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Abstract
Anthropocentric defaunation affects critical ecological processes, such as seed dispersal, putting ecosystems and biomes at risk,
and leading to habitat impoverishment. Diverse restoration techniques could reverse the process of habitat impoverishment.
However, in most of the restoration efforts, only vegetation cover is targeted. Fauna and flora are treated as isolated components,
neglecting a key component of ecosystems’ functioning, the ecological interactions. We tested whether the resilient frugivorous
generalist fauna can improve habitat quality by dispersing native plant species through the use of fruit feeders as in a
semideciduous seasonal urban forest fragment. A total of 32 sampling points was selected at a heavily degraded 251-ha urban
forest fragment, with feeders installed at two heights monitored by camera-traps. Variable quantities of native fruits of 27
zoochorous species were offered alternately in the feeders. Based on more than 36,000 h of video records, Turdus leucomelas
(Class Aves), Sapajus nigritus (Class Mammalia), and Salvator merianae (Class Reptilia) were recorded ingesting the highest
fruit species richness. Didelphis albiventris (Class Mammalia) was the most frequent visitor but consumed only pulp in most of
the visits. The frugivorous birds were recorded at a high visitation rate and consumed a wider variety of fruits. Our study opens a
new avenue to combine the traditional approach of ecosystems recovery and ecological interactions restauration in an urban
forest fragment.
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Introduction

A rapid expansion of anthropic activities such as agriculture,
urban, and industrial boundaries has accelerated natural areas’
degradation, reducing them to fragmented communities
(Tabarelli and Gascon 2005). This process causes loss of di-
versity, richness, and biomass of the fauna in a process called
‘anthropocentric defaunation’ (Redford 1992; Dirzo
et al. 2014). Since most of the Neotropical vertebrate
fauna are frugivorous (Kissling et al. 2009) and 80% of
Neotropical woody plants produce vertebrate-dispersal seeds
(Malhi et al. 2014), defaunation has the high potential to affect

essential ecosystem functions – jeopardizing key mutual
relationships such as animal-mediated seed dispersal
(Gardner et al. 2019).

In many systems, the absence of frugivores alters the flo-
ristic composition, benefiting plant species with abiotic dis-
persion (Wright and Duber 2001). This reduction of zoochoric
plants generates negative feedback between frugivores and
plant communities. Forests with fewer zoochoric plants offer
fewer resources to vertebrates (Terborgh et al. 2008), affecting
their survival, growth, and reproduction, contributing to frag-
ments’ defaunation. The diminishing vertebrate’s biomass af-
fects the quantity and quality of seed dispersal (e.g., empty
forest process by Redford 1992) (Ness et al. 2016) and the
soil’s fertilization through urine and feces (Feeley and
Terborgh 2005). Less fertilization reverberates back into plant
communities, decreasing rates of the establishment of new
adults. Thus, the alteration in seed dispersal patterns influ-
ences the ecosystem’s capacity to maintain plants and animal
populations in the medium and long term, especially in the
tropics (McConkey and Brockelman 2011; Terborgh 2013).

However, in some areas, the residual faunal species may
persist due to their wide niche width and provide functional
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replacement of some already absent species’ ecological func-
tions, promoting the reversal of floristic impoverishment
through seed dispersal (Jordano et al. 2007; Emer et al.
2018; Bogoni et al. 2020). The reversal of habitat impoverish-
ment is imperative in depleted biodiversity tropical hotspots,
such as the Brazilian Atlantic Forest, which have only small
areas remaining. Some of them are compressed into urban
forest fragments (Ribeiro et al. 2009). The loss of biodiversity
in such urban forests fragment can disrupt medium and long-
term services rendered by flora and fauna which are essential
to surrounding anthropic communities (Estevo et al. 2017;
Wintle et al. 2019), such as water supply, climate regulation,
and cultural services (Kremer et al. 2016). The drastic dimi-
nution of green patches can also promote the emergence of
animal-borne infectious diseases (e.g., the recent world-wide
coronavirus pandemic) (Lam et al. 2020; Zhou et al. 2020).
Currently, 55% of the world population lives in cities (Fent
2008), and by 2030 the percentage will reach about 70% (Seto
et al. 2012; United Nations 2018). Urban forests will be even
more ubiquitous in our changing landscapes. Hence, finding
ways to promote habitat enrichment and ecological restoration
are necessary moves to mitigate the human impact on urban
landscapes (Enssle and Kabisch 2020).

In many tropical research projects, active ecosystem resto-
ration, i.e., the process of land management by planting veg-
etation, weeding, burning, and thinning (Benayas et al. 2008),
is the most common method to promote habitat enrichment
(Brancalion et al. 2019), a technique based solely on plant
taxonomic richness or on a single ecosystem function (Jones
et al. 2018).Furthermore, active restoration could present
some drawbacks related to high-cost (Birch et al. 2010),
low- effectiveness (Crouzeilles et al. 2017), less carbon stor-
age (Lewis et al. 2019), and overlooking the frugivore role in
this process (e.g., with a wide choice of faster growth non-
zoochorous native plant (Brancalion et al. 2018)). In doing so,
the ecological interactions, an essential component of biodi-
versity, is neglected (Valiente-Banuet et al. 2015; McAlpine
et al. 2016). Employing fauna on ecological restoration pro-
jects could rebuild interactions among species. These interac-
tions promote vital ecosystem function, for instance, seed dis-
persal by frugivores (Cristescu et al. 2013; Catterall 2018).
Studies that directly link fauna and flora in floristic enrichment
are urgently needed to promote a sustained ecosystem recov-
ery (Ribeiro da Silva et al. 2015; Hale and Swearer 2017;
Moreno-Mateos et al. 2020).

Thus, we employed an alternative approach, using the po-
tential generalist species, very resilient to habitat disturbance,
in a degraded urban fragment to promote flora enrichment
through fruit feeders as a tool. Feeders are widespread in the
temperate zone for recreational and conservation reasons
(Ewen et al. 2015) and may provide supplementary resources
to generalist fauna, mainly during winter, a period with a
shortage of fruits in many ecosystems (Robb et al. 2008;

Møller et al. 2015). We assessed the residual fauna’s relative
importance as frugivores in an urban Brazilian Atlantic forest
fragment by conducting a manipulation experiment. By pro-
viding an enriched supply of zoochorous plants within feeding
stations, we aimed to characterize the composition, the space-
use, and temporal variation in the fruit consumption of these
potential seed dispersers, identify fruit traits that enhance the
attractiveness of artificial fruit feeders, and, ultimately, verify
whether fruit feeders set in forest fragments are appealing for
resilient frugivores. We hypothesize that frugivorous general-
ist fauna has a strong potential to promote functional replace-
ment in the seed dispersal process and habitat enrichment.

Material and methods

Study area

The study was conducted in a heavily degraded 251-ha forest
fragment (23 K 283404.00 E, 7474649.00 S), hereafter called
Santa Genebra (SG), a remnant of the Seasonal Semideciduous
Forest, one of the physiognomies of the Atlantic Forest Domain
(Oliveira-Filho and Fontes 2000). SG is a federal reserve with
252 ha located at Campinas municipality, São Paulo State,
surrounded by a mosaic of agricultural and urban areas
(Morellato and de Freitas Leitão Filho 1995). Two main suc-
cessional stages could be found in the fragment: early and late
(Guaratini et al. 2008). The regional climate according to
Köeppen classification is CWA, characterized by a hot and
humid season between October andMarch, with the mean tem-
perature ranging between 22 and 24 °C and with rainfall aver-
ages of 1057 mm, and a dry season, from April to September,
with the mean temperature of between 18 and 22 °C, with
rainfall averages of 35 mm (CEPAGRI 2019).

The vertebrate frugivorous fauna of SG has been studied
over the last 40 years. Even without any changes in the total
fragment area over time, SG has lost most of the large-sized
bird and mammal frugivores (Aleixo and Vielliard 1995;
Willis and Oniki 2002).

Sampling

From September 2017 to September 2018, we kept 32 artifi-
cial feeding stations at SG, separated at least 200 m from one
another and distributed across the different successional stages
of the forest fragment (Fig. 1).We did that to verify how forest
structure and the surrounding matrices would affect the attrac-
tion of frugivores to the feeders.

Half of the feeders consisted of a wooden tray (50 × 30 cm)
attached at the top of a 1.8 m wooden pole (suspended
feeders), intended to attract birds, bats, and scansorial frugi-
vores (opossums, primates). A plastic dish (40 cm diam.) was
laid on the ground (ground feeders) in the remaining stations,
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intended to attract medium to large terrestrial frugivores, with-
out excluding the flying and scansorial ones. In 10 out of 32
feeders, fleshy native fruits were supplied weekly, and the
frugivores’ visits were monitored by a trail camera
(Bushnell, model 119,436) attached to a nearby tree (approx.
1 m). Every week, the ten cameras were transported to differ-
ent stations so that each station was sampled at least one week
per month.

Because we aim to support native biodiversity maintenance
in our study area, we avoid exotic species. Exotic plant species
can lead to competition with natives for space, nutrient and
dispersers (Rowles and O’Dowd 2009), promote landscape
biodiversity homogenization, and alter ecosystem functions
(Vitousek et al. 1997; Alberti et al. 2017). Thus, fruits were
collected in other sites in the same region and represented
species native to the Atlantic forest of southeast Brazil.

The same feeding station was never supplied with fruits in
subsequent weeks, to avoid animal food habituation. Food ha-
bituation can lead to long-term problems such as obesity
(Auman et al. 2008), low mobility behavior (Ottoni et al.
2009), and low reproductive success (Pierotti and Annett
1991). As we depended on an irregular availability of fruit
species over time, the identity and number of fruits offered in
the feeders were unpredictable due to differences in fruit phe-
nology. In the supporting information, Table S1 is available to
show the fruit offering schedule, the experimental week,
month, fruit family, species, number of fruits offered in that
week, and their provenance. Weekly, whenever possible, we
tried to evenly distribute the number of fruits among the ten-
feeding stations. When fruit shares were small (see week 8 for
Eugenia selloi at Supporting information: Table S1), we prior-
itized a partition that encompassed equally the two forests struc-
tures, and we randomly selected the feeder height.

After being triggered by any animal movement, the trail
cameras were set to record for 45 s with a 5 s interval between

shots, a continuous function, and the date and time function
activated (Paredes et al. 2017). The consumer species were
identified, and the number of fruits and seeds ingested count-
ed. As subsequent 45 s video shots are not temporally inde-
pendent, we considered a “visit” by a frugivore only those
video shots separated, on the same day and in the same station,
by a 30 min interval (Paredes et al. 2017).

For each fruit species offered in the feeders, we recorded
the following morphometrics: pulp, seed, and total mass; max-
imum and minimum fruit diameter; mean seed number; max-
imum and minimum seed diameter (Supporting information:
Table S2). We characterized the surrounding matrix closest to
each feeding station into five categories (residential, standing
sugarcane plantation, harvested sugarcane plantation, vegetat-
ed area, and management trails). We also assigned the forest
structure in which each feeding station was located as early
and late-successional. We classified visits by consumers into
four different fruit-handling types: Pulp Mashing Visit
(PMV), when the animal consumed the pulp entirely or in part
but left the seed on the tray; Fruit Consuming Visit (FCV),
when the whole fruit was ingested or removed from the tray
with the beak, paws, or mouth, beyond the camera field vi-
sion; Non-consuming visit (NCV), when the animal only
smelled or manipulated the fruit in the tray without consuming
it; Non-fruiting visit (NFV), when the animal visited an empty
tray.

Statistical analysis

Models of seed ingestion probability (SIP) and space use
patterns (SUP)

To answer whether some fruit traits influence their chance to
be dispersed away from the study stations (FCV) and whether
that chance varies according to animal vector, GLMM was

Fig. 1 Map locating the Santa
Genebra fragment in São Paulo
state and in Brazil. On the Santa
Genebra map are indications of
the sampling point locations
regarding forest structure. a:
Brazil, b: São Paulo state, c: Santa
Genebra. (Figure made using
Qgis 3.4)
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used with a binomial error distribution and a logit link func-
tion. As fixed factors, we utilized measured fruit attributes,
fruit abundance on the feeder, forest structure, surrounding
matrices, and feeder height. We utilized as random factors:
plant and frugivorous taxonomy (species and family), month
and season of visitation, and feeder’s identity (see Table 1).
Species were nested within their respective families and
months within seasons. With a binary response variable
(ingested = 1, not ingested = 0). Ingested (=1) including
only Fruit Consuming Visits (FCV) and not ingested
(=0) including both Pulp Mashing Visit (PMV) and
Non-Consuming Visit (NCV). This model is hereafter
called SIP.

SIP model was performed first to three taxa separately and,
then, the analysis was made at the level of species considering
only ones that did consume fruits (FCV). The SIP model for
the species-level analysis removed frugivorous taxonomy
(species and family) as a random factor.

A GLMM with a Poisson error distribution and a log link
function was performed to determine the visitor’s space use. As
fixed factors, we utilized the height of feeders, forest structure,
and matrix. We utilized as random factors: plant taxonomy (spe-
cies and family), month and season of visitation, and feeder’s
identity (see Table 2). Species were nested within their respective
families and months within seasons. For the response variable,
we considered the sum of Fruit-Consumer Visits (FCV), Pulp
Mashing Visit (PMV), and Non-consuming visit (NCV) per
feeder. This model is hereafter called SUP.

SUP model was performed first to all frugivores altogether
and then at a species level. Because the study aims to investi-
gate the frugivorous residual fauna, we consider for species-
level analysis only visitors that consumed any fruit.

The final SUP and SIP models were obtained by a
Backward selection of the fixed factors only – the ran-
dom structure was maintained thoroughly in all models
(Barr et al. 2013). Starting from the full model, we used
the likelihood ratio test to remove the fixed factors that
do not contribute significantly to the model fit (Crawley
2013). The likelihood ratio test compared the likelihood
of the data under the full model against the likelihood
of the data under a model with fewer factors and was
performed using an analysis of variance (ANOVA) per-
formed by the Anova function. In each step, we re-
moved the fixed factors that explained a small part of
the deviance. The p-values reported to each selected
model are related to Anova, type III Wald chi-square
tests (using Package car version 3.0–2) (Fox et al.
2016). All analyses were performed using R (R
Development Team 2020).

Visitation and fruit phenology dynamics

We compared the monthly abundance of frugivorous visits
with the number of plant species bearing zoochorous at SG
made by Morellato (1991). We did this to verify the conse-
quences of fruit seasonality on the feeder visitation.

Table 1 Fixed and random
variables employed in the SIP
model

SIP model’s structure Variables Categories

Fixed Factors Measured fruit attributes Fruit and seed diameter

Pulp, fruit and seed mass

Seed number per fruit

Fruit abundance on feeder –

Matrix Residential

Standing sugarcane plantation

Harvested sugarcane plantation

Vegetated areas

Management trails

Forest structure Early successional

Late successional

Height of feeders Suspended

Ground

Random Factors Season Wet (October to March)

Dry (April to September)

Frugivorous species

Feeders 32 feeders

Month See Supporting Information: Table S1

Fruit family See Supporting Information: Table S1

Fruit species See Supporting Information: Table S1
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Graphic network

Network visualization and modularity analysis were per-
formed in the igraph R package (Csardi and Nepusz 2006).
Network modules were recovered by using the Louvain meth-
od (Blondel et al. 2008).

Results

We recorded 21 frugivorous species belonging to three
different classes (Aves, Mammalia, and Reptilia).
Sixteen of them interact with 21 fruits species belonging
to 12 different families in 36,280 h of camera trap ef-
fort (Supporting Information: Fig. S1). The most fre-
quently recorded bird and mammal species were, respec-
tively, Turdus leucomelas (Turdidae) and Didelphis
albiventris (Didelphidae). The only reptile species re-
corded was Salvator merianae (Teiidae). Together,
T. leucomelas and D. albiventris were recorded in
53% of all visits. The six species that were most likely
to remove fruits from the feeders (i.e., considering only
FCV visits) were T. leucomelas, Sapajus nigritus
(Cebidae), S. merianae, Penelope obscura (Cracidae),
Pitangus sulphuratus (Tyrannidae), and Ramphocelus
carbo (Thraupidae) (Fig. 2).

Most of FCV (Fruit-consuming visits) hadminimal overlap
in the size of ingested fruits, therefore displaying complemen-
tary functions in seed dispersal (Fig. 3). Although P. obscura
was not the most frequently species recorded in the videos, it
explored a wide range of fruits (fruit diameter 4.14–
23 mm),contrasting to T. leucomelas, which was more preva-
lent at the feeder but fed on a more selective range of fruits
(fruit diameter 4.14–13.98 mm).

The network modules indicated a subset of frugivores that
interact more with a particular plant species, forming groups
(Ramos-Robles et al. 2016). A modular organization emerged

between the Fruit Consumer Visitors, FCV, (10 animals’ spe-
cies), and the fruit species they ingested (15 plant species).
Module A is composed of five generalist bird species
(T. leucomelas, T. amaurochalinus, T. rufiventris,
P. sulphuratus, and R. carbo) consuming mainly the small
fruit of Schinus terebentifolius (fruit diameter 4.14–
4.60 mm). Module B is formed solely by the specialist bird
Penelope obscura, which was the only consumer of Vitex
megapotamica. Penelope obscura shared consumption of
large fruits with individuals of other modules. Garcinia
brasiliensis (fruit diameter 21.28–22.04 mm) with Sapajus
nigritus and Eugenia pyriformis (fruit diameter 28.52–
30.10 mm) with Salvator merianae. Module C is composed
of the twomammals (D. albiventris and S.nigritus) that shared
the consumption of Solanum diploconos, a fruit whose max-
imum diameter was 30.41 mm. Finally, Module D
encompassed a small bird (Saltator similis) and a lizard
(Salvator merianae) that shared the consumption of Eugenia
cauliflora (maximum diameter 12.10mm). Salvator merianae
was the only consumer of Cissus verticilata (maximum diam-
eter 7.61 mm) (Fig. 4).

Our SIP (Seed Ingestion Probability) model indicated that
the fruit abundance on the feeder determining the seed inges-
tion probability for birds (p = 0.003, estimate = 0.021, X2 =
8.766). For mammals, the fruit diameter was the most impor-
tant factor (p = 0.306, estimate = 0.204, X2 = 4.674) (Fig. 5).
For birds, the chance of the fruit ingestion increases with more
fruits on feeders, whereas for mammals, the increase of fruit
diameter increases the chance of dispersing. Neither of the
fixed factors was significant for reptiles (Supporting
Information: Table S3).

We also explored seed ingestion probability at the
species-level for fruit consumers. For Turdus leucomelas,
“seed diameter” (p = 0. 016, estimate = 0.3942, X2 =
5.769) and “fruit diameter” (p = 0.002, estimate =
−0.5364, X2 = 13.192) were identified as additional fac-
tors that explained seed ingest ion. (Support ing

Table 2 Fixed and random
variables employed in the SUP
model

SUP model’s structure Variables Categories

Fixed factors Matrix Residential

Standing sugarcane plantation

Harvested sugarcane plantation

Vegetated areas

Management trails

Forest structure Early successional

Late successional

Height of feeders Suspended

Ground

Random factors Month See Supporting Information: Table S1

Fruit family See Supporting Information: Table S1

Fruit species See Supporting Information: Table S1
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Information: Table S3). For S. nigritus, Didelphis sp.,
S. merianae, and P.obscura, neither of the fixed parame-
ters was significant for explaining the seed intake. The
other FCV visitors could not perform the SIP models
due to small visiting sample sizes.

Furthermore, we found a seasonality on visitation re-
cords. The most visited month, May, concentrated 129
out of 768 visits records, while in January, only six
visits were observed. Indeed, in May we detected the
highest visitation records on the feeding stations of
T. leucomelas, P. sulphuratus, and the unique record
of T. rufiventris. At the same time, D. albiventris and
T. leucomelas displayed little variation in their visitation
patterns across months. The visits of S. nigritus,
S. merianae, and P. obscura were clustered in time,
a n d P . s u l p h u r a t u s , R . c a r b o , S . s i m i l i s ,
T. amaurochalinus, and T. rufiventris were more oppor-
tunistic, with occasional visits at the feeders (Fig. 6).

Our SUP model indicates that the height of feeders (p =
7.719e−06, X2 = 8.90) explains visitation abundance for all
visitors altogether (Supporting Information: Table S4). We
also explored the visitation abundance of Fruit- Consumer
Visitor (FCV) individually. For Turdus leucomelas, the most
important variable was matrix (p = 0.0003, X2 = 36.84). In
particular, the residential matrix contributed more to explain
the visits (estimate = 1.36, p = 1.33e-07). Likewise, Sapajus
nigritus’ visits were explained by the matrix (p = 7.83e−07,
X2 = 33.8935), with residential matrix contributing more to
visits (estimate = 1.32, p = 2.42e-07). For D. albiventris, the
abundance of visits responded to “Height of feeders” (p =
0.002, X2 = 9.357), negatively influenced by suspended
feeders (estimate = −0.7206, p = 0.002) (Supporting
Information: Table S4). For S. merianae and P.obscura, nei-
ther of the fixed parameters was significant, and, for the other
FCV visitors, small visiting sample sizes precluded the per-
formance of SIP models.

Fig. 2 Illustration of the main
fruit-consumers on the suspend
feeder (a) and ground feeders (b).
The bar graph indicates the pro-
portion of Fruit-consuming and
Pulp-mashing visits. (Painting
made by Fernando Igor and
Graph made in R studio, using
ggplot 2 package by Wickham
2016)

Fig. 3 Graph indicating the
diameter variation of fruits
consumed by the frugivores in
comparison with the overall fruit
offering. The frugivores are
divided in colours according to
the taxa, as shown in the legend.
(Figure made in R studio, using
ggplot 2 package)
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Fig. 4 Modular network interactions between seed dispersal frugivores
and fruits. The size of links is proportional to the number of fruit-
interactions. Birds: Pit_sul: Pitangus sulphuratus, Tur_ama: Turdus
amaurochalinus; Tur_ruf: Turdus rufiventris; Tur_leu: Turdus
leucomelas; Ram_car: Ramphocelus carbo; Sal_sim: Saltator similis;
Pen_obs: Penelope obscura; Reptile: Sal_mer: Saltator merianae;
Mammals: Did_alb: Didelphis albiventris; Sap_nig: Sapajus nigritus.
Fruit species: Eug_obv: Eugenia obversa; Eut_edu: Euterpe edulis;

Sch_ter: Schinus terebinthifolius; Eug_cau: Eugenia cauliflora; Eug_
inv: Eugenia involucrata; Cis_ver: Cissus verticillata; Eug_uni:
Eugenia uniflora; Eug_pyr: Eugenia pyriformis; Vit_meg: Vitex
megapotamica; Gar_gar: Garcinia brasiliensis; Sol_dip: Solanum
diploconos; Cal_bra: Calophyllum brasiliense; Psi_sar: Psidium
sartorianum; Ran_arm: Randia armata; Cam_hir: Campomanesia
hirsuta. (Figure made in R studio, using igraph by Csardi and Nepusz
(2006))

Fig. 5 Graph with a slope and
intercept from GLMM models,
indicating the influence of fruit
abundance in Birds and fruit
diameter in Mammals on seed
probability of being dispersed
(1 = ingested; not- ingested = 0).
(Figure made in R studio, using
ggplot 2 package)
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Discussion

Establishing a link between fauna and flora in the process of
habitat enrichment and restoration is one of the major chal-
lenges in current ecology studies (Howe 2016; Moreno-
Mateos et al. 2020). Our study recorded 16 species, very re-
silient and widespread across fragments of Brazilian Atlantic
Rain Forest, such as The Black-horned capuchin (S. nigritus),
Pale-breasted Thrush (T. leucomelas), The Black and white
Tegu (S. merianae), and The Dusky-Legged Guan
(P. obscura), interacting with 21 native fruit species during
one year of field observation. In general, birds consumed a
wider variety of fruits, while mammals and reptiles favored
the large fruits more. The overall visits were more abundant
during the dry season.

To our knowledge, our sampling effort was 23 times greater
than typical frugivory studies carried out in the Brazilian
Atlantic Forest (Hasui et al. 2018), that generally use focal
approaches. Focal approaches may have limitations on data
collection due to the dependency on intensive human effort
on the field, which is not always feasible and may not differ-
entiate mere visitors from consumers, especially in dense veg-
etation and non-volant animals (Prasad et al. 2010). The use of
a camera trap overcomes such problems and also allowed us to
achieve a rare ecology scale on frugivore studies, the commu-
nity level. Typically, in frugivore studies, a single taxon of
dispersal vectors (e.g., primates, bats, ants, birds) is considered,
either in Neotropics (Andresen et al. 2018) and in urban frag-
ments, where the seed disperser community remains mostly
unstudied (Gelmi-Candusso and Hämäläinen 2019).

The two most frequent visitors to the feeders were the Pale-
Breasted Thrush and the White-Eared Opossum. These ani-
mals occupy different frugivore spectrum positions, with fruit
representing up to 90% of the Thrush diet (Gasperin and Pizo
2009) while offering only an opportunistic food source to the
Opossum (Cáceres 2002). Although the White-eared
Opossum behaved mostly as a pulp mash visitor and the
Pale-Breasted Thrush as a fruit consumer visitor, for both
are reports of undamaged seeds in the feces with improved
germination (Cáceres 2002; Gasperin and Pizo 2009). In
opossums, this phenomenon is more prevalent only with small
seeds (Traveset 1998). However, many areas of Atlantic Rain
Forest as SG are defaunated. Over-abundant generalist ani-
mals (e.g., opossum) can be employed in habitat enrichment
by pulp-cleaning large fruits, preventing microbial damage to
seeds (Traveset et al. 2007, Cantor et al. 2013). Or by adequate
enrichment approaches (Hale and Swearer 2017), such as the
Induced Seed Dispersion technique (ISD) (Silva et al. 2020).
ISD consists of inserting small seeds of selected species in
attractive fruits, such as banana (Musa sp.), which are offered
to local residual frugivores that can ingest and disperse hun-
dreds of seeds in the habitat, promoting flora enrichment (see
Silva et al. 2020).

Frugivores seed ingestion probability (SIP model)

We found an increase in the fruit ingestion probability for
birds when more fruits were on the feeders. The positive rela-
tionship might be explained first by the increased visual ap-
peal when the fruits were more abundant which increased the

Fig. 6 FCV visitors’ monthly abundance (sqrt transformed) and the fruit phenology seasonality by Morellato (1991). (Figure made in R studio, using
ggplot 2 package)
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fruits’ conspicuity (Martin Schaefer et al. 2007), but also as a
chromatic contrast, making them more attractive for visually
oriented birds (Ordano et al. 2017). Such visual appeal could
decrease neophobia from feeders, acting as a signal of a less
dangerous resource than if a single or few fruit specimens
were found (Greenberg and Mettke-Hofmann 2001). As most
of the avian species that attended our feeders tended to swal-
low the fruit, more birds’ visits were translated into more seed
ingestion (FCV visits).

For mammals, we found a positive relationship between
fruit diameter and seed ingestion probability, featuring some
complementarity in the dispersal role between mammals and
birds. Whereas birds are mostly limited by the gape-width and
seed ballast, mammals, on the other hand, are not, mainly
because they are larger, and most do not fly, allowing the
consumption of large propagules (Howe 1986). In these large
propagules, mammals can find more pulp enriched with more
nutrient-rewards (Howe 1986). Also, scent plays a crucial role
in fruit detection in many mammal groups (van der Pijl 1982;
Valenta et al. 2017; Melin et al. 2019), indicating that different
fruit syndromes can be explored among birds and mammals in
fruit feeders. Mammals’ digestion is usually longer than in
most birds, allowing seeds to stay longer in their guts, which
eventually can increase seed shadow and connect plant popu-
lations (Fragoso 1997; Steele et al. 2011; Tsunamoto et al.
2020). In terms of ecological restoration, the combined effect
of birds and mammals’ dispersion is indispensable to increase
habitat enrichment.

Frugivorous space use patterns (SUP model)

The Space Use Patterns models suggest that “ Height of
feeders “ significantly impacts the visitation abundance,
which is intriguing since matrix and forest structures are con-
sidered key to explaining species distributions in fragmented
areas (Boesing et al. 2018; Melito et al. 2018). A reason for
that lies in the natural history of the most abundant visitors.
Most of them are generalists, which means that they subsist in
several habitats with different degradation stages, allowing
broader distributions in anthropogenic landscapes (Pizo
2004; Cantor et al. 2013), making the height of the feeders
the only constraints to the visitation. This generalist habit is
fundamental to regeneration in urban habitats because fauna
can promote seed exchanges among different green patches in
the urban landscape, acting as habitat connectors. This con-
nection is essential to maintain local and regional plant diver-
sity (Zhou and Chen 2010)- indicating that feeders, as we
employed here, could affect beyond the limits of the
offering site.

The seasonality also influenced the visits, with most being
recorded in the dry season, a period in Atlantic Rain Forest
ranging from April to September. During this dearth, the
availability of natural food resources is limited, especially

fruit. Moreover, fruit shortage can be very pronounced in
heavily degraded areas as SG (Morellato 1991) due to the
depletion of zoochoric plants (Galetti 1993). Salvator
merianae (Reptilia), S. nigritus (Mammalia), P. sulphuratus
(Aves), and T. rufiventris (Aves) were absent from our records
(except for the latter, recorded once) for at least two months
before the dry season, and then, reappeared on the feeders,
after that, searching for food indicating that visits increased
during the decrease in natural food resources, as observed for
urban birdfeeders in temperate zones (Cox et al. 2016;
Galbraith et al. 2017). This marked seasonality in fruit re-
source represents an opportunity for the implementation of
ecological restoration programs based on fruit feeders, be-
cause frugivores expand their foraging areas, tend to risk more
to find food, and can consume less preferred fruits when the
preferred ones are a limited resource in the area (Foster 1977;
Morris 1989). Nevertheless, it is important to choose the right
plant species, prioritizing those that have multiple fruiting
peaks throughout the year or those that fructify in dry periods.
Minimizing the dearth phase is vital in areas under restoration
process to attract and sustain local frugivorous at all times of
the year (Howe 2016). Moreover, native plant species are
desirable in restoration programs, since exotic ones could
compete for space, nutrients, and dispersers, leading to flora
homogenization and loss of ecosystem functions (Alberti et al.
2017; Rowles and O’Dowd 2009).

Both SIP and SUPmodels reinforce the importance of con-
sidering a robust natural history component on restoration and
flora enrichment. Through the comprehensive knowledge of
the local fauna, it is possible to direct adequate efforts and
promote efficient, locally restoration through the ecological
interactions.

Sapajus nigritus

The Black-Horned Capuchin is an endemic primate of the
Brazilian Atlantic Rain Forest (Vilanova et al. 2005). They
play essential roles such as seed dispersal and pest control in
many fragments and urban forests, where theymay still be one
of the few remaining medium-sized fruit-eating mammals
(Chiarello 1999).

Even among the most abundant feeder’s visitors, the black
horned Capuchin’s importance is very significant. In our net-
work graph, they were placed together with the white-eared
Opossum, forming the Mammalian module, mainly due to the
consumption of Solanum diploconos, a fruit of 30 mm maxi-
mum diameter. As a group, mammals are indispensable to seed
dispersal in tropics (Tabarelli and Peres 2002). However,
Sapajus nigritus consumed the widest variety of fruits.
Indeed, most of their visits were for fruit consumption, different
from the Opossum, a mostly pulp-masher visitor. In compari-
sonwith birds, both Capuchins andGuans consumed thewidest
variety of larger propagules (<13 mm). Unlike the Guan, the
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Black-horned Capuchin is more curious and fearless to explore
the feeders, which was translated into more visits and consump-
tion in our experiment (EDB Rigacci, pers. obs.).

The Black-horned Capuchin lives in structured groups un-
der a limited home range (Fragaszy et al. 2004). Most of these
groups at SG are established close to residential zones, explor-
ing feeders in these regions as indicated in our SUP models,
and observed in other fragments (Ludwig et al. 2006; Mikich
and Liebsch 2014a). This differential space use is related to
natural food resources’ availability in degraded remnants,
which could be scarce and unpredictable (Galetti 1993). In
these adjacencies, Capuchins can complement their diet with
leftovers, orchards, sugarcane, and corn-crops. The SG neigh-
borhood residents often relate Human-Primate conflicts, with
capuchins groups invading the nearby houses to steal food
(EDB Rigacci, pers. obs.), as reported in similar situations
(see Freitas et al. 2008; Ludwig et al. 2006). The techniques
of environmental enrichment through fruit supplementation
could either promote the ecological restoration and promote
a peaceful coexistence with humans in peri-urban areas, given
that the Capuchins’ occurrence on such matrixes is propor-
tionally inverse to the availability of native fruits in surround-
ing natural patches (Mikich and Liebsch 2014b).

In general, primates play an irreplaceable role as a seed
disperser (Gardner et al. 2019). However, they are one of the
most threatened vertebrate groups in the tropics, mainly due to
land-use changes, habitat loss, and deforestation (Estrada et al.
2017), making their loss catastrophic to forest regeneration.
Here, the Black-horned Capuchin is one of the most important
seed dispersers. Despite their incredible capacity to adapt to
anthropogenic landscapes, they depend on a minimal struc-
tured forest cover due to their arboreal habits (Ludwig et al.
2006). Thus, to keep them in urban green patches playing their
pivotal functions, it is vital to preserve the forest canopy,
maintain a minimum continuum area delimited by their home
ranges, and promote habitat enrichment using species that
produce canopy.

Turdus leucomelas

The genus Turdus (Turdidae) encompass the most common
frugivorous birds in urbanized landscapes, occurring in
Eurasia, Africa, and the Americas (del Hoyo et al. 2005). In
the Brazilian Atlantic forest, the Pale-breasted Thrush is one
of the most central seed dispersal agents in areas under resto-
ration process (Ribeiro da Silva et al. 2015). In our study site,
they were the most abundant fruit-eater and the second to
consume the broader fruit richness. The Turdus leucomelas
heavily consumed either Schinus terebenthifolius and Euterpe
edulis, both plants with small fruits, but with a proportionally
large seed. Our SIP models suggested the negative influence
of the fruit diameter and the seed diameter positive influence
on seed ingestion. The fruit diameter’s negative effect is well

described for fruit-eating birds owing to gape-width limitation
(Wheelwright 1985; Pires and Galetti 2020). The found pos-
itive correlation is non-obvious since increasing the seed size
provides more ballast and occupy a greater gut volume
(Martin 1985). Nonetheless, it is possible that the trade-off
between seed ballast and nutrient content as lipid and second
compounds in the fruit pulp (Cazetta et al. 2008) favored the
consumption of fruits with proportionally big seeds, at least
for our fruit sample. Indeed, it is known that Neotropical
plants that have larger seeds need to compensate the ballast
by investing in pulp’ nutrients in order to keep pace with their
competitive environment (Howe 1986). Since our experiment
did not control for fruit chemistry, it is challenging to assume
this trade-off as the only reason for these specific choices.
Given that the maximum and minimum diameter was, respec-
tively, 11.92 and 8.17 mm for the consumed fruits, this posi-
tive relationship fits the Pale-breasted Thrush gape-width,
which is around 12 mm (Galetti et al. 2013). This physiolog-
ical constraint prohibits consuming some food items by birds
and could be more informative for a well-known generalist
bird such as T. leucomelas (Gasperin and Pizo 2009).

Our SUP models indicated that the thrushes proportionally
visited more areas close to the residential matrix, a pattern
possibly resulted from their generalist habits, that enable them
to cross different matrices and confer them low sensitivity to
disturbance (Gasperin and Pizo 2009), creating opportunities
for exploring new shelters and food sources, both in urban
green habitats. This mixed habitat preference has a relevant
consequence on plant distribution ranges, allowing a vital seed
connection between green patches among themselves and
with urban areas (Emer et al. 2018). This capacity to connect
different matrices is vital for ecological restoration in urban
fragments. It means that even a ubiquitous bird species is
essential to ecological restoration and needs to be considered
in the conservation agenda, since declines of common species
can go unnoticed initially, but represent a disproportional re-
duction of essential ecosystem functions in urbanized areas
(Rosenberg et al. 2019).

Salvator merianae

The Salvator merianae occupies most South American
Biomes and has the broadest geographical distributional
among its genus (Péres 2003). The fragmentation of natural
habitats has forced them to live in man-modified landscapes,
including peri-urban areas. In these areas, The Black-and-
white Tegu finds food, shelter and acts as a seed disperser
(Lopes and Abe 1999). On the other hand, as a group, reptiles
are frequently underrepresented in frugivory studies, with fruit
diet masked under the general category of “vegetative or plant
matter,” lacking detailed information on fruit identity and
quantity (Valido and Olesen 2007). Here, The Black-and-
White Tegu was the third most recorded fruit consumer.
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We did not identify any significant factor that determined
the seed ingestion in our model. Nevertheless, as in mammals,
gape-width and seed ballast are not a constraint for Salvator
merianae, allowing exploration of a wide range of fruits.
Traveset (1998) found that of 41 plant species consumed by
the Black-and-White Tegu, one third had an increased germi-
nation rate, and more than half indicated no change in germi-
nation. Increases in germination speed were also found for
half the species, reinforcing their importance on seed dispersal
function. Further, their territorial habits could promote non-
gregarious populations, representing a more scattered seed
deposition through their feces (Péres 2003), decreasing the
competition between the seedlings and increasing plant sur-
vival rates (Jordano et al. 2007).

We perceived that the Tegu’s visits were more abundant
during the wet season, which is different from what we ob-
served for most frugivores. This difference is due to
brumation, a dormancy period with minimal metabolic activ-
ity, in which reproduction and foraging are drastically reduced
or null (Beolens et al. 2011). In terms of habitat enrichment,
this is important to better divide the efforts in offering some
particular types of fruits year-round, since Tegu can consume
large fruits, for example.

Salvator merianae has become conspicuous, especially in
urban forest fragments, but because its fruit diet is still poorly
studied, it is essential to reinforce them as important seed
dispersers. Thus, accounting for them in ecological restoration
and conservation programs of urban areas is indispensable
(Corlett 2017).

Penelope obscura

The Guans can be found across most Neotropics, in for-
ests of different conservation status (Brooks and Strahl
2000), where they can act as important seed dispersal
agents (Howe 1984). The Dusky-Legged Guan is consid-
ered one of the few resilient medium-size frugivores bird
in many Brazilian Atlantic Rain Forest remnants (Mikich
1996). They usually occupy and forage in the canopy on
the forest interior. Their diet is heavily based on fruits
during most of the year, and during the dry season, due
to fruit shortage, they consume other plant items such as
flowers and leaves (Zaca et al. 2006).

Guans were the only fruit-eating animal clustered
alone in a module in our network graph representation.
Given that modules typically reflect morphological and
behavioral features of dispersal agents and fruits (Howe
2016), it is possible to indicate the Guans’ unique char-
acteristics and importance in our experiment. Their size
and large gape allowed an exploration of the broadest
range of fruit size, from small such as Schinus
therebentifolius (4.14 mm) to larger ones such as
Eugenia pyriformis (28.52 mm). Additionally, the

absence of a gizzard keeps seeds undamaged in their
guts (Guix 2006), which indicates a greater chance of
seed germination and establishment for the wide variety
of fruits species they consume.

Like the Capuchins, Guans are heavily forest-depen-
dent. Habitat loss, fragmentation, and illegal hunting
have threatened them in many forest fragments (Smith
and Derna 2015). As our network graph indicated, the
loss of them in these green patches represents the loss
of an incomparable role in seed dispersal, precluding the
ecosystems’ capacity to maintain their ecological
functions.

Sampling Station visiting pattern

Our models and our network graphics document the
critical role of fauna in the process of habitat enrich-
ment and regeneration. The Capuchin, the Tegu, and the
Guan are essential in providing large-seeded trees’ dis-
persal, a role that is extremely important to the mainte-
nance of diversity and ecosystem services and can per-
form climate change mitigation in urban forests.
Without these medium-sized dispersers, only small-
seeded and abiotically-dispersed trees will have a
chance to establish; such species are less carbon-dense,
representing a significant decrease in carbon storage and
sequestration in the medium and long term (Gardner
et al. 2019). Nevertheless, small- and medium gape-
sized generalist birds as the Pale-breasted Thrush, the
Silver-beaked Tanager, and the Great Kiskadee are es-
sential as well. They connect plant populations between
green patches and urban fragments (Culley et al. 2007),
increasing and maintaining diversity and resilience for
all fauna populations, including the more specialist ones
(Tylianakis et al. 2010).

Lastly, through fruit feeders, we stressed the fauna’s
importance in ecological regeneration and in maintain-
ing fundamental ecological interactions in a defaunated
fragment in the Brazilian Atlantic Forest realm. The
Atlantic Forest is a biome with one of the highest rates
of above-ground carbon sequestration potential for res-
toration areas (Cook-Patton et al. 2020) and is currently
composed of smal l , i sola ted remnants , most ly
surrounded by urban landscapes (Ribeiro et al. 2009).
Maintaining urban forests is necessary to maintain the
many resources provided by the ecosystem services,
such as water balance, climate regulation, spiritual and
recreational ones, to millions of urban citizens (Gómez-
Baggethun and Barton 2013; Timilsina et al. 2014;
Estevo et al. 2017). In the Brazilian Atlantic Rain forest, more
than 125 million people are benefited from these services,
including relevant metropolitan areas such as São Paulo and
Rio de Janeiro (Martinelli et al. 2013).
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We know that much more needs to be done to improve
habitat quality in the anthropogenic landscape in a constant
state of degradation. Shedding light on the potential of the
resilient fauna is the first step in promoting a comprehensive
view on ecological restoration based on ecological
interactions.
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