Skip to main content
Log in

Determination of extended spectrum β-lactamases/AmpC β-lactamases and plasmid-mediated quinolone resistance in Escherichia coli isolates obtained from bovine carcasses in Mexico

  • Regular Articles
  • Published:
Tropical Animal Health and Production Aims and scope Submit manuscript

Abstract

Food-borne bacterial infections have worldwide importance, and a great variety of antibiotic resistance mechanisms, mainly of the chromosome type, have rapidly developed. Antimicrobial resistance was determined in this study in terms of the presence of extended-spectrum β-lactamases (ESBLs), plasmid AmpC β-lactamases (pAmpC), and plasmid-mediated quinolone resistance (PMQR) from 155 Escherichia coli isolates obtained from bovine carcasses from two states in Mexico (states of Mexico and Jalisco). Isolates were challenged with β-lactam antimicrobials (ampicillin, ceftazidime, and cefotaxime) and quinolones (nalidixic acid and ciprofloxacin). The presence of the bla TEM, bla SHV, bla CTX-M, bla OXA , bla CMY, bla MOX, bla LAT, bla BIL, qnrA, qnrB, qnrS, aac(6′)-Ib-cr, and qepA genes was examined by PCR. Clonal relationship was determined using pulsed-field gel electrophoresis (PFGE). The highest resistance was found to be to nalidixic acid (64 %), followed by ampicillin (32 %), ciprofloxacin (10 %), and ceftazidime and cefotaxime (both 1.3 %). bla CMY (n = 1), bla TEM (n = 24), qnrB (n = 9), and qnrS (n = 7) genes were detected. PFGE analysis showed that the majority of isolates had a different genotypic profile. To our knowledge, this is the first report of the presence of the qnrB, qnrS, and bla CMY genes in E. coli isolated from bovine meat in Mexico.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Acar JF. and Moulin G. 2013. Integrating animal health surveillance and food safety: the issue of antimicrobial resistance. Revue scientifique et technique (International Office of Epizootics), 32(2):383–92.

    CAS  Google Scholar 

  • Amábile-Cuevas C. 2010. Antibiotic resistance in Mexico: a brief overview of the current status and its causes. The Journal of Infection in Developing Countries, 4(3):126–131.

    Article  Google Scholar 

  • Bok E., Mazurek J., Stosik M., Wojciech M., Baldy-Chudzik K. 2015. Prevalence of virulence determinants and antimicrobial resistance among commensal Escherichia coli derived from dairy and beef cattle. International Journal of Environmental Research and Public Health, 12(1):970–85.

    Article  PubMed Central  PubMed  Google Scholar 

  • Cattoir V., Poirel L., Rotimi V., Soussy CJ., Nordmann P. 2007. Multiplex PCR for detection of plasmid-mediated quinolone resistance qnr genes in ESBL-producing enterobacterial isolates. Journal of Antimicrobial Chemotherapy, 60(2):394–397.

    Article  CAS  PubMed  Google Scholar 

  • CLSI. Clinical and Laboratory Standard Institute. 2012a. Performance Standards for Antimicrobial Disk Susceptibility Tests, 19th edition, Approved Standard M02-A11. Wayne, PA.

  • CLSI. Clinical and Laboratory Standard Institute. 2012b. Performance Standards for Antimicrobial Susceptibility Testing, 22nd informational supplement. M100-S22. Wayne, PA.

  • Collignon P., Powers JH., Chiller TM., Aidara-Kane A., Aarestrup FM. 2009. World Health Organization ranking of antimicrobials according to their importance in human medicine: A critical step for developing risk management strategies for the use of antimicrobials in food production animals. Clinical Infectious Diseases, 49(1):132–141.

    Article  CAS  PubMed  Google Scholar 

  • Dallenne C., Da Costa A., Decré D., Favier C., Arlet G. 2010. Development of a set of multiplex PCR assays for the detection of genes encoding important β-lactamases in Enterobacteriaceae. Journal of Antimicrobial Chemotherapy, 65(3):490–495.

    Article  CAS  PubMed  Google Scholar 

  • Doi Y., Paterson DL., Egea P., Pascual A., López-Cerero L., Navarro MD., Adams-Haduch JM., Qureshi ZA., Sidjabat HE., Rodríguez-Baño J. 2010. Extended-spectrum and CMY-type β-lactamase-producing Escherichia coli in clinical samples and retail meat from Pittsburgh, USA and Seville, Spain. Clinical Microbiology and Infection, 16(1):33–38.

    Article  CAS  PubMed  Google Scholar 

  • Egervärn M., Börjesson S., Byfors S., Finn M., Kaipe C., Englund S., Lindblad M. 2014. Escherichia coli with extended-spectrum beta-lactamases or transferable AmpC beta-lactamases and Salmonella on meat imported into Sweden. International Journal of Food Microbiology, 171:8–14.

    Article  PubMed  Google Scholar 

  • EMA. European Medicines Agency. Second ESVAC Report 2012. European Surveillance of Veterinary Antimicrobial Consumption Report (ESVAC). Sales of Veterinary Antimicrobial Agents in 19 EU/EEA Countries in 2010. http://www.ema.europa.eu/docs/ en_GB/document_library/Report/2012/10/WC500133532.pdf

  • European Commission. 2001. European Directive 2001/471/EC, Official Journal of the European Communities, L165, 48–53.

  • Fortini D., Fashae K., García-Fernández A., Villa L., Carattoli A. 2011. Plasmid-mediated quinolone resistance and β-lactamases in Escherichia coli from healthy animals from Nigeria. Journal of Antimicrobial Chemotherapy, 66(6):1269–72.

    Article  CAS  PubMed  Google Scholar 

  • Garza-González E., Mendoza-Ibarra SI., Llaca-Díaz JM., González GM. 2011. Molecular characterization and antimicrobial susceptibility of extended-spectrum β-lactamase producing Enterobacteriaceae isolates at a tertiary-care center in Monterrey, Mexico. Journal of Medical Microbiology, 60(Pt 1):84–90.

    Article  PubMed  Google Scholar 

  • Glenn LM., Englen MD., Lindsey RL., Frank JF., Turpin JE., Berrang ME., Meinersmann RJ., Fedorka-Cray PJ., Frye JG. 2012. Analysis of antimicrobial resistance genes detected in multiple-drug-resistant Escherichia coli isolates from broiler chicken carcasses. Microbial Drug Resistance, 18(4):453–463.

    Article  CAS  PubMed  Google Scholar 

  • Haenni M., Châtre P., Métayer V., Bour M., Signol E., Madec JY., Gay E. (2014): Comparative prevalence and characterization of ESBL-producing Enterobacteriaceae in dominant versus subdominant enteric flora in veal calves at slaughterhouse, France. Veterinary Microbiology. pii: S0378-1135(14)00113-8. doi: 10.1016/j.vetmic.2014.02.023.

  • Heijnen L. and Medema G. 2006. Quantitative detection of E. coli, E. coli O157 and other Shiga toxin producing E. coli in water samples using a culture method combined with real-time PCR. Journal of Water and Health, 4: 487–498.

    PubMed  Google Scholar 

  • Hunter SB., Vauterin P., Lambert-Fair MA., Van Duyne MS., Kubota K., Graves L., Wrigley D., Barrett T., Ribot E. 2005. Establishment of a universal size standard strain for use with the PulseNet standardized pulsed-field gel electrophoresis protocols: converting the national databases to the new size standard. Journal of Clinical Microbiology, 43:1045–1050.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kaesbohrer A., Schroeter A., Tenhagen BA., Alt K., Guerra B., Appel B. 2012. Emerging antimicrobial resistance in commensal Escherichia coli with public health relevance. Zoonoses and Public Health, 59 Suppl 2:158–165.

    Article  PubMed  Google Scholar 

  • Kirchner M., Wearing H., Teale C. 2011. Plasmid-mediated quinolone resistance gene detected in Escherichia coli from cattle. Veterinary Microbiology, 148(2–4):434–435.

    Article  CAS  PubMed  Google Scholar 

  • Mazurek J., Pusz P., Bok E., Stosik M., Baldy-Chudzik K. 2013. The phenotypic and genotypic characteristics of antibiotic resistance in Escherichia coli populations isolated from farm animals with different exposure to antimicrobial agents. Polish Journal of Microbiology, 62(2):173–9.

    CAS  PubMed  Google Scholar 

  • Mollenkopf DF., Kleinhenz KE., Funk JA., Gebreyes WA., Wittum TE. 2011. Salmonella enterica and Escherichia coli harboring bla CMY in retail beef and pork products. Foodborne Pathogens and Disease, 8(2):333–336.

    Article  PubMed  Google Scholar 

  • Park CH., Robicsek A., Jacoby GA., Sahm D., Hooper DC 2006. Prevalence in the United States of aac(6′)-Ib-cr encoding a ciprofloxacin-modifying enzyme. Antimicrobial Agents and Chemotherapy, 50(11):3953–3955.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Poirel L., Cattoir V., Nordmann P. 2012. Plasmid Mediated Quinolone Resistance; Interactions between Human, Animal, and Environmental Ecologies. Frontiers in Microbiology, 3:24. doi: 10.3389/fmicb.2012.00024.

    Article  PubMed Central  PubMed  Google Scholar 

  • Seiffert SN., Hilty M., Perreten V., Endimiani A. 2013. Extended-spectrum cephalosporin-resistant Gram-negative organisms in livestock: an emerging problem for human health?. Drug Resistance Updates, 16(1–2):22–45.

    Article  PubMed  Google Scholar 

  • Silva-Sánchez J., Cruz-Trujillo E., Barrios H., Reyna-Flores F., Sánchez-Pérez A; Bacterial Resistance Consortium, Garza-Ramos U. 2013. Characterization of plasmid-mediated quinolone resistance (PMQR) genes in extended-spectrum β-lactamase-producing Enterobacteriaceae pediatric clinical isolates in Mexico. PLoS One, 8(10):e77968. doi: 10.1371/journal.pone.0077968.

    Article  PubMed Central  PubMed  Google Scholar 

  • Varela-Guerrero JA., Talavera-Rojas M., Gutiérrez-Castillo A del C., Reyes-Rodríguez NE., Vázquez-Guadarrama J. 2013. Phenotypic-genotypic resistance in Salmonella spp. isolated from cattle carcasses from the north central zone of the State of Mexico. Tropical Animal Health and Production, 45(4):995–1000.

    Article  PubMed  Google Scholar 

  • Veldman K., Cavaco LM., Mevius D., Battisti A., Franco A., Botteldoorn N., Bruneau M., Perrin-Guyomard A., Cerny T., De Frutos Escobar C., Guerra B., Schroeter A., Gutierrez M., Hopkins K., Myllyniemi AL., Sunde M., Wasyl D., Aarestrup FM. 2011. International collaborative study on the occurrence of plasmid-mediated quinolone resistance in Salmonella enterica and Escherichia coli isolated from animals, humans, food and the environment in 13 European countries. Journal of Antimicrobial Chemotherapy, 66(6):1278–1286.

    Article  CAS  PubMed  Google Scholar 

  • Yamane K., Wachino J., Suzuki S., Kimura K., Shibata N., Kato H., Shibayama K., Konda T., Arakawa Y. 2007. New plasmid-mediated fluoroquinolone efflux pump, QepA, found in an Escherichia coli clinical isolate. Antimicrobial Agents and Chemotherapy, 51(9):3354–3360.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zaidi MB., Leon V., Canche C., Perez C., Zhao S., Hubert SK., Abbott J., Blickenstaff K., McDermott PF. 2007. Rapid and widespread dissemination of multidrug-resistant bla CMY-2 Salmonella Typhimurium in Mexico. Journal of Antimicrobial Chemotherapy, 60(2):398–401.

    Article  CAS  PubMed  Google Scholar 

  • Zhao S., Blickenstaff K., Bodeis-Jones S., Gaines SA., Tong E., McDermott PF. 2012. Comparison of the prevalences and antimicrobial resistances of Escherichia coli isolates from different retail meats in the United States, 2002 to 2008. Applied and Environmental Microbiology, 78(6):1701–1707.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martín Talavera-Rojas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aguilar-Montes de Oca, S., Talavera-Rojas, M., Soriano-Vargas, E. et al. Determination of extended spectrum β-lactamases/AmpC β-lactamases and plasmid-mediated quinolone resistance in Escherichia coli isolates obtained from bovine carcasses in Mexico. Trop Anim Health Prod 47, 975–981 (2015). https://doi.org/10.1007/s11250-015-0818-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11250-015-0818-3

Keywords

Navigation