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Magdalena Wróbel-Kwiatkowska . Sławomir Jabłoński .
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Abstract Global warming and the reduction in our

fossil fuel reservoir have forced humanity to look for

new means of energy production. Agricultural waste

remains a large source for biofuel and bioenergy

production. Flax shives are a waste product obtained

during the processing of flax fibers. We investigated

the possibility of using low-lignin flax shives for

biogas production, specifically by assessing the impact

of CAD deficiency on the biochemical and structural

properties of shives. The study used genetically

modified flax plants with a silenced CAD gene, which

encodes the key enzyme for lignin synthesis. Reducing

the lignin content modified cellulose crystallinity,

improved flax shive fermentation and optimized

biogas production. Chemical pretreatment of the shive

biomass further increased biogas production

efficiency.

Keywords CAD gene � Transgenic flax � Biogas

production � FTIR (Fourier transform infrared

spectroscopy) � Shives

Introduction

Flax (Linum usitatissimum L.) is an annual plant with a

very long history of cultivation worldwide. There are

two products: fibers, which are used in textiles and

composites (Gredes et al. 2012; Wróbel-Kwiatkowska

et al. 2012) and oil, which is rich in unsaturated fatty

acids and has benefits for human health. Biotechno-

logical methods have been used to generate novel flax

plants that are more resistant to pathogens (Wróbel-

Kwiatkowska et al. 2004), are enriched with
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flavonoids and phenolic acids (Lorenc-Kukuła et al.

2007) and have improved fiber quality.

Fiber quality improvements have been accom-

plished using two different strategies: the synthesis of

exogenous thermoplastic polymer (PHB) in the flax

fibers (Wróbel-Kwiatkowska et al. 2007a); and the

reduction of the endogenous polymer (lignin) content

in the flax fibers (Preisner et al. 2014; Wróbel-

Kwiatkowska et al. 2007b). Lignin consists of com-

pounds from phenylpropanoid pathway (coniferyl-,

sinapyl- and p-coumaryl-alcohols). It is not a desirable

constituent of fibers as it is responsible for mechanical

resistance and hardness. The absence of lignin in

cotton fibers is the reason for the textile industry’s

greater reliance on cotton.

Using a previously described method, we generated

flax plants with constitutive repression of the CAD

gene, which codes for the key enzyme for lignin

synthesis, cinnamyl alcohol dehydrogenase (Wróbel-

Kwiatkowska et al. 2007b). Our aim was to use flax

shives derived from these plants as the substrate for

biogas production.

Flax shives are a waste product of the fiber

extraction process. For each ton of flax fiber, 2.5 tons

of shives are produced (Ross and Mazza 2010). They

are mainly used as a component of packaging mate-

rials, but their use for energy production and as fuel

was recently proposed (Kymalainen et al. 2004).

Two factors negatively affect the efficiency of

agricultural waste usage for biogas production: the

presence of lignin, which exhibits high resistance to

both chemical and enzymatic degradation; and cellu-

lose crystallinity (Taherzadeh and Karimi 2008).

Many protocols for lignocellulose pretreatment were

developed to improve plant biomass as a substrate for

biofuel and biogas production (Hendriks and Zeeman

2009), including mechanical (milling), physical

(steam explosion, radiation), chemical (acids, bases

or solvents) and biological methods (enzymes or

fungi; Teghammar et al. 2014).

For our study on biogas production, as well as

genetic modification, we used a chemical method:

pretreatment with an aqueous solution of sulfuric acid

or sodium hydroxide or with water. The biochemical

composition of the genetically modified flax shives

was assessed and a structural analysis of the tested

shives was performed to determine the effects of CAD

deficiency on their properties and potential

applications.

Materials and methods

Raw material

Flax shives were obtained from CAD27 plants and

unmodified flax plants of the cultivar Nike, which

acted as the control (Wróbel-Kwiatkowska et al.

2007b). The plants had been cultivated in the field for

4 months and then retted using the dew method

(Wróbel-Kwiatkowska et al. 2007a). Flax straw was

processed into fibers and shives in mechanical decor-

tications. The separated shives were used for this

study. For all the experiments, the shives were

pretreated with 2 M NaOH, 1 M H2SO4 or water for

72 h at 37 �C. Then the samples were centrifuged,

washed with distilled water and used for anaerobic

biodegradation tests.

Anaerobic biodegradation tests

The anaerobic biodegradation tests were prepared

in 120 ml serum bottles. Fifty ml of the inoculum

and 0.5 g of the shive samples were placed in each

bottle. The substrate was omitted from the control

bottles. The inoculum material was obtained from a

laboratory anaerobic reactor fed with cow manure

and had the following parameters: pH 7.04,

400 mg/l [NH4
?], 5.14 % DW and 3.56 % volatile

solids.

In the next step, the air was removed from the

bottles by flushing them with nitrogen gas. The

digestion test took place at 37 �C. Once every 24 h

for a 21-day period, the samples were stirred and then

gas measurements were taken via water displacement

(Kida et al. 2001). All of the samples were prepared in

triplicate.

The amount of biogas produced from biomass was

calculated as the difference between the production in

the sample bottles and the production in the control

bottles. Biogas volumes were calculated for the

standard state (105 Pa, 298.15 K), pH was measured

with a CyberScan pH5500 pH/Ion Meter (Eutech

Instruments), and the ammonium ion concentration

was measured with an ion-selective electrode (Eutech

Instruments) according to the manufacturers’ instruc-

tions. The dry weight and volatile solids were

determined as described previously (Clesceri et al.

1998).
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Determination of the lignin content in the flax

shives

For lignin analysis, the acetyl bromide method was

used as described previously (Iiyama and Wallis

1990). Using a previously described procedure, lignin

was isolated from two types of flax shives, derived

from the CAD27 flax plants and the unmodified, wild-

type plants (Wróbel-Kwiatkowska et al. 2009).

Determination of cellulose content in flax shives

The cellulose content was measured using the colori-

metric method with anthrone reagent (Updegraff 1969).

Shive samples were prepared and cellulose measured as

described previously (Wróbel-Kwiatkowska et al. 2009).

Analysis of pectin content in flax shives

For the pectin analysis, the modified method of Melton

and Smith was used (Melton and Smith 2001). The shive

samples were washed with 96 % ethanol (100 �C), and

after centrifugation (5000g, 5 min) the pellet was

washed with 80 % ethanol (80 �C) and treated with

mixture of chloroform and methanol (1:1, v/v). Then the

samples were centrifuged again (5000g, 5 min) and the

remaining pellet was washed with acetone and cen-

trifuged as before. The dried pellet (at 37 �C) was frozen

and weighed. Acidic hydrolysis was performed with

concentrated sulfuric acid, and then the samples were

stirred for 5 min on ice. Next, the samples were diluted

with water and centrifuged (2000g, 10 min). Super-

natants were taken to measure pectin using a modified

version of the biphenyl method described in Blu-

menkrantz and Asboe-Hansen (1973). A 4 M sulfamic

acid/potassium sulfamate solution was added to each

sample and mixed. Then 75 mM sodium tetraborate in

sulfuric acid was added and again mixed. The samples

were incubated at 100 �C for 20 min and cooled on ice

for 10 min. Then 0.15 % m-hydroxy-biphenyl in 0.5 %

NaOH was added and mixed. In samples that were

incubated for 10 min at room temperature, the pectin

content was measured at 525 nm and galacturonic acid

was used to prepare a calibration curve.

IR studies

The IR spectra of the shive samples were measured in

the spectral range 350–4000 cm-1 using a FT-IR

NICOLET 6700 spectrometer as described earlier

(Dymińska et al. 2012). The mathematical processing

of the measured spectra was performed using the

computer program ORIGIN 7.5. Lorentzian distribu-

tion function was used for data fitting and the fitting

parameter v2 was of the order 10-6. The crystallinity

index was estimated as the ratio of bands at 2900 and

1370 cm-1 (Langan et al. 1999; Nishiyama et al.

2003).

Results

Biogas production

Flax shives were used as the substrates for microbial

fermentation and biogas production. The shives from

the unmodified control plants and genetically modified

flax plants were pretreated with acid, alkali or water

and supplemented with inoculum material obtained

from a laboratory anaerobic reactor fed with cow

manure. The biogas production was measured as

described in the ‘‘Materials and methods’’ section. The

data are presented in Fig. 1.

The highest level of biogas was noticed for shives

derived from CAD27 plants pretreated with sodium

hydroxide. It was about 7 % higher than for unmod-

ified shives after alkalization. A lower level of

cumulative biogas was produced when shives from

CAD27 plants were pretreated with water and then

added into the inoculum, but the amount of biogas was

Biogas production
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Fig. 1 Biogas production. The anaerobic biodegradation tests

were prepared as it was specified in the ‘‘Materials and

methods’’ section. The inoculum material is characterized in

Table 1. All of the samples were prepared in triplicate
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still higher than for shives from control plants

pretreated with water. The lowest amount of biogas

was produced when shives pretreated with sulfuric

acid were used. It was observed for shives from both

control and transgenic plants.

Biochemical analysis of chemically treated shives

To determine the reason for the higher level of biogas

produced when transgenic shives were used, we

analyzed the chemical composition of the shives

(Fig. 2). The levels of cellulose, lignin and pectin were

lower in shives from the transgenic plants than from

the control plants. Thus, the polymer profile of the

shives is different than that of the fibers, in which

CAD-deficiency caused an accumulation of cellulose

and pectin (Preisner et al. 2014).

The degree of lignification is a parameter that

determines the usage of plant biomass for energy

production. Reduction of lignin results in easier access

to cellulose and improves its degradability. Lignin

content in the shives from CAD27 plants pretreated

with water was about 27 % lower than for shives from

the control plants pretreated in the same way (Fig. 2).

The amount of lignin in shives from both plant types

pretreated with sulfuric acid was quite similar.

The highest reduction in lignin level was noticed

for shives from both control and transgenic plants

treated with sodium hydroxide. The highest levels of

accumulated biogas were also measured for these

shives. This confirmed that the lignin content nega-

tively correlates with biogas production. It is interest-

ing that the lignin levels of the two types are

essentially the same, but the biogas production level

is higher when shives from transgenic plants were

used. This suggests that another parameter strongly

affects biogas production.

We performed biochemical analyses of other

compounds in the shives. Cellulose constitutes about

50 % of their biochemical composition (Ross and

Mazza 2010). The level of cellulose was reduced in

shives from transgenic flax pretreated with water in

comparison to pretreated control (Fig. 2). Pretreat-

ment with sulfuric acid did not lead to a difference in

the cellulose levels between the shives from transgenic

and control plants. However, pretreatment with alkali

reduced the cellulose level in the shives from both

plant types and in the transgenic plants, the reduction

was higher than for the control. It should be noted that

the changes in cellulose content upon shive pretreat-

ment did not reflect the change in biogas production.

Pectin is another component of shives. It inhibits

the access of the enzymes to cellulose (Xiao and

Anderson 2013; Park et al. 2010). On the other hand

pectin may confer hydrophilic character and improve

the availability of cellulose from the shives to the

inoculum. The level of pectin was reduced in shives
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Fig. 2 The lignin, cellulose and pectin contents in shives from

transgenic flax (CAD27) and control, unmodified shives (wild-

type; wt) treated with water, H2SO4 or NaOH. The measure-

ments were done as it was described in the ‘‘Materials and

methods’’ section. The mean value ± SD is presented

(n = 3–6)
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from CAD27 plants compared to the control (Fig. 2).

The lowest pectin level was observed when alkali

treatment was applied. This lower pectin level might

be the reason for the easier access of enzymes from the

inoculum to the cellulose.

Spectral analysis of the shives

Spectroscopic analyses of the shives and the arrange-

ment of the basic constituents of the shives were

performed using the FTIR method. The IR spectra of

shives from the control and transgenic plants pretreated

with water, acid and alkali are presented in Fig. 3. Four

characteristic ranges were detected: 2000–4000,

1200–1800, 900–1200 and 400–900 cm-1. The main

contours are similar to those reported earlier for flax

(Blackwell et al. 1970; Jähn et al. 2002; Schwanninger

et al. 2004). Absorption intensity at 3400 cm-1, which

has previously been described as characteristic for free

hydroxyl groups (Wróbel-Kwiatkowska et al. 2009),

differed in the analyzed shives: the IR bands in the OH

stretching range could be deconvoluted into five

Lorentzian components (Table 1).

Intramolecular 2-OH���O-6 hydrogen bonds (band

at 3470–3440 cm-1) in control and transgenic plant

shives pretreated with H2SO4 and NaOH are longer

and weaker (appear at shorter wavenumbers) than

those in shives treated with H2O (Table 1). Inter-

molecular 6-OH���O-30 hydrogen bonds in cellulose

(band at 3280–3200 cm-1) are stronger and shorter in

shives treated with H2SO4 and NaOH. It results from

shifts of bands positions toward longer wavenumbers

for these samples in comparison to shives treated with

water (Carrillo and Colom 2004; Schwanninger et al.

2004; Dai and Fan 2011). A new band (at

3130–3000 cm-1) is formed in the mentioned shives.

It is typical for an intermolecular 2-OH���O-20 hydro-

gen bond (Oh et al. 2005), while the band for an

intramolecular 3-OH���O-5 (at 3380–3330 cm-1)

hydrogen bond is absent in mentioned shives. The

obtained data might suggest changes in cellulose

arrangement in shives from the transgenic plants and a

higher tendency for the pyranoid rings to rotate after

acid and alkali pretreatment.

The crystallinity index (Icr) of cellulose is an

important factor that characterizes the degree of
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Transgenic Res (2015) 24:971–978 975

123



crystallinity of cellulose. It expresses the ratio between

crystalline structures and amorphous structures in

cellulose. Icr negatively correlates with both access to

cellulose for degrading enzymes and the hydrophilic

properties of cellulose. The hydrophilic properties of

cellulose are responsible for the degree of mixing with

other materials (Kirk et al. 1968), including the

inoculum used for biogas production. The crystallinity

index was measured in the shives (Table 2) and found

to have higher values for the untreated and treated

control shives than for the respective shives from the

transgenic plants.

Although the lowest crystallinity index value was

found for the shives after acid treatment, they were not a

sufficient substrate for fermentation and biogas pro-

duction. The reason might be the amount of lignin,

which was about 50 % higher than that in shives treated

with alkali. This shows that lignin amount is the key

parameter that influences the degradability of biomass.

Discussion

The aims of this study were to estimate the effect of

CAD reduction on the biochemical and structural

properties of flax shives and to analyze the impact of

genetic and chemical modifications on cumulative

biogas production.

The main problem with using agricultural waste as

bioenergy substrates is the presence of lignin, which is

the most resistant compound of the plant cell wall

(Walton 1994). Reducing the lignin level in plants is

the purpose of many studies (Chen and Dixon 2007; Li

et al. 2008, Hisano et al. 2009).

In this study, we used flax shives, which are a waste

product from fiber production, as a biogas substrate.

They were obtained from transgenic plants with a

reduced lignin level: about 30 % lower than in the

control shives. The lignin content was further

decreased by chemical pretreatment with acid, alkali

or water. It should be noted that the reduction in lignin

amount caused by alkalization was higher for the

control shives than for the transgenic shives.

The highest amount of cumulative biogas was

detected when the substrate was shives from trans-

genic CAD27 plants pretreated with alkali, although

they showed almost the same level of lignin as the

control shives after alkalization. Thus, we expected

that there must be different agent that affects biogas

production and cellulose fermentation.

The structural characteristics of shives were

assessed. We found that the crystallinity index in the

control shives was higher than that for shives from

CAD27 plants, even those treated with alkali or water.

A high cellulose crystallinity value results in a lower

level of digestibility (Jeoh et al. 2007). Thus, the

Table 2 The crystallinity index (Icr) estimated for control and transgenic shives

Type of chemical modification of shives ICR for control shives ICR for transgenic shives

Treatment with H2O 15.0 11.78

Treatment with H2SO4 7.12 6.0

Treatment with NaOH 13.0 9.0

The parameter was calculated as the intensity ratio of the bands at 2900 and 1370 cm-1

Table 1 Wavenumbers (m)

of the Lorentzian

components derived for the

3000–3700 cm-1 range for

the control (WT) and

transgenic (CAD27) flax

shives

WT?H2O WT?H2SO4 WT?NaOH CAD27?H2O CAD27?H2SO4 CAD27?NaOH

m m m m m m

3614 3591 3608 3616 3598 3606

3551 3507 3529 3559 3525 3521

3467 3396 3416 3461 3418 3404

3364 3330

3242 3269 3281 3206 3280 3279

3006 3120 3002 3125
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observed higher cellulose crystallinity for all the

control samples might be the reason for reduced

cellulose digestion by microorganisms from the

inoculum.

However, other factors clearly play an important

role and the relationships between parameters are

complex. The highest observed difference in the

amount of produced biogas was between transgenic

and control shives treated with water. In this case, the

amount of biogas correlated with a reduced lignin

content in those shives. Thus it can be suggested that

lignin reduction is the main reason for higher biogas

production.

Flax shives also contain pectin. Shives derived from

CAD27 plants showed 20 % lower pectin content than

the controls and a further reduction was observed after

alkali pretreatment. Interestingly, the control shives

reached the same pectin content after treatment with

NaOH, so pectin did not have a direct impact on the

produced cumulative biogas, which achieved a higher

value when alkali-treated shives from transgenic

plants were used as a substrate.

The obtained data suggest that the efficiency of

biogas production from flax shives depends mainly on

the lignin amount. The similar observation was

described for example for poplar and Miscanthus, in

those plants reduction in the lignin level caused

increased bioethanol production (Mansfield et al.

2012; da Costa et al. 2014). It should be pointed out

that the reduction in the lignin level is advantageous

when biological biodegradation by microorganisms is

exploited. However, for direct combustion a decrease

in the lignin could be a disadvantage, because it results

in a lower energy value of plant material (Allison et al.

2010; Hodgson et al. 2010).

An additional advantage seen in our study is the

decreased index of cellulose crystallinity (Icr) in the

CAD deficient plants. The highest observed difference

in the Icr of cellulose between control and transgenic

shives was found for shives treated with alkali, which

might suggest that a decreased lignin content directly

influences the degree of crystallinity of cellulose.

In this paper, we try to explain the impact of CAD

silencing in flax on bioenergy production. CAD

deficiency has a positive influence on cumulative

biogas production. A decreased lignin level is espe-

cially important for fibrous cultivars of flax, because it

positively correlates with the mechanical parameters

of the fibers and thus improves the quality of fibers.

CAD deficiency is overall advantageous for the

quality of flax fiber and favorable for the utilization of

shives, a waste product derived from fiber processing.

The lignin reduction obtained through genetic manip-

ulation might provide a means for using the whole flax

plant meaning less wasteful agricultural practices and

renewable bioenergy strategies.
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