Skip to main content
Log in

Anti-babesial activity of a potent peptide fragment derived from longicin of Haemaphysalis longicornis

  • Original Research
  • Published:
Tropical Animal Health and Production Aims and scope Submit manuscript

Abstract

Babesiosis is one of the most important tick-borne diseases affecting livestock that can cause major economic losses worldwide particularly in the tropics. Control relies on controlling both the protozoan parasite and the tick vector. Antiprotozoal drugs are most commonly used for treatment, but problems on emergence of resistant strains and food residues are encountered. Longicin, a defensin-like peptide identified from the hard tick, Haemapysalis longicornis, as well as one of its synthetic partial analogs (P4), were previously reported to exert antimicrobial, fungicidal, and parasiticidal activity. Both longicin and P4 showed babesiacidal activity, in vitro and in vivo. Here, peptide fragments of P4 were studied for in vitro activity against bovine Babesia parasites. One of the peptide fragments, antimicrobial peptide 1 (AMP1), reduced the parasitemia of Babesia bigemina. No peptide had significant effect on Babesia bovis. The sequence of AMP1 corresponded to the longicin sequence which is associated with antiparasitic activity. Although AMP1 caused reduction in parasitemia of B. bigemina, the difference in morphology of the parasite compared with the control group was not statistically significant. However, the percentage occurrence of piroplasms decreased, whereas the abnormal pycnotic form increased. The results demonstrated that this shorter peptide retained the anti-babesial activity of the parent peptide, exerting an antiparasitic effect against a bovine Babesia species. Therefore, this short peptide can be considered for chemical synthesis as an alternative therapeutic agent for babesiosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andreu, D., Ubach, J., Boman, A., Wahlin, B., Wade, D., Merrifield, R.B. and Boman, H.G., 1992. Shortened cecropin a-melittin hybrids, FEBS Letters, 296, 190–194.

    Article  PubMed  CAS  Google Scholar 

  • Barré, N., Happold, J., Delathière J.M., Desoutter, D., Salery, M., de Vos, A., Marchal, C., Perrot, R., Grailles, M. and Mortelecque, A., 2011. A campaign to eradicate bovine babesiosis from New Caledonia, Ticks and Tick-borne Diseases, 2, 55–61.

    Article  PubMed  Google Scholar 

  • Bessalle, R., Gorea, A., Shalit, I., Metzger, J.W., Dass, C. and Desiderio, D.M., 1993. Structure-function studies of amphiphilic antibacterial peptides, Journal of Medicinal Chemistry, 36, 1203–1209.

    Article  PubMed  CAS  Google Scholar 

  • Bock, R., Jackson, L., De Vos, A. and Jorgensen, W., 2004. Babesiosis of cattle, Parasitology, 129, S247-S269.

    Article  PubMed  Google Scholar 

  • Bork, S., Yokoyama, N., Ikehara, Y., Kumar, S., Sugimoto, C. and Igarashi, I., 2004. Growth-inhibitory effect of heparin on Babesia parasites, Antimicrobial Agents and Chemotherapy, 48, 236–241.

    Article  PubMed  CAS  Google Scholar 

  • Bork, S., Okamura, M., Matsuo, T., Kumar, S., Yokoyama, N. and Igarashi, I., 2005. Host serum modifies the drug susceptibility of Babesia bovis in vitro, Parasitology, 130, 489–492.

    Article  PubMed  CAS  Google Scholar 

  • Boulanger, N., Bulet, P. and Lowenberger, C., 2006. Antimicrobial peptides in the interactions between insects and flagellate parasites, Trends in Parasitology, 22, 262–268.

    Article  PubMed  CAS  Google Scholar 

  • Brogden, N.K. and Brogden, K.A., 2011. Will new generations of modified antimicrobial peptides improve their potential as pharmaceuticals, International Journal of Antimicrobial Agents, doi: 10.1016/j.ijantimicag.2011.05.004.

  • Chauvin, A., Moreau, E., Bonnet, S., Plantard, O. and Malandrin, L., 2009. Babesia and its hosts: adaptation to long-lasting interactions as a way to achieve efficient transmission, Veterinary Research, 40, 37.

    Article  PubMed  Google Scholar 

  • Gao, B., Rodriguez M. del, C., Lanz-Mendoza, H. and Zhu, S., 2009. AdDLP, a bacterial defensin-like peptide, exhibits anti-Plasmodium activity, Biochemical and Biophysical Research Communications, 387, 393–398.

    Google Scholar 

  • Gohil, S., Kats, L.M., Sturm, A. and Cooke, B.M., 2010. Recent insights into alteration of red blood cells by Babesia bovis: moovin’ forward, Trends in Parasitology, 26, 591–599.

    Article  PubMed  Google Scholar 

  • Hancock, R.E.W. and Chapple, D.S., 1999. Peptide antibiotics, Antimicrobial Agents and Chemotherapy, 43, 1317–1323.

    PubMed  CAS  Google Scholar 

  • Hazlett, L. and Wu, M., 2011. Defensins in innate immunity, Cell and Tissue Research, 343, 175–188.

    Article  PubMed  CAS  Google Scholar 

  • Homer, M. J., Aguilar-Delfin, A., Telford, III S.R., Krause, P.J. and Persing, D.H., 2000. Babesiosis, Clinical Microbiology Reviews, 13, 451–469.

    Article  PubMed  CAS  Google Scholar 

  • Isogai, E., Isogai, H., Okumura, K., Hori, H., Tsuruta, H. and Kurebayashi, Y., 2010. Tertiary structure-related activity of tick defensin (persulcatusin) in the taiga tick, Ixodes persulcatus, Experimental and Applied Acarology, 53, 1–7.

    Google Scholar 

  • Jackson, L.A., Waldron, S.J., Weier, H.M., Nicoll, C.L. and Cooke, B.M., 2001. Babesia bovis: Culture of laboratory-adapted parasite lines and clinical isolates in a chemically defined medium, Experimental Parasitology, 99, 168–174.

    Article  PubMed  CAS  Google Scholar 

  • Jenssen, H., Hamill, P. and Hancock, R.E.W., 2006. Peptide antimicrobial agents, Clinical Microbiology Reviews, 19, 491–511.

    Article  PubMed  CAS  Google Scholar 

  • Johns, R., Sonenshine, D.E. and Hynes, W.L., 2001. Identification of a defensin from the hemolymph of the American dog tick, Dermacentor variabilis, Insect Biochemistry and Molecular Biology, 31, 747–751.

    Article  Google Scholar 

  • Lai, R., Lomas, L.O., Jonczy, J., Turner, P.C. and Rees, H.H., 2004. Two novel non-cationic defensin-like antimicrobial peptides from haemolymph of the female tick, Amblyomma hebraeum, Biochemical Journal, 379, 681–685.

    Article  PubMed  CAS  Google Scholar 

  • Lehrer, R.I. and Ganz, T., 1999. Antimicrobial peptides in mammalian and insect host defence, Current Opinion in Immunology, 11, 23–27.

    Article  PubMed  CAS  Google Scholar 

  • Marr, A.K., Gooderham, W.J. and Hancock, R.E.W., 2006. Antibacterial peptides for therapeutic use: obstacles and realistic outlook, Current Opinion in Pharmacology, 6, 468–472.

    Article  PubMed  CAS  Google Scholar 

  • Nakajima, Y., Taylor, D. and Minakawa, M., 2002. Involvement of antibacterial peptide defensin in tick midgut defense, Experimental and Applied Acarology, 28, 135–140.

    Article  CAS  Google Scholar 

  • Pascholati, C.P., Lopera, E.P., Pavinatto, F.J., Caseli, L., Nobre, T.M., Zaniquelli, M.E.D., Viitala, T., D’Silva C. and Oliveira Jr. O.N., 2009. The interaction of an antiparasitic peptide active against African Sleeping Sickness with cell membrane models, Colloids and Surfaces B: Biointerfaces, 74, 504–510.

    Article  CAS  Google Scholar 

  • Rahman, M.M., Tsuji, N., Boldbaatar, D., Battur, B., Liao, M., Umemiya-Shirafuji, R., You, M., Tanaka, T. and Fujisaki, K, 2010. Structural characterization and cytolytic activity of a potent antimicrobial motif in longicin, a defensin-like peptide in the tick Haemaphysalis longicornis, Journal of Veterinary Medical Science, 72, 149–156.

    Article  PubMed  CAS  Google Scholar 

  • Schuster, F.L., 2002. Cultivation of Babesia and Babesia-like blood parasites: Agents of an emerging zoonotic disease, Clinical Microbiology Reviews, 15, 365–373.

    Article  PubMed  Google Scholar 

  • Sonenshine, D.E. and Hynes, W.L., 2008. Molecular characterization and related aspects of the innate immune response in ticks, Frontiers in Bioscience, 13, 7046–7063.

    Article  PubMed  CAS  Google Scholar 

  • Suarez, C.E. and Noh, S., 2011. Emerging perspectives in the research of bovine babesiosis and anaplasmosis, Veterinary Parasitology, 180, 109–125.

    Article  PubMed  Google Scholar 

  • Tanaka, T., Rahman, M.M., Battur, B., Boldbaatar, D., Liao, M., Umemiya-Shirafuji, R., Xuan, X. and Fujisaki, K., 2010. Parasiticidal activity of human alpha-defensin-5 against Toxoplasma gondii, In Vitro Cellular and Developmental Biology- Animal, 46, 560–565.

    Article  PubMed  CAS  Google Scholar 

  • Tsuji, N., Battsetseg, B., Boldbaatar, D., Miyoshi, T., Xuan, X., Oliver, Jr. J.H. and Fujisaki, K., 2007. Babesial vector tick defensin against Babesia sp. parasites, Infection and Immunity, 75, 3633–3640.

    Article  PubMed  CAS  Google Scholar 

  • Vizioli, J. and Salzet, M., 2002. Antimicrobial peptides versus parasitic infections, Trends in Parasitology, 18, 475–476.

    Article  PubMed  CAS  Google Scholar 

  • Young, A.S. and Morzaria, S.P. 1986. Biology of Babesia, Parasitology Today, 2, 211–218.

    Article  PubMed  CAS  Google Scholar 

  • Zasloff, M., 2002. Antimicrobial peptides of multicellular organisms, Nature, 15, 389–395.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. T. Kojima and Dr. C. Kubota, Laboratory of Theriogenology, Department of Clinical Veterinary Science, Faculty of Agriculture, Kagoshima University and Dr. H. Yamaguchi, Iriki Livestock Farm, Faculty of Agriculture, Kagoshima University, for the supply of bovine blood. This work was supported by the Bio-oriented Technology Research Advancement Institution (BRAIN) and grants-in-aid for Scientific Research (A) and (C) from the Japan Society for the Promotion of Science (JSPS) and the Japanese Government Ministry of Education, Culture, Sports, Science, and Technology Scholarship (Monbukagakusho: MEXT) for the doctoral fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kozo Fujisaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galay, R.L., Maeda, H., Aung, K.M. et al. Anti-babesial activity of a potent peptide fragment derived from longicin of Haemaphysalis longicornis . Trop Anim Health Prod 44, 343–348 (2012). https://doi.org/10.1007/s11250-011-0027-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11250-011-0027-7

Keywords

Navigation