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Abstract Hydroformylation of 1-octene with the heterod-

inuclear (Fe, Co) complex [CoH(dchpf)(CO)2] (1) was

investigated (dchpf = 1,10-bis(dicyclohexylphosphino)fer-

rocene). In agreement with this cobalt complex possessing

a preformed hydride as well as carbonyl ligands, the pre-

activated catalyst does not require any induction process or

activation treatment to become reactive in hydroformyla-

tion. The catalyst activity and (chemo-)selectivity proved

to be strongly dependent on the applied reaction conditions.

Higher syngas pressures suppress alkene isomerization and

favor the hydroformylation reaction. The overall regio-se-

lectivity remains very similar within the investigated

reaction space, with the C1-selectivity varying between 48

and 69 %. An increase of the reaction temperature at

40 bars results in a progressive decrease of the C1-selec-

tivity and an increase in the C2- and C3-selectivity due to a

higher isomerization activity at elevated temperatures.

Furthermore, at high temperatures (170 �C) and low syngas

pressures (10–20 bar) the main oxygenated products are the

alcohols, resulting from reduction of the aldehydes. How-

ever, when using a combination of higher syngas pressures

and intermediate temperatures, the reaction could be opti-

mized towards the formation of aldehydes. At 140 �C and

40 bars syngas pressure quite selective hydroformylation of

1-octene could be achieved, yielding 57 % aldehydes and

only 1.3 % over-reduction to the corresponding alcohol.

Keywords Hydroformylation cobalt � 1,10-
Bis(dicyclohexylphosphino)ferrocene � Reaction progress

analysis � X-ray diffraction

1 Introduction

In a recent report [1] we have described the mechanism of

hydrogen formation activity of a dicarbonylhydridocobalt

compound [Co(dippf)(CO)2H] which is chelated by 1,10-
bis(diisopropylphosphino)ferrocene (dippf) [2, 3]. Cobalt

coordination compounds in general have become popular

for H2 conversion research [4–8], alkene hydrogenation

[9–13], controlled radical polymerisation [14–19] and

carbene- and nitrene-transfer reactions [20–24]. Cobalt-

mediated hydroformylation is well-known and has been

continuously reviewed [25–27]. While Beller, Cole-

Hamilton and others have reported various kinds of mod-

ifications [28–31] of the original catalytic system, there

have also been computational approaches from the groups

of Beller and Pringle to the Co complex-catalyzed hydro-

formylation [32, 33]. However, not many studies describe

the use of well-defined complexes with bidentate chelating

P-donors [34], and none (to the best of our knowledge)
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report the use of isolated carbonyl-hydrido-cobalt

compounds.

Hydroformylation [35–39] is arguably one of the most

important homogeneously catalyzed reactions: it is applied

commercially on a multimillion ton per year scale, but also

studied in great detail at the fundamental level for rho-

dium-based catalysts [40, 41]. Fewer reports have been

disclosed on the use of well-defined cobalt catalysts,

despite the lower price and much higher abundancy of

cobalt as compared to rhodium. This is in part a result of

the lower selectivity of cobalt catalysts, typically giving

rise to lower linear (C1)/branched (C3) selectivities, alkene

isomerization, and over-reduction of the aldehydes to the

corresponding alcohols [42]. However, well-defined cobalt

complexes with strongly chelating bidentate P-donor

ligands imposing a fixed and rigid coordination geometry

may well lead to improved activity and higher selectivities.

As such, the development of stable and more selective

cobalt catalysts for hydroformylation reactions is desirable,

both from a standpoint of cost reduction and in view of

material scarcity. In this perspective, the new heterodinu-

clear complex [CoH(dchpf)(CO)2] = 1 has become of

particular interest to us, as it promised to be a well-defined

molecular framework containing a stable, rigidly coordi-

nating bidentate P-donor ligand (dchpf) = 1,10-bis(dicy-

clohexylphosphino)ferrocene. Furthermore, since the

complex contains a pre-formed hydride ligand as well as

carbonyl moieties, the complex can be considered as the

active form of a hydroformylation catalyst and should

therefore not require any induction or catalyst activation

pre-treatment. In this paper we report the study of complex

1 in the hydroformylation of 1-octene, in a sufficiently

large reaction space (temperature, syngas pressure) to

allow the mapping of the activity and chemo/regioselec-

tivity of the catalyst.

2 Results and Discussion

Compound 1 was obtained in a similar fashion as the

related complex [CoH(dippf)(CO)2] [1] by reaction of

in situ generated CoH(CO)4 with the diphosphinoferrocene,

here dchpf, in quantitative yield. Analytical data and

spectroscopy (1H- and 31P-NMR, IR) confirm the compo-

sition (see Experimental Section in the Supporting Infor-

mation), and a single crystal X-ray diffraction analysis

provides a view of the molecular structure (Fig. 1). The

low crystal quality did not allow us to locate the hydride

ligand which is, however, clearly observed in the 1H NMR

spectrum at -12.26 ppm (t), signifying a pronounced

hydridic character. The hydride is assumed to be in an axial

position of an approximately trigonal–bipyramidal (tbp)

arrangement, trans to C1 of one carbonyl ligand. The other

carbonyl and the two phosphorus donors occupy the quasi-

equatorial positions. However, it should be realized that the

structure lies between the tbp and sqp (square-pyramidal)

alternatives. The ferrocene part adopts a synperiplanar

eclipsed conformation. Any small differences between the

structures of 1 and its dippf analogue [1] can be attributed

to the increased steric congestion in the new system 1

which also prevents the formation of IR-detectable dimers.

It may be added that 1 can be oxidized reversibly in

dichloromethane at -0.57 V versus Fc?/o, at a slightly

lower potential than the less electron-rich dippf analogue

(0.43 V) [1]. According to the results [1] for

[CoH(dippf)(CO)2]�/?/2? the first reversible oxidation is

attributed to the cobalt center. A second, irreversible oxi-

dation at ?0.11 V anodic peak potential is identified with

the ferrocene iron oxidation [1].

The complex [CoH(dchpf)(CO)2] (1) has been investi-

gated in the hydroformylation reaction using 1-octene as

substrate under various reaction conditions. The hydro-

formylation reactions have been performed in an AMTEC

SPR 16 parallel autoclave system for which the tempera-

ture and the pressure could be independently programmed

Fig. 1 Molecular structure of [CoH(dchpf)(CO)2] (1): Co–C1 1.76(1)

Å, Co–C2 1.76(1) Å, Co–P1 2.19(1) Å, Co–P2 2.18(1) Å, Co–Fe

4.10(1) Å; P1–Co–P2 108.7(1)�, P1–Co–C1 100.7(3)�, P2–Co–C2

131.8(3)�. P2–Co–C1 91.7(3)�, P1–Co–C2 114.4(3)�
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for each reactor. The gas-uptake curve of every individual

reactor has been recorded. The catalyst (1) has been tested

in the temperature range between 100 and 170 �C and

between 10 and 40 bars of syngas pressure. Besides the

desired aldehydes, the typical cobalt-hydroformylation

products formed by alkene isomerization, alkene hydro-

genation, and aldehyde hydrogenation to the corresponding

alcohols were detected in the reaction mixtures (see

Scheme 1). The results of the hydroformylation reactions

are presented in Table 1.

From Table 1 it is clear that the catalyst activity and

(chemo-)selectivity depend strongly on the applied reaction

conditions. The conversion of 1-octene appears to be

mainly dependent on the reaction temperature. At 10 bar

syngas pressures, the 1-octene is mainly converted to

internal octene isomers. At 10 bars syngas pressure and

170 �C, the total amount of oxygenates is 21.2 % of which

the alcohols are the major oxygenated reaction products.

Increasing the syngas pressure in a stepwise manner

from 10 to 40 bars led to a gradual increase in the for-

mation of oxygenated products (see Fig. 2). At 140 �C and

40 bars syngas pressure the total amount of aldehydes

formed is 44.3 %, with only 1.3 % over-reduction to the

alcohols. Further increasing the temperature to 170 �C
yields 52.1 % aldehydes, but concomitantly the production

of alcohols also increases (13.4 %). Furthermore, it is

interesting to note that at 120 �C, the conversion decreases

with increasing syngas pressure, while the overall yield of

hydroformylation products increases. These observations

are similar to the general trends observed in rhodium-cat-

alyzed hydroformylation, where higher syngas pressures

suppress alkene isomerization and favor the hydroformy-

lation reaction [43].

The C1- and the C2-selectivity data presented in Table 1

are plotted in Figs. 3 and 4. These plots show that the

overall regio-selectivity remains very similar within the

investigated reaction space. The C1-selectivity, determined

by the levels of nonanal and nonanol present in the reaction

mixture, varies between 48.5 and 69.4 %. From Fig. 3 can

be concluded that an increase of the reaction temperature at

40 bars results in a progressive decrease of the C1-se-

lecitvity and an increase in the C2- and C3-selectivity (see

Fig. 4 and supporting information). This is ascribed to a

higher isomerization activity of the catalyst at elevated

temperature; an effect that has also been observed in rho-

dium-catalyzed hydroformylation [43]. In addition, the

amount of octene hydrogenation producing octane is lim-

ited (between 1.3 and 10.3 %), which is comparable to the

best cobalt mono-phosphine systems [42].

Typically, in both rhodium and cobalt hydroformylation

catalysis, the pre-catalyst requires an activation step to form

the catalytically active [MH(CO)4] species which can enter

into the catalytic cycle. This activation process normally

requires anywhere from 30 min to a couple of hours [44].

The cobalt complex [CoH(dchpf)(CO)2] (1), possessing both

a preformed hydride and carbonyl ligands, can be regarded as

the pre-activated catalyst and should thus not require any

induction time before being active in the hydroformylation

reaction. This is indeed confirmed by the recorded gas-up-

take curves which all display a typical exponential progress

(see SI for recorded gas-uptake curves). No sigmoidal curves

were observed in any of the recorded gas-uptake curves.

Scheme 1 Pathways towards the distribution of products observed in the hydroformylation of 1-octene mediated by complex 1
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Converting the conversion plots (mol vs. time) to the

corresponding rate versus [substrate concentration] plots

provided more detailed information about the

hydroformylation process mediated by complex 1. The

reactions at 140 �C have been used for the reaction progress

kinetic analysis, because these reactions provide sufficient

conversion levels and a limited over-reduction to the corre-

sponding alcohols. The plots are provided in Fig. 5. From the

Table 1 Results of the hydroformylation of 1-octene using [CoH(dchpf)(CO)2]

Entry Temp.

(�C)

Pres.

(bar)

Conv.a

(%)

Isomers

(%)

Octane

(%)

Total

aldehyde

(%)b

Total

alcohol (%)c
C1-selectivity [aldehyde/

alcohol] (%)

C2-selectivity [aldehyde/

alcohol] (%)

1. 100 10 9.0 6.3 1.3 1.4 0.0 43.7 [43.7/0.0] 27.9 [27.9/0.0]

2. 120 10 45.2 34.6 6.0 4.4 0.2 50.4 [48.7/1.7] 33.7 [32.2/1.5]

3. 140 10 95.2 79.2 9.5 6.0 0.4 50.6 [46.5/4.1] 32.1 [29.6/2.6]

4. 170 10 97.9 66.3 10.3 8.8 12.4 52.3 [18.0/34.3] 32.6 [12.5/20.1]

5. 100 20 4.9 3.6 0.7 0.6 0.0 70.9 [70.9/0.0] 29.1 [29.1/0.0]

6. 120 20 35.1 25.4 3.4 6.3 0.0 56.0 [56.0/0.0] 30.1 [30.1/0.0]

7. 140 20 94.7 63.1 8.8 21.5 1.3 50.5 [47.2/3.3] 31.3 [29.3/2.0]

8. 170 20 98.1 55.4 8.7 25.2 8.8 54.4 [38.2/16.2] 29.2 [20.9/8.3]

9. 100 30 4.0 2.5 0.7 0.8 0.0 75.8 [75.8/0.0] 24.2 [24.2/0.0]

10. 120 30 27.9 18.0 2.7 7.1 0.0 60.5 [60.5/0.0] 27.2 [27.2/0.0]

11. 140 30 91.9 52.9 7.6 30.6 0.8 53.7 [51.9/1.7] 29.6 [28.7/0.9]

12. 170 30 98.3 48.0 8.3 33.2 8.8 53.0 [40.0/13.0] 29.2 [22.5/6.7]

13. 100 40 3.9 2.1 0.7 1.1 0.0 78.1 [78.1/0.0] 21.9 [21.9/0.0]

14. 120 40 25.1 13.5 2.5 9.1 0.0 64.1 [64.1/0.0] 25.4 [25.4/0.0]

15. 140 40 95.1 42.9 6.6 44.3 1.3 58.7 [56.7/2.0] 28.6 [27.7/0.9]

16. 170 40 99.0 27.6 5.9 52.1 13.4 53.1 [40.5/12.6] 28.6 [22.5/6.6]

Reactions have been performed in 8 mL-scale. [1-octene] = 1.0 M, [catalyst] = 0.99 mM, solvent = toluene, stirring rate = 1000 rpm,

reaction time 21 h
a Conversion based on consumption of 1-octene
b Total amount of aldehyde present in the reaction mixture (C1–C4 aldehydes)
c Total amount of alcohols present in the reaction mixture (C1–C4 alcohols)
d The corresponding C4–alcohol was not detected in the reaction mixtures
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curves it is clear that there is no induction period, as this

would lead to an increase in the rate with the progression of

the reaction [45]. Instead a downward curvature is observed

which can be attributed to the alkene isomerization activity,

gradually converting the more reactive 1-octene substrate into

the less reactive internal octenes.

3 Conclusions

In conclusion, the new heterodinuclear complex

[CoH(dchpf)(CO)2] with a (cyclohexyl-) shielded metal

reaction site proves to be an effective hydroformylation

catalyst even under remarkably low syngas pressures. The

catalyst does not display any induction period confirming

that the catalyst is already in its activated form. Within this

study, the selective hydroformylation of 1-octene yielding

56.7 % aldehydes and only 1.3 % over-reduction to the

corresponding alcohol could be achieved at 140 �C and 40

bars syngas pressure. In addition, the alkene hydrogenation

was found to be low using cobalt complex 1 as the catalyst.

Further conceivable in situ experiments under controlled

conditions can be expected to shed more light on the

detailed hydroformylation mechanism involving this

apparently unique kind of complex.
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