Skip to main content
Log in

Stable expression of human growth hormone over 50 generations in transgenic insect larvae

  • ORIGINAL PAPER
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Developments in insect transgenesis using transposons combined with available mass rearing technology for insects such as the Medfly, Ceratitis capitata, provide opportunity for the production of protein for industrial, agricultural and healthcare purposes on a very large scale. In this study, we report the germ-line transformation and expression of a cDNA encoding human growth hormone (hGH) in transgenic Drosophila using the Minos transposon. Production and secretion of a bioactive hGH into the haemolymph of transgenic larvae was demonstrated by immunoblot analysis, ELISA and a proliferation bioassay. Stable expression of hGH was observed over 50 generations. The results indicate that mass reared transgenic diptera with a rapid period of larval growth could provide cost effective production systems for the manufacture of therapeutic and other high value proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Caceres C (2002) Mass rearing of temperature sensitive genetic sexing strains in the Mediterranean fruit fly (Ceratitis capitata). Genetica 116:107–116

    Article  PubMed  CAS  Google Scholar 

  • Catteruccia F, Nolan T, Blass C, Muller HM, Chrisanti A et al (2000a) Toward Anopheles transformation: Minos element activity in anopheline cells and embryos. Proc Natl Acad. Sci USA 97:2157–2162

    Article  CAS  Google Scholar 

  • Catteruccia F, Nolan T, Loukeris TG, Blass C, Savakis C, Kafatos FC et al (2000b) Stable germline transformation of the malaria mosquito Anopheles stephensi. Nature 405:959–961

    Article  CAS  Google Scholar 

  • Christophides GK, Savakis C, Mintzas AC, Komitopoulou K (2001) Expression and function of the Drosophila melanogaster ADH in male Ceratitis capitata adults: a potential strategy for Medfly genetic sexing based on gene transfer technology. Insect Mol Biol 10:249–254

    Article  PubMed  CAS  Google Scholar 

  • Dyck KM, Lacroix D, Pothier F, Sirard M (2003) Making recombinant proteins in animals-different systems, different applications. Trends Biotechnol 21:394–399

    Article  PubMed  CAS  Google Scholar 

  • Goeddel DV, Heyncker HL, Hozumi T, Arentzen R, Itakura K, Yansura DG et al (1979) Direct expression in Escherichia coli of a DNA sequence coding for human growth hormone. Nature 281:544–548

    Article  PubMed  CAS  Google Scholar 

  • Gossen M, Freudlieb S, Bender G, Muller G, Hillen W, Bujard H (1995) Transcriptional activation by tetracyclines in mammalian cells. Science 268:1766–1769

    Article  PubMed  CAS  Google Scholar 

  • Hazelrigg T, Levis R, Rubin GM (1984) Transformation of white locus DNA in drosophila: dosage compensation, zeste interaction, and position effects. Cell 36:469–481

    Article  PubMed  CAS  Google Scholar 

  • Horn C, Jaunich B, Wimmer EA (2000) Highly sensitive, fluorescent transformation marker for Drosophila transgenesis. Dev Genes Evol 210:623–629

    Article  PubMed  CAS  Google Scholar 

  • Kadono-Okuda K, Yamamoto M, Higashino Y, Taniai K, Kato Y, Chowdhury S, et al (1995) Baculovirus-mediated production of the human growth hormone in larvae of the silkworm, Bombyx mori. Biochem Biophys Res Commun 213:389–396

    Article  PubMed  CAS  Google Scholar 

  • Kapetanaki MG, Loukeris TG, Livadaras I, Savakis C (2002) High frequencies of Minos transposon mobilization are obtained in insects by using in vitro synthesized mRNA as a source of transposase. Nucleic Acids Res 15:3333–3340

    Article  Google Scholar 

  • Klinakis AG, Loukeris TG, Pavlopoulos A, Savakis C (2000) Mobility assays confirm the broad host-range activity of the Minos transposable element and validate new transformation tools. Insect Mol Biol 9:269–275

    Article  PubMed  CAS  Google Scholar 

  • Koukidou M, Klinakis A, Reboulakis C, Zagoraiou L, Tavernarakis N, Livadaras I et al (2006) Germ line transformation of the olive fly Bactrocera oleae using a versatile transgenesis marker. Insect Mol Biol 15:95–103

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK. (1970) Cleavage of structural proteins during the assembly of the head of the bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Larrick JW, Thomas DW (2001) Producing proteins in transgenic plants and animals. Curr Opin Biotechnol 12:411–418

    Article  PubMed  CAS  Google Scholar 

  • Loukeris TG, Livadaras I, Arca B, Zabalou S, Savakis C (1995) Gene transfer into the medfly, Ceratitis capitata with a Drosophila hydei transposable element. Science 170:2002–2005

    Article  Google Scholar 

  • Maeda S, Kawai T, Obinata M, Fujiwara H, Horiuchi T, Saeki Y, et al (1985) Production of human interferon in slikworm using a baculovirus vector. Nature 315:592–594

    Article  PubMed  CAS  Google Scholar 

  • Pavlakis GN, Hizuka N, Gorden P, Seeburg P, Hamer DH (1981) Expression of two human growth hormone genes in monkey cells infected by simian virus 40 recombinants. Proc Natl Acad Sci USA 78:7398–7402

    Article  PubMed  CAS  Google Scholar 

  • Pavlopoulos A, Berghammer AJ, Averof M, Klingler M (2004) Efficient transformation of the beetle Tribolium castaneum using the Minos transposable element: quantitative and qualitative analysis of genomic integration events. Genetics 167:737–746

    Article  PubMed  CAS  Google Scholar 

  • Rubin GM, Spradling AC (1982) Genetic transformation of Drosophila with transposase element vectors. Science 218:348–352

    Article  PubMed  CAS  Google Scholar 

  • Ryder E, Blows F, Ashburner M, Bautista-Llacer R, Coulson D, Drummond J, et al (2004) The DrosDel collection: a set of P-element insertions for generating custom chromosomal aberrations in Drosophila melanogaster. Genetics 167:793–813

    Article  CAS  Google Scholar 

  • Sumathy S, Palhan VB, Gopinathan KP (1996) Expression of human growth hormone in silkworm larvae through recombinant Bombyx mori nuclear polyhedrosis virus. Protein Expr Purif 7:262–768

    Article  PubMed  CAS  Google Scholar 

  • Tanaka T, Shiu RP, Gout PW, Beer CT, Noble RL, Friesen HG (1980). A new sensitive and specific bioassay for lactogenic hormones: measurement of prolactin and growth hormone in human serum. J Clin Endocrinol Metab 51:1058–1063

    Article  PubMed  CAS  Google Scholar 

  • Tomita M, Munetsuna H, Sato T, Adachi T, Hino R, Hayashi M et al (2003) Transgenic silkworms produce recombinant human type III procollagen in cocoons. Nat Biotechnol 21:52–56

    Article  PubMed  CAS  Google Scholar 

  • Zeitlin L, Cone RA, Whaley KJ (1999) Using monoclonal antibodies to prevent mucosal transmission of epidemic infectious diseases. Emerg Infect Dis 5:54–64

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Katerina Saridaki for generous help with the hGH ELISA assays. This work was supported by a PRAXE grant of the Greek Secretariat General for Research and Technology to IMBB-FoRTH and Minos Biosystems Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charalambos Savakis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markaki, M., Drabek, D., Livadaras, I. et al. Stable expression of human growth hormone over 50 generations in transgenic insect larvae. Transgenic Res 16, 99–107 (2007). https://doi.org/10.1007/s11248-006-9032-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-006-9032-4

Keywords

Navigation