Skip to main content

Advertisement

Log in

A novel Flk1-TVA transgenic mouse model for gene delivery to angiogenic vasculature

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

The genes that regulate the formation of blood vessels in adult tissues represent promising therapeutic targets because angiogenesis plays a role in many diseases, including cancer. We wished to develop a mouse model allowing characterization of gene function in adult angiogenic vasculature while minimizing effects on embryonic vasculature or adult quiescent vasculature. Here we describe a transgenic mouse model that allows expression of proteins in the endothelial cells of newly forming blood vessels in the adult using a selective retroviral gene delivery system. We generated transgenic mouse lines that express the TVA receptor for the RCAS avian-specific retrovirus from Flk1 gene regulatory elements that drive expression in proliferating endothelial cells. Several of these Flk1-TVA lines expressed TVA mRNA in the embryonic vasculature and TVA protein in new blood vessels growing into subcutaneous extracellular matrix implants in adult mice. In a Flk1-TVA line that was crossed with the MMTV-PyMT transgenic mammary tumor model, tumor endothelial cells also expressed the TVA protein. Furthermore, endothelial cells in extracellular matrix implants and the tumors of Flk1-TVA mice were susceptible to RCAS infection, as determined by expression of green fluorescent protein encoded by the virus. The Flk1-TVA mouse model in conjunction with the RCAS gene delivery system will be useful to study molecular mechanisms underlying adult forms of angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bates P, Rong L, Varmus HE, Young JA, Crittenden LB (1998) Genetic mapping of the cloned subgroup A avian sarcoma and leukosis virus receptor gene to the TVA locus. J Virol 72:2505–2508

    PubMed  CAS  Google Scholar 

  • Bates P, Young JA, Varmus HE (1993) A receptor for subgroup A Rous sarcoma virus is related to the low density lipoprotein receptor. Cell 74:1043–1051

    Article  PubMed  CAS  Google Scholar 

  • Bautch VL, Toda S, Hassell JA, Hanahan D (1987) Endothelial cell tumors develop in transgenic mice carrying polyoma virus middle T oncogene. Cell 51:529–537

    Article  PubMed  CAS  Google Scholar 

  • Carmeliet P (2005) Angiogenesis in life, disease and medicine. Nature 438:932–936

    Article  PubMed  CAS  Google Scholar 

  • Federspiel MJ, Bates P, Young JA, Varmus HE, Hughes SH (1994) A system for tissue-specific gene targeting: transgenic mice susceptible to subgroup A avian leukosis virus-based retroviral vectors. Proc Natl Acad Sci USA 91:11241–11245

    Article  PubMed  CAS  Google Scholar 

  • Ferrara N, Hillan KJ, Gerber HP, Novotny W (2004) Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov 3:391–400

    Article  PubMed  CAS  Google Scholar 

  • Fisher GH, Orsulic S, Holland E, Hively WP, Li Y et al (1999) Development of a flexible and specific gene delivery system for production of murine tumor models. Oncogene 18:5253–5260

    Article  PubMed  CAS  Google Scholar 

  • Folkman J (2007) Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov 6:273–286

    Article  PubMed  CAS  Google Scholar 

  • Forde A, Constien R, Grone HJ, Hammerling G, Arnold B (2002) Temporal Cre-mediated recombination exclusively in endothelial cells using Tie2 regulatory elements. Genesis 33:191–197

    Article  PubMed  CAS  Google Scholar 

  • Guy CT, Cardiff RD, Muller WJ (1992) Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. Mol Cell Biol 12:954–961

    PubMed  CAS  Google Scholar 

  • Harada N, Miyoshi H, Murai N, Oshima H, Tamai Y et al (2002) Lack of tumorigenesis in the mouse liver after adenovirus-mediated expression of a dominant stable mutant of beta-catenin. Cancer Res 62:1971–1977

    PubMed  CAS  Google Scholar 

  • Hatziioannou T, Goff SP (2001) Infection of nondividing cells by Rous sarcoma virus. J Virol 75:9526–9531

    Article  PubMed  CAS  Google Scholar 

  • Heidenreich R, Kappel A, Breier G (2000) Tumor endothelium-specific transgene expression directed by vascular endothelial growth factor receptor-2 (Flk-1) promoter/enhancer sequences. Cancer Res 60:6142–6147

    PubMed  CAS  Google Scholar 

  • Hirai H, Ogawa M, Suzuki N, Yamamoto M, Breier G et al (2003) Hemogenic and nonhemogenic endothelium can be distinguished by the activity of fetal liver kinase (Flk)-1 promoter/enhancer during mouse embryogenesis. Blood 101:886–893

    Article  PubMed  CAS  Google Scholar 

  • Hogan B, Constantini F, Lacy F (1986) Manipulating the mouse embryo. A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Hughes SH, Greenhouse JJ, Petropoulos CJ, Sutrave P (1987) Adaptor plasmids simplify the insertion of foreign DNA into helper-independent retroviral vectors. J Virol 61:3004–3012

    PubMed  CAS  Google Scholar 

  • Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307:58–62

    Article  PubMed  CAS  Google Scholar 

  • Kappel A, Ronicke V, Damert A, Flamme I, Risau W et al (1999) Identification of vascular endothelial growth factor (VEGF) receptor-2 (Flk-1) promoter/enhancer sequences sufficient for angioblast and endothelial cell-specific transcription in transgenic mice. Blood 93:4284–4292

    PubMed  CAS  Google Scholar 

  • Katz RA, Greger JG, Darby K, Boimel P, Rall GF et al (2002) Transduction of interphase cells by avian sarcoma virus. J Virol 76:5422–5434

    Article  PubMed  CAS  Google Scholar 

  • Licht AH, Raab S, Hofmann U, Breier G (2004) Endothelium-specific Cre recombinase activity in flk-1-Cre transgenic mice. Dev Dyn 229:312–318

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Deisseroth A (2006) Tumor vascular targeting therapy with viral vectors. Blood 107:3027–3033

    Article  PubMed  CAS  Google Scholar 

  • Merrick AF, Shewring LD, Sawyer GJ, Gustafsson KT, Fabre JW (1996) Comparison of adenovirus gene transfer to vascular endothelial cells in cell culture, organ culture, and in vivo. Transplantation 62:1085–1089

    Article  PubMed  CAS  Google Scholar 

  • Millauer B, Shawver LK, Plate KH, Risau W, Ullrich A (1994) Glioblastoma growth inhibited in vivo by a dominant-negative Flk-1 mutant. Nature 367:576–579

    Article  PubMed  CAS  Google Scholar 

  • Millauer B, Wizigmann-Voos S, Schnurch H, Martinez R, Moller NP et al (1993) High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell 72:835–846

    Article  PubMed  CAS  Google Scholar 

  • Montaner S, Sodhi A, Molinolo A, Bugge TH, Sawai ET et al (2003) Endothelial infection with KSHV genes in vivo reveals that vGPCR initiates Kaposi’s sarcomagenesis and can promote the tumorigenic potential of viral latent genes. Cancer Cell 3:23–36

    Article  PubMed  CAS  Google Scholar 

  • Montaner S, Sodhi A, Servitja JM, Ramsdell AK, Barac A et al (2004) The small GTPase Rac1 links the Kaposi sarcoma-associated herpesvirus vGPCR to cytokine secretion and paracrine neoplasia. Blood 104:2903–2911

    Article  PubMed  CAS  Google Scholar 

  • Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L (2006) VEGF receptor signaling—in control of vascular function. Nat Rev Mol Cell Biol 7:359–371

    Article  PubMed  CAS  Google Scholar 

  • Orsulic S (2002) An RCAS-TVA-based approach to designer mouse models. Mamm Genome 13:543–547

    Article  PubMed  Google Scholar 

  • Passaniti A, Taylor RM, Pili R, Guo Y, Long PV et al (1992) A simple, quantitative method for assessing angiogenesis and antiangiogenic agents using reconstituted basement membrane, heparin, and fibroblast growth factor. Lab Invest 67:519–528

    PubMed  CAS  Google Scholar 

  • Plate KH, Breier G, Millauer B, Ullrich A, Risau W (1993) Up-regulation of vascular endothelial growth factor and its cognate receptors in a rat glioma model of tumor angiogenesis. Cancer Res 53:5822–5827

    PubMed  CAS  Google Scholar 

  • Quinn TP, Peters KG, De Vries C, Ferrara N, Williams LT (1993) Fetal liver kinase 1 is a receptor for vascular endothelial growth factor and is selectively expressed in vascular endothelium. Proc Natl Acad Sci USA 90:7533–7537

    Article  PubMed  CAS  Google Scholar 

  • Schlaeger TM, Bartunkova S, Lawitts JA, Teichmann G, Risau W et al (1997) Uniform vascular-endothelial-cell-specific gene expression in both embryonic and adult transgenic mice. Proc Natl Acad Sci USA 94:3058–3063

    Article  PubMed  CAS  Google Scholar 

  • Shalaby F, Rossant J, Yamaguchi TP, Gertsenstein M, Wu XF et al (1995) Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376:62–66

    Article  PubMed  CAS  Google Scholar 

  • Shibuya M (2006) Vascular endothelial growth factor (VEGF)-receptor2: its biological functions, major signaling pathway, and specific ligand VEGF-E. Endothelium 13:63–69

    Article  PubMed  CAS  Google Scholar 

  • Sodhi A, Montaner S, Patel V, Gomez-Roman JJ, Li Y et al (2004) Akt plays a central role in sarcomagenesis induced by Kaposi’s sarcoma herpesvirus-encoded G protein-coupled receptor. Proc Natl Acad Sci USA 101:4821–4826

    Article  PubMed  CAS  Google Scholar 

  • Sun JF, Phung T, Shiojima I, Felske T, Upalakalin JN et al (2005) Microvascular patterning is controlled by fine-tuning the Akt signal. Proc Natl Acad Sci USA 102:128–133

    Article  PubMed  CAS  Google Scholar 

  • Suzuma K, Takagi H, Otani A, Suzuma I, Honda Y (1998) Increased expression of KDR/Flk-1 (VEGFR-2) in murine model of ischemia-induced retinal neovascularization. Microvasc Res 56:183–191

    Article  PubMed  CAS  Google Scholar 

  • Teng PI, Dichiara MR, Komuves LG, Abe K, Quertermous T et al (2002) Inducible and selective transgene expression in murine vascular endothelium. Physiol Genomics 11:99–107

    PubMed  CAS  Google Scholar 

  • Williams RL, Courtneidge SA, Wagner EF (1988) Embryonic lethalities and endothelial tumors in chimeric mice expressing polyoma virus middle T oncogene. Cell 52:121–131

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi TP, Dumont DJ, Conlon RA, Breitman ML, Rossant J (1993) flk-1, an flt-related receptor tyrosine kinase is an early marker for endothelial cell precursors. Development 118:489–498

    PubMed  CAS  Google Scholar 

  • Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ et al (2000) Vascular-specific growth factors and blood vessel formation. Nature 407:242–248

    Article  PubMed  CAS  Google Scholar 

  • Yla-Herttuala S, Alitalo K (2003) Gene transfer as a tool to induce therapeutic vascular growth. Nat Med 9:694–701

    Article  PubMed  Google Scholar 

  • Young JA, Bates P, Varmus HE (1993) Isolation of a chicken gene that confers susceptibility to infection by subgroup A avian leukosis and sarcoma viruses. J Virol 67:1811–1816

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank H. E. Varmus for the TVA cDNA, S. Hughes for the RCAS and pCla12 plasmids, M. Haden and L. Soroceanu for subcloning the TVA cDNA into several vectors, J. A. Seddon for preparing the Flk1-TVA DNA for injection, L. Wang for performing the oocyte microinjection experiments, V. Munoz for preliminary tumor infection trials and and S. Codeluppi for sharing unpublished information on RCAS–EGFP infection of chicken embryonic retina. This work was supported by DOD BCRP grant DAMD17-02-1-0314 and NIH CA102583.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena B. Pasquale.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vervoort, V.S., Lu, M., Valencia, F. et al. A novel Flk1-TVA transgenic mouse model for gene delivery to angiogenic vasculature. Transgenic Res 17, 403–415 (2008). https://doi.org/10.1007/s11248-007-9156-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-007-9156-1

Keywords

Navigation