera trap 
locations across the Chicago 
metropolitan area, Illinois, 
USA. The sampled green spaces 
were located in city parks, 
natural areas, golf courses, and 
cemeteries
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The green spaces that we sampled included four 
categories: city parks (n = 43), cemeteries (n = 12), golf 
courses (n = 10), and natural areas (n = 45; Magle et al. 
2014). Smaller city parks (≤2 ha) included native and non-
native trees spread among turfgrass (Fidino et al. 2016; Gallo 
et al. 2017), whereas larger parks (>2 ha) had native plants 
dispersed throughout (Fidino et al. 2016). Cemeteries were 
variable with larger cemeteries (>2 ha) resembling small 
city parks, and smaller cemeteries containing or bordering 
forested areas (Fidino et al. 2016). Golf courses were large 
(mean = 83 ha) and heavily landscaped but included natural 
features and human-made water structures (Fidino et al. 
2016; Gallo et al. 2017). Natural areas mainly consisted of 
protected forest preserves plus other native vegetation (e.g., 
grasslands, prairies) but with varying levels of non-native 
species (Fidino et al. 2016; Gallo et al. 2017; Greenspan 
et al. 2018).

We used camera trap data from the fall season (Oct-Nov) 
of each year between 2011 and 2018. Our sampling occurred 
over four weeks usually starting the first week of October. 
We considered each survey to last one week, which created 
four occupancy surveys per sampling season.

Model covariates and urbanization gradient

We estimated detection, initial occupancy, colonization, 
and extinction separately for coyotes and red foxes using 
single-species, multi-season occupancy models (MacKenzie 
et  al. 2003). We did not use a multispecies model for 
interacting species because our data for red foxes were 
too sparse to estimate the additional parameters. For both 
species, our only detection covariate was sampling effort 
(number of working camera days/seven), which was a 
survey-specific covariate. Our occupancy, colonization, 
and extinction covariates included coyote photographic rate 
(for fox models), human photographic rate, habitat type, and 
urbanization. Coyote and human photographic rates (number 
of independent photographs/number of days sampled each 
year) were treated as site-specific covariates that could 
vary among years. We considered sequential photos of 
species at a site independent if separated by ≥30 minutes 
(Farris et al. 2015, Moll et al. 2018). Human photographic 
rate was a measure of human activity at the local scale 
and complemented our urbanization metric measured at 
a broader spatial scale (see below). We acknowledge that 
human photographic rate only captures activity near the 
camera location. Thus, this measure could be conservative 
for sites with high human activity if cameras were placed 
to avoid areas with the most activity to minimize camera 
disturbance. Our habitat covariate included the four types of 
green spaces where camera traps were located (city parks, 
cemeteries, golf courses, natural areas).

To quantify our urbanization gradient, we used principal 
component analysis (PCA) to combine housing density, 
impervious land cover, and tree canopy cover into one 
urbanization metric (Gallo et al. 2017). We measured these 
three variables within 1-km buffers centered on the camera 
trap locations. We used the Illinois block housing density 
from the U.S. Census Bureau (2010) to measure housing 
density using ArcGIS 10.7.1 (ESRI 2019). We then extracted 
impervious cover and tree canopy cover using the Chicago 
Metropolitan Agency for Planning 10-County Region 
Land Cover (2016) in R ver. 4.0.3 (R Core Team 2020). 
We extracted data using the ‘ClassStat’ function in the 
‘SDMTools’ package (v. 1.1-221.2; VanDerWal et al. 2019). 
We used the first principal component from the PCA for 
urbanization, which accounted for 71% of the variation. The 
factor loadings for the first principal component (housing 
density = 0.56, impervious cover = 0.62, tree canopy 
cover = -0.54) indicated that a positive PCA score for 
urbanization characterized a site with high housing density 
and impervious land cover but low tree canopy cover.

Occupancy models

We created single-species, multi-season occupancy models 
for coyotes and red foxes using the ‘unmarked’ package (v. 
1.1.0; Fiske and Chandler 2011). For coyotes, we considered 
three covariates that could affect initial occupancy, 
colonization, and extinction: human photographic rate, 
habitat type, and urbanization. For red foxes, we evaluated 
the same three covariates plus coyote photographic rate, 
which indexed pressure from the intraguild predator. 
Because photographic rates were treated as yearly site 
covariates, we could not run models with missing values. 
Thus, if a site was not sampled within a year, we interpolated 
the mean value for that site across other years for coyote and 
human photographic rates. We then centered and scaled each 
continuous covariate to have a mean of 0 and SD of 1 in R 
ver. 4.0.3.

We examined eight potential models (single covariate, 
additive, null) for initial occupancy, colonization, and 
extinction for coyotes (Tables S1-S3), and eighteen potential 
models for red foxes (single covariate, additive, interactive, 
null; Tables S4-S6). The interaction models for red foxes 
included an interaction between coyote photographic rate and 
human photographic rate, and a model with an interaction 
between coyote photographic rate and urbanization. These 
interaction models reflected expectations that red foxes 
might tolerate different levels of coyotes at a site depending 
on its level of local human activity or location along the 
urbanization gradient. Specifically, foxes might be able to 
find safe patches within sites avoided by coyotes due their 
own avoidance of humans (i.e., spatial human shield effect 
at a within-site scale).
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To identify important covariates for initial occupancy and 
turnover, we used a sequential selection process (Cosentino 
et al. 2010; Ahlers et al. 2016). Sampling effort was included as 
a detection covariate throughout the sequential process. First, 
we evaluated initial occupancy while holding colonization 
and extinction constant using intercept-only models. Then, 
we carried the supported occupancy covariate(s) over as we 
analyzed colonization, while holding extinction constant. 
Finally, we analyzed extinction while including the supported 
covariates for occupancy and colonization. At each step, we 
ranked our models using  AICc (Akaike’s Information Criterion 
adjusted for small sample size) and considered models with 
ΔAICc ≤ 2 as competitive (Burnham and Anderson 2002).

Structural equation model

We used structural equation modeling (SEM; Grace 2006) 
to further explore relationships among variables and to test 
the human shield effect hypothesis directly. We chose SEM 
because of its ability to measure direct and indirect effects 
through model pathways (Grace et al. 2010; Sivy et al. 
2017). We used a subset of our data (2011-2014) because 
naïve occupancy for red foxes was greater for those years 
and declined to low levels in subsequent years. Thus, we 
tested whether humans mediated negative effects of coyotes 
when foxes were not uncommon overall. For each year, we 
estimated occupancy probability for coyotes and red foxes 
using a multi-season occupancy model and the recursive 
equation (MacKenzie et al. 2003). We included sampling 
effort as our detection covariate but did not include any 
occupancy covariates because the variables of interest were 
included in the SEM. We then averaged our occupancy 
probabilities across the four years.

We used human photographic rate (averaged for 2011-
2014) and our urbanization metric as described above. We 
included these variables as direct pathways to both coyote 
and red fox occupancy (Fig. 2). We also included a direct 
pathway from coyote occupancy to red fox occupancy, 
which created indirect pathways from human photographic 
rate and urbanization to red fox occupancy (Fig. 2). These 
indirect pathways allowed us to assess any mediation coyote 
occupancy may have on red fox occupancy in relation to 
human activity and urbanization.

We used a global estimation approach for our model 
that reflected the human shield effect hypothesis (Fig. 2). 
This estimation created a variance-covariance matrix from 
our pathways and used maximum likelihood to estimate 
parameterization values (Grace et al. 2015; Wagnon et al. 
2020). We report both standardized and unstandardized 
coefficients and used standardized estimates to evaluate 
the strength of our direct and indirect pathways (Grace and 
Bollen 2005; Wagnon et al. 2020). We considered pathways 
to have strong support if p ≤ 0.05, and moderate support 

if 0.05 > p ≤ 0.10. We used the ‘lavaan’ package (Rosseel 
2012) in R for our SEM.

Because our final model was a saturated model, our df 
= 0 and model fit could not be assessed directly. However, 
prior to choosing our final model, we analyzed the same 
variables but created different direct and indirect pathways 
that resulted in unsaturated models (Fig. S1). We compared 
the overall model fit values between our saturated model 
and unsaturated models, which were considered good fits 
(Chi-squared test, p > 0.05; Grace et al. 2015), by using the 
‘anova’ function in ‘lavaan’ and found no strong differences. 
We chose to move forward with the saturated model as it 
matched our human shield effect hypothesis.

Diel activity and temporal niche partitioning

We assessed temporal overlap in diel activity between 
coyotes and red foxes, coyotes and humans, and red foxes 
and humans using time stamps from independent photos 
for fall between 2011 and 2018. We used the ‘overlap’ 
package (v.0.3.3; Meredith and Ridout 2014) in R to fit 
kernel density functions and estimate the coefficient of 
overlap (Δ, Rideout and Linkie 2009; Moll et al. 2018). 
The coefficient of overlap is on a scale of 0-1. No temporal 
overlap between species produces a coefficient of 0, and 
complete overlap produces a coefficient of 1 (Rideout 
and Linkie 2009). We used the appropriate nonparametric 
estimator based on sample size (Schmid and Schmidt 2006): 

Fig. 2  Structural equation model for coyotes and red foxes. We 
included indirect pathways from human photographic rate and urban-
ization, through coyote occupancy, to red fox occupancy to test the 
human shield effect hypothesis. Bold, solid black lines indicate p 
≤ 0.05, solid black lines indicate 0.05 < p < 0.10, and dashed lines 
indicate p > 0.10. Unstandardized path coefficients are within the 
parentheses next to the standardized coefficients
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Δ̂1 for smaller samples, and Δ̂4 for larger samples (Rideout 
and Linkie 2009).

We next tested whether temporal overlap between species 
differed between two levels of urbanization. We used our 
urbanization metric and defined sites above the median as 
“high urbanization” and sites below the median as “low 
urbanization”. We split independent photos into these two 
categories and then used time stamps to estimate temporal 
overlap for each species pairing based on urbanization level. 
To complement the coefficient of overlap, we tested for 
differences in diel activity patterns between species using 
the Mardia-Watson-Wheeler test (Batschelet 1981; Kovach 
2009). As before, we compared activity between species 
across all levels of urbanization and for high versus low 
levels of urbanization.

Results

During fall between 2011 and 2018, we documented 1,295 
independent photos for coyotes, 119 for red foxes, and 
11,092 for humans. Coyotes were recorded at 90 of the 110 
(82%) sites overall and occupied 17 sites (15%) once, 17 
sites (15%) twice, 17 sites (15%) thrice, and 39 sites (35%) 
for four or more years. Red foxes were recorded at 27 of the 
110 (25%) sites overall and occupied 11 sites (10%) once, 
4 sites (4%) twice, 3 sites (3%) thrice, and 9 (8%) sites for 
four or more years. Accounting for sampling effort, average 
occupancy per year was 0.54 for coyotes (range = 0.44 
– 0.61) and 0.12 for red foxes (range = 0.07 – 0.22) with 
occupancy for foxes declining during the study (Fig. S2).

For coyotes, when holding other parameters constant, 
weekly detection probability was 0.44 (95% CI = 0.40 - 
0.47), colonization probability was 0.26 (95% CI = 0.20 
- 0.32), and extinction probability was 0.25 (95% CI = 0.19 
- 0.32). For red foxes, weekly detection probability was 0.25 
(95% CI = 0.18 - 0.33), colonization probability was 0.03 
(95% CI = 0.01 - 0.06), and extinction probability was 0.36 
(95% CI = 0.20 - 0.56).

Occupancy models

For coyotes, habitat type was the most supported covariate 
for explaining initial occupancy (Tables 1, S1). Natural areas 
were our reference habitat and had the highest probability 
of occupancy, followed by golf courses (β = -0.28, SE = 
1.30), cemeteries (β = -1.34, SE = 1.05), and city parks (β 
= -2.91, SE = 0.85; Fig. 3). The second-ranked model for 
initial occupancy that included human photographic rate did 
not explain substantially more variation, and models with 
only human photographic rate or urbanization were not 
competitive (Table S1). The only competitive model for 

coyote colonization included the additive effects of habitat 
type and urbanization (β = -0.55, SE = 0.26; Tables 1, 
S2). When compared to natural areas, coyotes were more 
likely to colonize golf courses (β = 1.01, SE = 0.86) but 
not cemeteries (β = -0.94, SE = 0.56) and city parks (β = 
-1.21, SE = 0.48). Coyotes were more likely to colonize 
less urbanized areas (Fig. 3). Urbanization (β = 0.70, SE = 
0.22) was also in the only competitive model for extinction 
probability (Tables 1, S3). Extinction of coyotes was related 
positively to urbanization (Fig. 3). Sampling effort was held 
as a detection covariate throughout our modeling, but it was 
not strongly associated with coyote detection probability (β 
= 0.09, SE = 0.78).

For red foxes, two models were competitive for initial 
occupancy (Tables 1, S4). The top-ranked model included 
human photographic rate (β = 0.55, SE = 0.34) and 
urbanization (β = -1.00, SE = 0.44), and the second-ranked 

Table 1  Model selection results for multi-season occupancy models 
for coyotes and red foxes in the Chicago metropolitan area, 2011-
2018

Only models with ΔAICc < 2 are shown. Full sets of candidate 
models are presented in Supplementary Information (Tables S1-S6). 
Model covariates included habitat type, urbanization level, human 
photographic rate, and coyote photographic rate. Null models were 
intercept-only models for each process
ΔAICc is the difference between the  AICc (Akaike Information 
Criterion for small sample sizes) for each model and the lowest model 
 AICc, W is the  AICc weight, LL is the log likelihood, and K is the 
number of parameters

Species and Model ΔAICc W LL K

Coyote Occupancy
   Habitat 0 0.36 -1245.06 8
   Habitat + Human Photo Rate 1.11 0.21 -1244.42 9
   Human Photo Rate + Urban 1.84 0.14 -1247.14 7

Coyote Colonization
   Habitat + Urban 0 0.57 -1224.02 12

Coyote Extinction
   Urban 0 0.70 -1217.65 13

Red Fox Occupancy
   Human Photo Rate + Urban 0 0.27 -261.26 7
   Urban 0.40 0.22 -262.60 6

Red Fox Colonization
   Null 0 0.21 -262.60 6
   Human Photo Rate 0.34 0.18 -261.63 7
   Coyote Photo Rate + Human Photo 

Rate
1.39 0.10 -260.99 8

   Coyote Photographic Rate 1.57 0.10 -264.22 7
   Urban 1.87 0.08 -262.40 7

Red Fox Extinction
   Coyote Photo Rate * Human Photo 

Rate
0 0.83 -255.61 9
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model included only urbanization (β = -0.657, SE = 0.35). 
We selected the urbanization model for inference because 
human photographic rate did not substantially improve model 
fit (log likelihood) for the top model or when occurring as a 
single covariate (Tables 1, S4). Red foxes were more likely 
to occupy less urbanized sites (Fig. 4). The top-ranked 

model for colonization was our null model (Tables 1, S5) 
indicating covariates were not strongly supported. Extinction 
probability for red foxes was best explained by an interaction 
(β = -24.25, SE = 14.43) between coyote photographic rate 
(β = -12.04, SE = 7.33) and human photographic rate (β 
= -11.79, SE = 7.63). No other models were competitive 

Fig. 3  (A) Initial occupancy 
probability (±SE) for coyotes in 
each habitat type in 2011, (B) 
effects of urbanization and habi-
tat type on coyote colonization 
from 2011-2018 (for 95% CIs 
for habitat types see Fig. S4), 
and (C) effects of urbanization 
on coyote extinction probability 
across the Chicago metropolitan 
area, 2011-2018. Shaded area is 
the 95% CI
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(Tables 1, S6). At sites where coyotes were uncommon, 
extinction rate for foxes was positively related to human 
activity (Fig. 4). In contrast, at sites where coyotes were 
more common, extinction rate for foxes was negatively 
related to human activity (Fig. 4). Again, sampling effort 
was kept as a detection covariate throughout our modeling 
but had a weak association (β = 1.09, SE = 1.89).

Structural equation model

Urbanization had a direct negative effect on mean site 
occupancy for coyotes and red foxes (Fig. 2). Support for 
this relationship was strong for coyotes (p = 0.003) and 
moderate for red foxes (p = 0.072). Human photographic 
rate had a direct negative effect for coyote occupancy (p 

Fig. 4  (A) Effects of urbani-
zation on initial occupancy 
probability of red foxes across 
the Chicago metropolitan area 
in 2011 (shaded area is the 95% 
CI), and (B) extinction rate 
for red foxes from 2011-2018 
depended on an interaction 
between coyote and human 
photographic rates. Effects of 
human activity on local extinc-
tions for foxes is shown for 
sites with low (25th percentile), 
medium (50th percentile), and 
high (75th percentile) coyote 
photographic rates
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= 0.021) but not for red fox occupancy (p = 0.189). We 
did not detect an effect of coyote occupancy on red fox 
occupancy (p = 0.354), however, so the indirect pathway 
from urbanization to foxes representing the human shield 
effect was not supported (Fig. 2).

Diel activity and temporal niche partitioning

Overall, coyotes and red foxes had fairly high temporal  
overlap ( ̂Δ = 0.88) but still differed in their diel activity  
patterns (p = 0.001, W = 13.10; Fig. 5). In high levels of 
urbanization, temporal overlap decreased ( ̂Δ = 0.79, Fig. 6) 

and diel activity differed between the two species (p = 0.007,  
W = 9.82). In low levels of urbanization, temporal overlap 
increased ( ̂Δ = 0.90, Fig. 6) and support for differences 
in diel activity was weaker (p = 0.096, W = 4.82). These 
results indicate urbanization drives greater divergence in 
temporal niches of coyotes and red foxes.

Coyotes and human had low temporal overlap ( ̂Δ = 
0.37, Fig. 5) and differed in diel activity (p < 0.001, W = 
1738.89). Coyotes and humans retained low overlap both 
in high levels of urbanization ( ̂Δ = 0.37; p < 0.001, W = 
1370.12) and in low levels of urbanization ( ̂Δ = 0.26; p  

Fig. 5  Overlap in temporal 
activity between (A) coyotes 
and red foxes, (B) coyotes and 
humans, and (C) red foxes and 
humans across the Chicago 
metropolitan area, 2011-2018. 
Overlap is shown in gray. Δ̂ 
is the coefficient of overlap 
between the two species. 
Dashed black lines represent 
the averaged sunrise and sunset 
times across sampling periods
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< 0.001, W = 479.95; Fig. S3). Red foxes and humans 
also had low overlap ( ̂Δ = 0.29; Fig. 5) and differed in 
diel activity (p < 0.001, W = 188.37). Foxes and humans 
had similar low overlap in high levels of urbanization  
( ̂Δ = 0.23; p < 0.001, W = 136.03) and in low levels of 
urbanization ( ̂Δ = 0.24; p < 0.001, W = 74.05; Fig. S3).

Discussion

Our study suggests strong spatial partitioning does not occur 
between coyotes and red foxes in the Chicago metropolitan  
area, but temporal niche partitioning may promote their 

coexistence. Urbanization negatively impacted both coyotes 
and red foxes spatially, and human activity likely affected 
diel activity patterns for both species. We did not find  
evidence for the spatial human shield effect across our broad 
urbanization gradient. Instead, both species may be forced 
to use the same green spaces, especially in highly urban 
areas, but with red foxes displaying more nocturnal activity 
compared to coyotes. Our work extended investigations of 
coyotes and red foxes to a larger urban ecosystem compared 
to past research (e.g., Gosselink et al. 2003; Moll et al. 2018; 
Mueller et al. 2018; Parsons et al. 2019). We also examined  
these predator interactions over a longer period that enabled 

Fig. 6  Overlap in temporal 
activity between coyotes and 
red foxes in (A) high and (B) 
low levels of urbanization in 
Chicago, 2011-2018. Δ̂ is the 
coefficient of overlap between 
the two species. Dashed black 
lines represent the averaged 
sunrise and sunset times across 
sampling periods
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us to assess covariates associated with site turnover and  
document the decline of red foxes.

The occupancy modeling supported our expectations 
that initial site occupancy by coyotes would be higher 
at more natural habitats and be negatively related to 
urbanization. Coyotes were most likely to occupy natural 
areas and golf courses, and least likely to occupy city 
parks. These results are consistent with previous research 
on habitat use by coyotes in Chicago. Radio-tracked 
coyotes used natural areas and undeveloped lands while 
avoiding urbanization (Gehrt et al. 2009), and research 
from our study area spanning fewer years indicates high 
use of natural areas and golf courses by coyotes (Gallo 
et al. 2017). Natural areas are important for urban coyotes 
because they can provide connected habitat, prey, and 
concealment from humans (Gese et al. 2012; Greenspan 
et al. 2018). Golf courses can benefit coyotes due to their 
large extent and the forested areas and water features 
usually found within courses (Fidino et al. 2016; Gallo 
et al. 2017). Coyotes can exploit golf courses during the 
night because humans are usually only active during the 
day within these spaces (Gallo et al. 2017; Wurth et al. 
2020).

Coyotes also were most likely to colonize golf courses 
and natural areas, as well as sites in less urban areas. 
Likewise, Gallo et al. (2017) observed high colonization for 
natural areas, with coyotes also persisting across years at 
high rates on golf courses. Urbanization also played a role 
in the distribution of coyotes by increasing the likelihood 
of local extinctions at sites. Coyotes can tolerate urbanized 
environments, but they still prefer patches of natural habitat 
within their home ranges (Gehrt and Riley 2010; Ordeñana 
et al. 2010; Mueller et al. 2018). Crooks (2002) observed a 
decrease in coyote occurrence when habitat patches become 
too isolated and fragmented in urban areas, and Moll et al. 
(2018) also documented a decrease in coyote occupancy 
with increased development.

The occupancy models for red foxes provided partial 
support for our predictions. Urbanization had a negative 
effect on initial occupancy, and we expected that foxes 
would only tolerate moderate urbanization. In places 
without coyotes as the top predator, such as England, red 
foxes prefer moderate levels of urbanization and avoid 
highly urbanized areas (Soulsbury et al. 2010). None of 
our covariates strongly explained colonization of sites by 
red foxes. In general, we rarely documented red foxes and 
their population appeared to be declining during our study 
(Fig. S2), which probably contributed to model uncertainty.

We predicted coyotes would have a negative effect on red 
foxes due to the threat of intraguild predation. However, we 
found no evidence that photographic rate of coyotes was a 
predictor for initial occupancy or colonization of sites by red 
foxes. Likewise, our SEM indicated urbanization had a direct 

negative effect on coyotes and red foxes, but there was no 
effect of coyote occupancy on fox occupancy. Collectively, 
these results do not support the “spatial human shield effect” 
across the Chicago metropolitan area. However, we cannot  
rule out that such an effect could have operated across  
Chicago in the past before coyotes became widespread and 
red foxes rare. Our monitoring started a decade or more after  
coyotes increased in Chicago, and we could be witnessing 
the spatial outcome of past intraguild predation.

Species distributions and interactions in different urban 
settings can vary making it challenging to generalize 
(Sévêque et al. 2020; Fidino et al. 2021). Spatial analyses 
of natural areas in Cleveland, Ohio revealed red foxes 
positively responded to development, whereas coyotes were 
negatively impacted, indicating the “spatial human shield 
effect” occurs there (Moll et al. 2018). Unlike Chicago, 
Cleveland has varied terrain with slopes and this difference 
in topography might influence how coyotes and red foxes 
interact in urban areas. Moll et al. (2018) suggested red 
foxes may use steeper slopes to avoid coyotes, as more 
energy is required when using sloped areas. In Madison, 
Wisconsin, spatial partitioning also occurred between the 
two species, as coyotes used more natural areas while red 
foxes avoided these habitats (Mueller et al. 2018). Gosselink 
et al. (2003) also observed red foxes using urban areas as 
spatial refuges from coyotes in Champaign, Illinois, which 
is a moderate-sized city that lacks forest preserves large 
enough to maintain coyote territories. Similar to our study, 
however, Parsons et al. (2019) found no evidence for the 
“spatial human shield effect” between coyotes and red foxes 
across Washington, DC, and Raleigh, North Carolina. Using 
species interaction models, Parsons et al. (2019) noted a 
positive interaction between the two canids, although this 
relationship was weak.

Surprisingly, an interaction between human activity and 
coyote photographic rate best explained local extinctions 
by red foxes (Fig. 4). At sites where coyotes were rare, 
fox extinction was related positively to human activity. In 
contrast, where coyotes were more common, red foxes were 
less likely to go extinct at sites with higher human activity. 
One hypothesis for this pattern is that the two species may 
co-occur at certain high-quality sites, with enough suitable 
habitat for both canids, but coyotes typically use areas with 
less human activity while red foxes tolerate areas closer to 
humans. Such a scenario would represent a spatial human 
shield effect at a finer, within-site level.

Our study focused on top-down interactions, but prey 
resources can affect expected outcomes of intraguild 
predation (Holt and Polis 1997; Robinson et al. 2014), 
perhaps between coyotes and foxes in urban settings 
(Mueller et al. 2018). However, only larger prey such as 
white-tailed deer (Odocoileus virginianus) and eastern 
cottontails (Sylvilagus f loridanus) can be reliably 
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monitored with our camera traps, but rodents also are 
important prey for coyotes and red foxes in suburban areas 
(Randa et al. 2009; Peterson et al. 2021). Future studies 
may consider adding small mammal trapping at a subset of 
camera sites (DaVanon et al. 2016) to understand how prey 
abundance influences urban predator interactions.

Another caveat is that our inferences are restricted to 
spatial distributions across our camera trap sites, which 
were limited to natural areas, golf courses, city parks, and 
cemeteries. Thus, we could not analyze how coyotes and 
red foxes use the urban landscape matrix outside of green 
spaces (Gese et al. 2012). For example, we may be missing 
residential backyard use by these species. Nevertheless, the 
green spaces that we sampled represent the primary types of 
suitable habitats in Chicago (Fidino et al. 2016; Gallo et al. 
2017) and provide valuable insights on species interactions.

Although we found no evidence of spatial partitioning 
between the canid species, our results suggest a role 
for temporal niche partitioning in species coexistence. 
Overall, coyotes and red foxes had statistically significant 
differences in diel activity patterns, but retained fairly high 
temporal overlap, so the divergence may not be biologically 
relevant. However, the degree of temporal niche partitioning 
changed across our urbanization gradient. Separation 
in diel activity for coyotes and red foxes was stronger at 
more urbanized sites. Coyotes were more active during the 
crepuscular hours (i.e., one hour before and after sunrise and 
sunset), whereas red fox activity peaked around midnight. 
This shift toward nocturnal activity in more developed areas 
(Wang et al. 2015; Gaynor et al. 2018) by red foxes could 
partly explain why they were less likely to go extinct at sites 
with high human and coyote activity. At more rural sites, 
both species increased diurnal activity and did not display 
strong differences in peak activity.

As predicted, both canid species had low temporal 
overlap in activity with humans (see also Moll et al. 2018). 
Human diurnal activity increased in more suburban areas, 
whereas crepuscular and nocturnal activity was higher in 
more urban areas. These changes in human behavior across 
the gradient could contribute to shifts in activity by urban 
wildlife (Gaynor et al. 2018) and the likelihood of direct 
human-wildlife interactions.

Understanding how predator interactions change across 
urban landscapes is important as urbanization continues to 
expand and transform ecosystems (Sévêque et al. 2020). 
Furthermore, it is essential to incorporate both spatial and 
temporal analyses because partitioning between dominant 
and subordinate predators can occur in space, time, or both. 
Finally, continuing to compare occupancy dynamics and 
activity patterns for species in Chicago and other smaller 
cities (Magle et al. 2019) will establish which predator 
interactions are consistent across urban systems or how 

they change with scale (Uchida et al. 2021). Identifying 
generalizations that hold across cities, and drivers of 
differences among cities, will inform urban planning that 
can benefit biodiversity (Fidino et al. 2021).
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