Skip to main content
Log in

Role for p21-activated kinase PAK4 in development of the mammalian heart

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

The serine-threonine kinase PAK4 plays a pivotal role in cell proliferation, survival, and control of the cytoskeleton. Mice that lack Pak4 die in midgestation prior to embryonic day E11 from unidentified causes. Analysis of PAK4 protein levels demonstrated that it was highly expressed in the whole embryo and in the developing heart but became low in the hearts of adult mice. In this study we analyzed development of the heart in conventional and conditional Pak4 knockout mice and embryos. We found that in conventional Pak4 knockout mice cardiogenesis is strongly affected from early developmental stages and by E9.5, hearts of Pak4 −/− embryos developed multiple profound deficits. Conditional deletion of Pak4 in the progenitors of the secondary heart field led to abnormal development of the outflow tract, in which the pulmonary artery had a smaller diameter, and the aortal wall was thinner than in wildtype mice. The conditional knockout mice also displayed the characteristic enlargement of the right ventricles and right atria. Pak4 −/− embryos and cardiomyocytes in which PAK4 was depleted exhibited low levels of LIMK1, a protein that plays key roles in cytoskeletal organization. Knock down of PAK4 in cultured cardiomyocytes led to severely compromised sarcomeric structure and deficits in contraction. These results indicate that PAK4 functions, including control of actin dynamics, are necessary for normal development of the heart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abo A, Qu J, Cammarano MS, Dan C, Fritsch A, Baud V, Belisle B, Minden A (1998) PAK4, a novel effector for Cdc42Hs, is implicated in the reorganization of the actin cytoskeleton and in the formation of filopodia. EMBO J 17:6527–6540

    Article  PubMed  CAS  Google Scholar 

  • Arber S, Barbayannis FA, Hanser H, Schneider C, Stanyon CA, Bernard O, Caroni P (1998) Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature 393:805–809

    Article  PubMed  CAS  Google Scholar 

  • Astrof S, Kirby A, Lindblad-Toh K, Daly M, Hynes RO (2007) Heart development in fibronectin-null mice is governed by a genetic modifier on chromosome four. Mech Dev 124:551–558

    Article  PubMed  CAS  Google Scholar 

  • Barac A, Basile J, Vazquez-Prado J, Gao Y, Zheng Y, Gutkind JS (2004) Direct interaction of p21-activated kinase 4 with PDZ-RhoGEF, a G protein-linked Rho guanine exchange factor. J Biol Chem 279:6182–6189

    Article  PubMed  CAS  Google Scholar 

  • Bompard G, Rabeharivelo G, Frank M, Cau J, Delsert C, Morin N (2010) Subgroup II PAK-mediated phosphorylation regulates Ran activity during mitosis. J Cell Biol 190:807–822

    Article  PubMed  CAS  Google Scholar 

  • Brand T (2003) Heart development: molecular insights into cardiac specification and early morphogenesis. Dev Biol 258:1–19

    Article  PubMed  CAS  Google Scholar 

  • Buckingham M, Meilhac S, Zaffran S (2005) Building the mammalian heart from two sources of myocardial cells. Nat Rev Genet 6:826–835

    Article  PubMed  CAS  Google Scholar 

  • Cai CL, Liang X, Shi Y, Chu PH, Pfaff SL, Chen J, Evans S (2003) Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell 5:877–889

    Article  PubMed  CAS  Google Scholar 

  • Callow MG, Zozulya S, Gishizky ML, Jallal B, Smeal T (2005) PAK4 mediates morphological changes through the regulation of GEF-H1. J Cell Sci 118:1861–1872

    Article  PubMed  CAS  Google Scholar 

  • Cammarano MS, Nekrasova T, Noel B, Minden A (2005) Pak4 induces premature senescence via a pathway requiring p16INK4/p19ARF and mitogen-activated protein kinase signaling. Mol Cell Biol 25:9532–9542

    Article  PubMed  CAS  Google Scholar 

  • Chen JN, Fishman MC (2000) Genetics of heart development. Trends Genet 16:383–388

    Article  PubMed  CAS  Google Scholar 

  • Dan C, Kelly A, Bernard O, Minden A (2001) Cytoskeletal changes regulated by the PAK4 serine/threonine kinase are mediated by LIM kinase 1 and cofilin. J Biol Chem 276:32115–32121

    Article  PubMed  CAS  Google Scholar 

  • Dan C, Nath N, Liberto M, Minden A (2002) PAK5, a new brain-specific kinase, promotes neurite outgrowth in N1E−115 cells. Mol Cell Biol 22:567–577

    Article  PubMed  CAS  Google Scholar 

  • Del Re DP, Miyamoto S, Brown JH (2007) RhoA/Rho kinase up-regulate Bax to activate a mitochondrial death pathway and induce cardiomyocyte apoptosis. J Biol Chem 282:8069–8078

    Article  PubMed  CAS  Google Scholar 

  • Gnesutta N, Minden A (2003) Death receptor induced activation of initiator caspase-8 is antagonized by the serine/threonine kinase PAK4. Mol Cell Biol 23:7838–7848

    Article  PubMed  CAS  Google Scholar 

  • Gnesutta N, Qu J, Minden A (2001) The serine/threonine kinase PAK4 prevents caspase activation and protects cells from apoptosis. J Biol Chem 276:14414–14419

    Article  PubMed  CAS  Google Scholar 

  • Hoffman JI (1995a) Incidence of congenital heart disease: I. Postnatal incidence. Pediatr Cardiol 16:103–113

    Article  PubMed  CAS  Google Scholar 

  • Hoffman JI (1995b) Incidence of congenital heart disease: II. Prenatal incidence. Pediatr Cardiol 16:155–165

    Article  PubMed  CAS  Google Scholar 

  • Hoffman JI, Kaplan S (2002) The incidence of congenital heart disease. J Am Coll Cardiol 39:1890–1900

    Article  PubMed  Google Scholar 

  • Ilagan R, Abu-Issa R, Brown D, Yang YP, Jiao K, Schwartz RJ, Klingensmith J, Meyers EN (2006) Fgf8 is required for anterior heart field development. Development 133:2435–2445

    Article  PubMed  CAS  Google Scholar 

  • Kitada M, Nakajima S, Uheda K, Yasutake K, Nakagawa T (1982) The natural history of congenital heart disease in young adults. Jpn Circ J 46:1246–1249

    Article  PubMed  CAS  Google Scholar 

  • Knaus UG, Bokoch GM (1998) The p21Rac/Cdc42-activated kinases (PAKs). Int J Biochem Cell Biol 30:857–862

    Article  PubMed  CAS  Google Scholar 

  • Latacha KS, Remond MC, Ramasubramanian A, Chen AY, Elson EL, Taber LA (2005) Role of actin polymerization in bending of the early heart tube. Dev Dyn 233:1272–1286

    Article  PubMed  CAS  Google Scholar 

  • Lavine KJ, Yu K, White AC, Zhang X, Smith C, Partanen J, Ornitz DM (2005) Endocardial and epicardial derived FGF signals regulate myocardial proliferation and differentiation in vivo. Dev Cell 8:85–95

    Article  PubMed  CAS  Google Scholar 

  • Lee KF, Simon H, Chen H, Bates B, Hung MC, Hauser C (1995) Requirement for neuregulin receptor erbB2 in neural and cardiac development. Nature 378:394–398

    Article  PubMed  CAS  Google Scholar 

  • Li X, Minden A (2003) Targeted disruption of the gene for the PAK5 kinase in mice. Mol Cell Biol 23:7134–7142

    Article  PubMed  CAS  Google Scholar 

  • Li X, Minden A (2005) PAK4 functions in tumor necrosis factor (TNF) alpha-induced survival pathways by facilitating TRADD binding to the TNF receptor. J Biol Chem 280:41192–41200

    Article  PubMed  CAS  Google Scholar 

  • Li R, Soosairajah J, Harari D, Citri A, Price J, Ng HL, Morton CJ, Parker MW, Yarden Y, Bernard O (2006) Hsp90 increases LIM kinase activity by promoting its homo-dimerization. FASEB J 20(8):1218–1220

    Article  PubMed  CAS  Google Scholar 

  • Lu SY, Jin Y, Li X, Sheppard P, Bock ME, Sheikh F, Duckworth ML, Cattini PA (2010) Embryonic survival and severity of cardiac and craniofacial defects are affected by genetic background in fibroblast growth factor-16 null mice. DNA Cell Biol 29:407–415

    Article  PubMed  CAS  Google Scholar 

  • Lygate CA, Hunyor I, Medway D, de Bono JP, Dawson D, Wallis J, Sebag-Montefiore L, Neubauer S (2009) Cardiac phenotype of mitochondrial creatine kinase knockout mice is modified on a pure C57BL/6 genetic background. J Mol Cell Cardiol 46:93–99

    Article  PubMed  CAS  Google Scholar 

  • Manser E, Huang HY, Loo TH, Chen XQ, Dong JM, Leung T, Lim L (1997) Expression of constitutively active alpha-PAK reveals effects of the kinase on actin and focal complexes. Mol Cell Biol 17:1129–1143

    PubMed  CAS  Google Scholar 

  • McFadden DG, Olson EN (2002) Heart development: learning from mistakes. Curr Opin Genet Dev 12:328–335

    Article  PubMed  CAS  Google Scholar 

  • McGrath KE, Koniski AD, Malik J, Palis J (2003) Circulation is established in a stepwise pattern in the mammalian embryo. Blood 101:1669–1676

    Article  PubMed  CAS  Google Scholar 

  • Meyer D, Birchmeier C (1995) Multiple essential functions of neuregulin in development. Nature 378:386–390

    Article  PubMed  CAS  Google Scholar 

  • Mjaatvedt CH, Nakaoka T, Moreno-Rodriguez R, Norris RA, Kern MJ, Eisenberg CA, Turner D, Markwald RR (2001) The outflow tract of the heart is recruited from a novel heart-forming field. Dev Biol 238:97–109

    Article  PubMed  CAS  Google Scholar 

  • Nekrasova T, Minden A (2011) PAK4 is required for regulation of the cell-cycle regulatory protein p21, and for control of cell-cycle progression. J Cell Biochem 112:1795–1806

    Article  PubMed  CAS  Google Scholar 

  • Nekrasova T, Jobes ML, Ting JH, Wagner GC, Minden A (2008) Targeted disruption of the Pak5 and Pak6 genes in mice leads to deficits in learning and locomotion. Dev Biol 322(1):95–108

    Article  PubMed  CAS  Google Scholar 

  • Paliouras GN, Naujokas MA, Park M (2009) Pak4, a novel Gab1 binding partner, modulates cell migration and invasion by the Met receptor. Mol Cell Biol 29:3018–3032

    Article  PubMed  CAS  Google Scholar 

  • Qu J, Li X, Novitch BG, Zheng Y, Kohn M, Xie JM, Kozinn S, Bronson R, Beg AA, Minden A (2003) PAK4 kinase is essential for embryonic viability and for proper neuronal development. Mol Cell Biol 23:7122–7133

    Article  PubMed  CAS  Google Scholar 

  • Rugh R (1968) The mouse: its reproduction and development. Burgess Pub. Co., Minneapolis

    Google Scholar 

  • Sah VP, Minamisawa S, Tam SP, Wu TH, Dorn GW 2nd, Ross J Jr, Chien KR, Brown JH (1999) Cardiac-specific overexpression of RhoA results in sinus and atrioventricular nodal dysfunction and contractile failure. J Clin Invest 103:1627–1634

    Article  PubMed  CAS  Google Scholar 

  • Samanek M (2000) Congenital heart malformations: prevalence, severity, survival, and quality of life. Cardiol Young 10:179–185

    Article  PubMed  CAS  Google Scholar 

  • Sells MA, Chernoff J (1997) Emerging from the Pak: the p21-activated protein kinase family. Trends Cell Biol 7:162–167

    Article  PubMed  CAS  Google Scholar 

  • Skwarek-Maruszewska A, Hotulainen P, Mattila PK, Lappalainen P (2009) Contractility-dependent actin dynamics in cardiomyocyte sarcomeres. J Cell Sci 122(Pt 12):2119–2126

    Article  PubMed  CAS  Google Scholar 

  • Soosairajah J, Maiti S, Wiggan O, Sarmiere P, Moussi N, Sarcevic B, Sampath R, Bamburg JR, Bernard O (2005) Interplay between components of a novel LIM kinase-slingshot phosphatase complex regulates cofilin. EMBO J 24:473–486

    Article  PubMed  CAS  Google Scholar 

  • Sun Y, Liang X, Najafi N, Cass M, Lin L, Cai CL, Chen J, Evans SM (2007) Islet 1 is expressed in distinct cardiovascular lineages, including pacemaker and coronary vascular cells. Dev Biol 304:286–296

    Article  PubMed  CAS  Google Scholar 

  • Tian Y, Lei L, Cammarano M, Nekrasova T, Minden A (2009) Essential role for the Pak4 protein kinase in extraembryonic tissue development and vessel formation. Mech Dev 126:710–720

    Article  PubMed  CAS  Google Scholar 

  • Troussard AA, Mawji NM, Ong C, Mui A, St.-Arnaud R II, Dedhar S (2003) Conditional knockout of integrin-linked kinase demonstrates an essential role in protein kinase B Akt activation. J Biol Chem 278:22374–22378

    Article  PubMed  CAS  Google Scholar 

  • Verzi MP, McCulley DJ, De Val S, Dodou E, Black BL (2005) The right ventricle, outflow tract, and ventricular septum comprise a restricted expression domain within the secondary/anterior heart field. Dev Biol 287:134–145

    Article  PubMed  CAS  Google Scholar 

  • Waldo KL, Kumiski DH, Wallis KT, Stadt HA, Hutson MR, Platt DH, Kirby ML (2001) Conotruncal myocardium arises from a secondary heart field. Development 128:3179–3188

    PubMed  CAS  Google Scholar 

  • Wang JY, Frenzel KE, Wen D, Falls DL (1998) Transmembrane neuregulins interact with LIM kinase 1, a cytoplasmic protein kinase implicated in development of visuospatial cognition. J Biol Chem 273:20525–20534

    Article  PubMed  CAS  Google Scholar 

  • Wei L, Roberts W, Wang L, Yamada M, Zhang S, Zhao Z, Rivkees SA, Schwartz RJ, Imanaka-Yoshida K (2001) Rho kinases play an obligatory role in vertebrate embryonic organogenesis. Development 128:2953–2962

    PubMed  CAS  Google Scholar 

  • Wei L, Imanaka-Yoshida K, Wang L, Zhan S, Schneider MD, DeMayo FJ, Schwartz RJ (2002) Inhibition of Rho family GTPases by Rho GDP dissociation inhibitor disrupts cardiac morphogenesis and inhibits cardiomyocyte proliferation. Development 129:1705–1714

    PubMed  CAS  Google Scholar 

  • Wells CM, Whale AD, Parsons M, Masters JR, Jones GE (2010) PAK4: a pluripotent kinase that regulates prostate cancer cell adhesion. J Cell Sci 123:1663–1673

    Article  PubMed  Google Scholar 

  • Xu H, Baldini A (2007) Genetic pathways to mammalian heart development: recent progress from manipulation of the mouse genome. Semin Cell Dev Biol 18:77–83

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Cai CL, Lin L, Qyang Y, Chung C, Monteiro RM, Mummery CL, Fishman GI, Cogen A, Evans S (2006) Isl1Cre reveals a common Bmp pathway in heart and limb development. Development 133:1575–1585

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Sylvia Evans for generously providing us with Isl1 Cre/+ mice created in her laboratory and John Shelton for valuable suggestions related to heart histology. We are grateful to Michal Sheleg and Alexander Son for their help. The work was supported by NIH grant R01 CA076342-06 to Audrey Minden.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Audrey Minden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nekrasova, T., Minden, A. Role for p21-activated kinase PAK4 in development of the mammalian heart. Transgenic Res 21, 797–811 (2012). https://doi.org/10.1007/s11248-011-9578-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-011-9578-7

Keywords

Navigation