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Abstract When considering three-dimensional groundwater flow, the hydrogeological com-
munity widely uses the MODFLOW model based on the head-oriented approach (HOA).
However, a great deal of hydrogeological situations requires an extremely accurate assess-
ment of the Darcy velocity in three dimensions. Despite the good numerical approximation
of the piezometric head offered by MODFLOW, it does not guarantee sufficient accuracy in
estimating all three components of the flow velocity. As an alternative, this article presents
the MODFLOW-based velocity-oriented approach (VOA), which can approximate the three
components of the groundwater velocity with high accuracy. The article gives comprehensive
theoretical background and a comparison of the HOA and VOA approaches. Importantly, the
authors show how the VOA equations with the VOA boundary conditions can be imple-
mented and solved with MODFLOW. Recently, the VOA has become a basis for new version
of MODFLOW. The two approaches are effectively combined and compared using Visual
MODFLOW for a simple case of river—aquifer interaction.
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1 Introduction

A great deal of hydrogeological situations requires an accurate three-dimensional calculation
of the Darcy velocity (specific discharge, flux density). River—aquifer interaction is an exam-
ple where accurate assessment of all three components of the groundwater velocity beneath
and in the vicinity of a river bed is essential for calculating flow paths, discriminating bottom
and bank water exchange, etc. Also, approximations of the groundwater velocity components
calculated with some numerical models may be inaccurate when the river is considered to
be a part of a larger regional groundwater flow system. In such cases, where the horizontal
components of the groundwater velocity may be two or three orders of magnitude larger
than the vertical component in most parts of the system, application of Darcy’s law to cal-
culate the vertical velocity from the numerically calculated hydraulic head may result in an
unacceptably inaccurate estimation of the vertical velocity component. This may lead to an
erroneous calculation of essential ingredients of regional hydrogeology such as flow paths,
in- and exfiltration zones and rates, stagnation zones, and capture zones for wells.

Even worse, in some parts of the modeling domain not the vertical velocity is small with
respect to the horizontal velocity, but the horizontal velocity may be small with respect to
the vertical velocity. For instance, the flow parallel to a vertical aquifer—river interface may
be much larger than the horizontal flow into or out of that interface.

In order to show how “the small velocity component issue” can be resolved, it is proposed
here to use the MODFLOW software for a river—aquifer interaction case in a non-conventional
manner. Regular MODFLOW software is based on the head-oriented approach (HOA), i.e.,
it solves numerically the groundwater flow equation with the block-centered finite differ-
ence method and calculates the hydraulic heads in the grid block centers. The head-oriented
approach has been and is commonly used by the hydrogeological community for thousands
of cases. Despite its good results in many hydrogeological situations, it does not approxi-
mate with sufficient accuracy the velocity component that is small with respect to the other
components.

To remediate this problem, an alternative approach to modeling groundwater flow, the
velocity-oriented approach (VOA) is proposed. This approach operates simultaneously on
the three components of the groundwater velocity and can produce their numerical approx-
imations with high accuracy. The VOA has for the first time been developed in the 1980s
by Nawalany (1986a,b), who based his pioneering work on the finite element method. He
showed that the VOA approximates all three components of the groundwater velocity with
high accuracy. Based on these results, Waardenburg et al. (1988) applied Nawalany’s pio-
neering work to the block-centered finite difference method. Finally, Zijl and Nawalany
(1993) combined the VOA with the perturbation method, an analytical approach resulting in
a “velocity-oriented correction” to the Dupuit approximation. Not only the block-centered
finite difference method, upon which MODFLOW is based, but also the mixed-hybrid finite
element method is a flux-continuous method (Chavent and Jaffré 1986; Kaasschieter 1990;
Kaasschieter and Huijben 1992; Trykozko et al. 2001). From an algorithmic point of view,
the block-centered finite difference method—in which the heads are calculated in the grid
block centers—differs essentially from the mixed-hybrid finite element method—in which
the heads are calculated in the grid faces centers (Zijl 2005a, b). However, for a sufficiently
fine discretization the two methods are almost equivalent from a mathematical point of
view (Weiser and Wheeler 1988). That is, these methods result in essentially the same solu-
tion. From this point of view, we may consider the mixed-hybrid finite element method—or
face-centered finite element method—as an extension of the block-centered finite difference
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method to account for general anisotropy (including cross terms like Ky, etc.) and generally
shaped grid volumes. From the above-mentioned (approximate) mathematical equivalence,
it can be concluded that the numerical accuracy of the mixed-hybrid finite element method
is comparable with the accuracy of the block-centered finite difference method. However,
when the VOA is based on the block-centered finite difference method (MODFLOW) for
calculating the three flow components ey, ey, and g, in the grid block centers (like head # is
calculated in the conventional HOA), the calculated flow components differ essentially from
the flow components calculated by the mixed-hybrid method. More specifically, the VOA
results will be more accurate, as is also exemplified by the numerical experiments presented in
this paper. In the VOA, the flow components are the primary variables and their determination
does not require any numerical differentiation (of head), as is the case in the above-discussed
mixed-hybrid and block-centered methods and in the stream function method discussed in
Sect. 4. As a result, no reduction in the accuracy of the calculated fluxes compared to the
accuracy of the head occurs, which explains the improved accuracy of the VOA.

The main purpose of this article is to give the theoretical justification why, and the
numerical recipe how the two approaches, the head-oriented approach (HOA) and the
velocity-oriented approach (VOA) can be combined with the well-known Visual MODFLOW
software to obtain accurate numerical approximations of the three velocity components.
Although the theoretical VOA formulation is known since the 1990s, a practical application
based on a relatively simple implementation using publicly available numerical groundwater
modeling software like MODFLOW is new. Since the numerical aspects of solving the (head-
oriented) groundwater flow equation by MODFLOW are well known in the hydrogeological
community, this article focuses on setting up the boundary conditions for an integrated HOA-
VOA approach. This approach is illustrated with numerical examples of groundwater flow
beneath and in the vicinity of a river bed.

In this paper, a MODFLOW model based on the VOA and a MODFLOW model based
on the conventional HOA are compared. As it has been pointed out above, the MODFLOW
model is based on the block-centered finite difference method, which is a flux-continuous
approximation: the fluxes through the grid faces are continuous, while the heads are con-
tinuous only at the grid face centers. This is in contrast to conventional node-based finite
element approximations, in which the heads are continuous at the grid faces while the fluxes
through the faces are discontinuous. In addition, in two- and three-dimensional problems the
block-centered finite difference approximation underestimates the hydraulic conductivities,
while node-based finite element approximations overestimate the hydraulic conductivities.
These phenomena have been explained and demonstrated by Trykozko et al. (2001) and Zijl
and Trykozko (2001). As a consequence, the MODFLOW examples presented in this paper
will also hold for other models based on the block-centered finite difference method; all such
models are mathematically equivalent. Based on earlier work by Zijl and Nawalany (1993),
it can be expected that models based on the conventional node-based finite element method
will also yield very accurate results, although the details of the solution may differ (a bit)
from the results obtained by the block-centered approximation.

The paper is organized as follows: Section 2 presents an introduction to the equations
governing three-dimensional groundwater flow, with emphasis on the water table conditions.
Section 3 briefly introduces the velocity-oriented correction for the Dupuit approximation,
while Sect. 4 presents a derivation of the Laplace-type equations describing the velocity-
oriented approach (VOA). Section 5 presents the derivation of a number of boundary
conditions, while Sect. 6 illustrates the implementation of the VOA model using MOD-
FLOW for river—aquifer interaction. Section 7 discusses the results, while Sect. 8 presents
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some theoretical and practical remarks relevant to future developments and applications.
Finally, Sect. 9 gives the references.

2 Equations Governing 3-Dimensional Groundwater Flow
2.1 Darcy’s Law

The flow of groundwater is governed by the mass and momentum balance equations. For
flow with sufficiently low velocity (i.e., for Reynolds numbers << 1), the momentum bal-
ance simplifies to Darcy’s law. If the groundwater has uniform density (negligible density
differences in the flow field), Darcy’s law is given as

3 oh .
== _ Kijge =123 (1)

where x; = x and x» = y [L] are the two horizontal Cartesian coordinates, while x3 = z
[L] is the vertical Cartesian coordinate (positive in upward direction); g; = ¢, and g2 = gy
[L/T] are the two horizontal Cartesian components of the flux density vector, while g3 =
q; [L/T] is the vertical Cartesian component of the flux density vector (again positive in
upward direction); i [L] is the hydraulic head and K;; [L/T], i,j = 1,2,3, are the nine
components of the hydraulic conductivity matrix. On the scale of a representative elementary
volume (REV), this matrix is symmetric, i.e., K;; = K ;, and on coarser scales the upscaling
volumes can often be chosen in such a way that this matrix is symmetric too. Positive
definite symmetric conductivity matrices have three orthogonal principal directions with
positive principal conductivities on the diagonal and zero off-diagonal conductivities; for
more theoretical details, see Bear (1972).

Numerical methods based on the block-centered finite difference method cannot han-
dle off-diagonal terms in the conductivity matrix. When using such models, it is generally
assumed that the principal conductivities are in the two horizontal directions x and y and
in the vertical z direction, i.e., K; = K;;, 1 = 1,2,3, and K;; = 0 fori # j. Under this
assumption, models like MODFLOW are based on Darcy’s law in the following form:

oh

i =—Ki—, i=12,3. (@)
3)61'

2.2 The Continuity Equation and Storage

Under the assumption that the effect on the groundwater flow of specific storage (storage
caused by water and pore space compressibility) is negligibly small, the mass balance equation
may be simplified to the continuity equation

99 | %4y | 94

=0. 3
ax ay 0z @

In relatively shallow aquifer—aquitard systems, with depths of, say, 10-100m, the neglect
of specific storage is generally sufficiently accurate. Of course, in such shallow parts of the
subsurface the groundwater flow is time-dependent, with relatively high flow rates in periods
with much rainfall and relatively low flow rates in dry periods. This time dependency is
described by two conditions on the top boundary (Zijl and Nawalany 1993). The kinematic
condition on the water table, or phreatic surface, is
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oH oH oH
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where H (x, y, t) [L]is the height of the water table above a preordained horizontal reference
plane (i.e., z = H(x, y, t) is the vertical position of the water table), Sy [-] is the specific
yield, and R [L/T] is the recharge rate or “effective precipitation”. (In many practical cases,
the term g d H/dx + qyd H/dy in Eq. (4) is negligibly small).
The head on the phreatic surface is given by the dynamic boundary condition

h(x,y, H(x,y,1),1) = H(x,y,1). (&)

Condition (5) states that the head on the phreatic surface is equal to the water table height,
which is equivalent to stating that the water pressure on the phreatic surface is equal to the
atmospheric pressure.

As a consequence, when combined with water table conditions (4) and (5), continuity
Eq. (3) is valid for time-dependent shallow groundwater flow. On the other hand, for deep
groundwater flow (depths of, say, 100—1000 m) Eq. (4) holds only for steady flow. Although
deep groundwater flow is changing much more slowly than shallow flow (time scales of years
to centuries), it is not evident that for such flow the specific storage is negligible (El-Rawy
et al. 2016).

3 Equations Governing 21/2-Dimensional Groundwater Flow

For flow in relatively thin aquifers, the vertical component of Darcy’s law (2) may often be
replaced with
oh
dz
i.e., h = h(x,y,t) is assumed to be a function of only the two horizontal coordinates (and
of the time). Since the horizontal components of Darcy’s law (2) remain unchanged
oh oh
=-K,—,
ox
it can be observed from Darcy’s law (2) in the vertical direction that the so-called Dupuit
approximation Eq. (6) holds exactly if the vertical flux density is exactly equal to zero.
This leads to the so-called two-dimensional flow concept, or piston flow concept, in which
groundwater flow through the aquifers is horizontal, while the flow through aquitards is
vertical. As long as only hydraulic heads are important, this piston flow concept works
well. However, if determination of flow paths is important too, knowledge of the vertical
velocity is necessary. Therefore, Strack (1984) applied Darcy’s law under the condition that
the vertical hydraulic resistivity 1/K, is equal to zero. Also under this condition, the Dupuit
approximation Eq. (6) holds exactly and substitution of Egs. (6) and (7) into continuity Eq. (3)
yields an expression for the nonzero vertical flow component

) oh a oh
q: = a0 (/(deZ)a) - 5 (/(de2)5> . 3)

This extension to nonzero vertical flow is called the “21/2-dimensional flow approach.”
When the groundwater is flowing through a sequence of aquifers separated by aquitards,

the calculations can be based on the 21/2-dimensional flow concept. The well-known non-

linear Dupuit—Forchheimer equation for flow in the phreatic aquifer can then be obtained by

0, (©)

@)
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combining the two water table conditions (4) and (5) with flow Egs. (6), (7) and (8) (Zijl and
Nawalany 1993).

The conditions under which the Dupuit approximation can be justified have been inves-
tigated by many authors, see, for instance, Bresciani et al. (2014). Using the perturbation
method (Nayfeh 1973; Van Dyke 1975), Dupuit approximation (6) can be derived as the
approximation of order zero; see Zijl and Nawalany (1993). In contrast to the piston flow
concept and Strack’s extension, the perturbation approach allows for determination of the
first-order correction to the above-presented approximation of order zero. The first-order
correct head gradient is then equal to dh/dz = —q,/ K. At water divides, where the hori-
zontal head gradient vanishes, the vertical head gradient plays an important role. Especially
for inverse modeling based on the double constraint method, where hydraulic grid block
conductivities are directly determined by Darcy’s law (2) in the form K; = |g;|/|0h/0x;]|,
the first-order correct head gradient plays an important role (ElI-Rawy et al. 2014, 2016).

4 The Velocity-Oriented Approach (VOA) for 3-Dimensional
Groundwater Flow

In Sect. 3, Eq. (8) is introduced to determine vertical velocities in so-called 21/2-dimensional
models, i.e., models based on the Dupuit approximation d4/dz = 0. However, Eq. (8) can
also be used to determine vertical velocity components from numerical solutions in which
the horizontal velocities are determined with sufficient accuracy, for instance, when using a
MODFLOW model with only a few layers. MODFLOW calculates the heads in the grid block
centers, while the velocities through the grid faces are derived from the heads by numerical
differentiation using a finite difference approximation of Darcy’s law (Eq. 1). However, if the
vertical head gradient is small (9h/dz =~ 0), the resulting vertical velocity g, = —K;0h/0z
may become unreliable if there are water balance errors in the numerical approximation
(caused by too early termination of the iterations). A more reliable determination of the
vertical velocity can then be based on the “velocity-oriented correction” given by Eq. (8)
(Zijl and Nawalany 1993).

However, in general three-dimensional flow problems not only the vertical head gradient,
but also the horizontal head gradient may become small. This is, for instance, the case at
water divides and near stagnation points. In such cases, one needs an approach like Eq. (8)
not only for ¢, but, depending on the situation, also for g, and g,. This generalization can
be accomplished by the “velocity-oriented approach” (VOA). To be precise, a more reliable
determination of relatively small vertical velocity components could also be obtained by a
stream function method, because such a method solves the water balance equation (Eq. 3)
exactly, even if the iterations to solve the system of linear equations are terminated too early
[for details of the three-dimensional stream function method, see Mohammed et al. (2009)].
However, since the stream function method is mathematically equivalent with the earlier-
discussed block-centered method (like MODFLOW) and mixed-hybrid method, we propose
here the more accurate method—the VOA.

This improved accuracy can be explained by observing that in all numerical methods the
continuum equations are approximated by a system of algebraic equations. If these algebraic
equations were solved exactly, the three above-mentioned mathematically equivalent methods
(mixed-hybrid, block-centered, stream function) will yield exactly the same results. However,
since these three methods are different from an algorithmic point of view, they have quite
different systems of algebraic equations that have to be solved. In most applications, these
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systems are solved approximately, generally by an iterative method (e.g., preconditioned
conjugate gradients). For mathematically equivalent methods that are not algorithmically
equivalent, the errors caused by the approximations errors (generally caused by termination
of the iterations too early) have very different consequences. In the block-centered and the
mixed-hybrid methods, this error results in a water balance error and, as a consequence,
inaccuracies in d/1/dz as explained above. In the stream function method, the water balance
is solved exactly; the numerical error does not appear in the water balance, but appears in the
compatibility equations de; /dy—dey /0z = 0,dey /0z—0e;/dx = Oand dey/dx—0de, /0y =
0. The VOA, which avoids numerical differentiation by calculating the velocities directly in
the grid block centers, is therefore more accurate.

In the VOA’s simplest form, it is assumed that the two horizontal conductivities are equal
to each other (K, = K, = K},). In addition, it is assumed that the horizontal conductivities
K} and the vertical conductivity K, = K, are independent from the horizontal coordinates
x and y; the conductivities depend only on the vertical coordinate z, i.e., K = Kp(2), K, =
K, (z). Under these conditions, four MODFLOW models can be set up to: one conventional
MODFLOW model based on the head-oriented approach (HOA) to calculate the heads in the
grid block centers, and three additional MODFLOW models based on the velocity-oriented
approach (VOA) to calculate the two horizontal components ey, e, of the head gradient and
the vertical component of the specific discharge ¢, in the grid block centers

qx oh
===, 9
€x K, ax (92)
, oh
oy =D -2 (9b)
K dy
oh
q: = _Kva*- (9¢)
Z

From the well-known identity for second-order partial derivatives 92/ /9x; dx = 82h/dx ;0
xi, the following three compatibility conditions can be derived

dey = dex (10a)
dx dy’

e _ 1 9g: o
0z K, ax’

ey _ 1 dg: 00
9z K, dy

Substitution of Darcy’s law into continuity, Eq. (3) results in the equation for the well-known
head-oriented approach (HOA); that is, the equation for the first MODFLOW model

8K8h+3K8h+8 Kah 0 (112)
— — — — — — ) =0. a
dx " ox dy h ay az "9z

Differentiation of this equation with respect to x and y under the assumption that K, = Kj,(z)
and K, = K,(z) and using Egs. (10a) and (10b) for the definitions of e, and ey, results in
the following two VOA equations upon which the second and third MODFLOW models are

based
0 dey ad dey d deyx
— | Kp— — [ Kpn— —(Kyv—) =0, 11b
8x<h8x>+8y<h8y>+82<v32> (1)

ad % dey i 0 % dey i d % dey 0 (110)
P — — —_— — = . C
ox "ox dy h ay 0z Y9z

@ Springer



380 M. Grodzka-t.ukaszewska et al.

Substitution of g, = Kp(z)ex, gy = Kp(z)ey (Egs. 9a, 9b) into continuity Eq. (3) yields
dey/0x + dey/dy + K, '8gy/dz = 0. Differentiation with respect to z, using the identity
for second-order partial derivatives and using compatibility Eqs. (10b) and (10c) results in
the VOA equation upon which the fourth MODFLOW model is based

D) (L, 8Ly )
dx \ K, ox dy \ K, dy 0z \ K, 0z
Equations (11a)—(11c) have a very conventional look. In Egs. (11b) and (11c), & is sim-
ply replaced with e, and ey, respectively. That’s all. However, in Eq. (11d) not only
h is replaced with ¢, but also K is replaced with 1/K,, while K, is replaced with
1/Kp.

HOA equation (11a) as well as VOA equations (11b)—(11d) is all Laplace-type equations.
They can be solved using any standard software designated for solving the HOA equation
numerically, for instance Visual MODFLOW or Processing MODFLOW. MODFLOW can
directly handle this type of equations, without additional programming effort in its source
code. What remains is specification of the boundary conditions for the VOA equations (11b)—
(11d), which will be presented in Sect. 5, also see Grodzka-Lukaszewska (2015).

5 Boundary Conditions for the Velocity-Oriented Approach

In this section, only specified heads and specified fluxes are discussed. Linear combinations
of head and flux are not considered, but can easily be derived. Regarding head boundary
conditions, it is important to note that heads have to be specified in one connected part of the
boundary. For instance, it is not allowed to specify heads on the east boundary and on the
west boundary, while on the other boundaries fluxes are specified. However, specification of
heads on, say, the east, top and west boundaries is allowed.

5.1 Specified Head as Top (Horizontal) Boundary Condition

When the head hyop(x, y) is specified on the top boundary z = zop, as is customary in
the analysis of regional groundwater flow systems (T6th 2009), the top boundary condi-
tions ey;¢op (X, ¥), €y;t0p(x, ) for the MODFLOW models calculating e, and ey, follow from
Egs. (9a), (9b)

_ 8ht0p(x’ y)

, i=1,2. 12
ox; i (12a)

ei;top(xy y) =

Like boundary condition /p(x, y) for the conventional MODFLOW-HOA, which is speci-

fied in the centers of the top boundary’s grid squares, boundary conditions e;;p(x, ) have
to be specified in the top boundary’s grid square centers.

The boundary condition for the equation for g, follows from continuity Eq. (3) resulting

in
L % . 32htop(X, y) + 82htop(xa y)
Ky \ 9z )., 9x? ay?

(12b)

The value of (3g;/0z);=z,, has to be introduced into MODFLOW-VOA in the same way as
(0h/02)z=¢, is introduced in a MODFLOW-HOA model. In MODFLOW-HOA, boundary
conditions like (0/h/0z) 2=z10p ALC introduced by specification of a flux density ¢;;0p(x, y) in
such a way that, according to Darcy’s law, (04 /02) =z, = —¢z;top/ Kv. And for HOA models

top
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in which phreatic storage is neglected, g;;10p(x, y) = —R(x, y), where R(x, y) [L/T] is the
recharge rate specified in each grid square center on the top boundary. As a consequence,
in the MODFLOW-VOA model for g,, where the & of the HOA model is replaced with
g and the Ky is replaced with 1/K},, one has to specify (3q;/902);=z,, = KnR(g,) or, in
other words, in MODFLOW's recharge package we have to specify values of R, equal to
K, ! (092/02) 2=z, as presented in the right-hand side of Eq. (12b). Of course, R(,,) [1/L]
has no longer the meaning of recharge; R(y.) is just a quantity needed to specify the top
boundary condition for the equation for ¢,.

5.2 Specified Flux as Top or Bottom (Horizontal) Boundary Condition

When the recharge flux density g;;1op(x, ) is specified on the top boundary z = zp, as is
customary in most modeling studies, this is the top boundary condition for the MODFLOW-
VOA model for g,. As a consequence, in the MODFLOW-VOA model ¢ 1op (x, y) is specified
in the grid square centers on the top boundary, in the same way as /p(x, y) is specified for
a MODFLOW-HOA model.

The conditions for the MODFLOW models for e, and ey, simply follow from the compat-
ibility Egs. (10b) and (10c)

de; 0qz:10p (X
K, (52 = Yoy (13)
aZ Z=Ztop axi

The values of (d¢; /9z) =, can be introduced into MODFLOW-VOA in the same way as
(0h/02) 2=z, is introduced in MODFLOW-HOA models. In HOA models, a boundary condi-
tion (011/0z) =z, is introduced by specification of a flux density ¢;:1op = — Ky (3h/02) 2=z,
for models in which phreatic storage is neglected ¢,;10p(x, ¥y) = —R(x,y). As a conse-
quence, in the MODFLOW-VOA model for ¢;, where the & of the HOA model is replaced
with e;, one finds Kv(aei/az)zzzlop = R(,;). In other words, in MODFLOW'’s recharge
package one is expected to specify values of R,) equal to Ky(de;/9z).=z,, given by the
right-hand side of Eq. (13). Of course, R, [1/T] has no longer the meaning of recharge;
it is just a quantity needed to specify the top boundary condition for the VOA model for
e;.

On the bottom boundary, where ¢, = 0 is specified, this condition can simply be intro-
duced into the MODFLOW-VOA model for ¢, (like introducing zero head at the bottom of
a HOA model). Introduction of an impervious base into the VOA models for ¢;, i.e., intro-
ducing (de; /02) ;=zpoom = 0, 18 done in just the same way as introducing the impermeability
condition (0h/02) ;=7 4om = 0 in the HOA model.

5.3 Specified Head and Flux Conditions at Side (Vertical) Boundaries

Setting up boundary conditions for the four vertical boundaries is similar to setting up the
boundary conditions for the top and bottom boundary. There are two points to keep in mind.

(i) Boundary conditions for specified fluxes, for instance specified gy, s (x, z) on the north
(n) or south (s) boundary, give rise to the boundary condition

Qyin/s (%, 2)

Kn(@) (142)

€yin/s (x,2) =
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The other two boundary conditions can be derived by the compatibility Eq. (9) resulting in

ay Y=Yn/s dx 7
(ai) _ i VK ) (140
= K, —— XS
ay Y=Yn/s az

Taking into account the discontinuities in K}, (z), one has to take care that this flux boundary
condition is specified in such a way that ey, is a differentiable function (a sufficiently
smooth function) of z. Similar expressions can be obtained for specified gy;¢/w (y, z) on the
east or west boundary.

(i) Boundary conditions for specified heads, for instance specified &,/ (x, z) on the north
(a = n) or south (b = s) boundary, or &,/ (y, z) on the east (@ = e) or west (b = w)
boundary, give rise to the following boundary conditions

0hap(xi, 2)
Cxratp = —/af (14d)
1
Ohasp(xi, 2)
Geiafp = —KU“/aiz’. (14e)

The boundary condition for the MODFLOW model for €x;ia/bs J F 1 Can be derived with
the aid of continuity Eq. (3) yielding

K, <3€xl~> — K, 82ha/b n i <KU 3ha/b> (14f)
j xj=a/b 8xiz 9z 9z

where eitheri =1, j =2anda/b =n/s,ori =2, j=1anda/b=e/w.

Taking into account the discontinuities in K,(z), one has to take care that this head
boundary condition is specified in such a way that g4/, is a differentiable function (a
sufficiently smooth function) function of z.

6 Implementation of VOA Using MODFLOW: River—Aquifer Interaction

Exchange of water between a river and an adjacent aquifer is an illustrative case of
three-dimensional groundwater flow that requires accurate determination of all three flow
components and especially the vertical one. In this section, a relatively simple example of
river—aquifer interaction (with g, = 0) is presented, see Fig. 1. This section elaborates on
the details of how the water exchange between river and aquifer can be calculated accurately
through implementation of the velocity-oriented approach (VOA) using Visual MODFLOW.

Figure 1 shows a vertical cross section of a river from which water infiltrates to an adjacent
aquifer through the river bottom and bank sediments. The sediments are assumed to be made
of semi-pervious rock. Hence, in terms of the conventional head-oriented approach (HOA),
a Robin boundary conditions have to be imposed on the common boundary between river
and aquifer. The upper and lower boundaries of the aquifer are assumed impervious. Mirror
symmetry at the plane x = x allows assuming the no-flow condition on the left boundary of
the aquifer. On the right-hand boundary, a constant head is assumed. For a homogeneous and
isotropic aquifer, Nawalany (1993) has used a 21/2-dimensional model to derive an analytical
expression for the horizontal flux Q [L?/T] from the river bed to the aquifer
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X=X,

z=0

Fig. 1 River infiltrating to an adjacent aquifer through the bottom and bank sediments

Oy = KD, Hr =ho (152)
= —_— a
" NT+VL,—W,
where
L,—W,[K(D,-D W, D
=" r | K(Da ’)tanh L)+ = (15b)
KD, A A c

Here K [L/T] is the aquifer hydraulic conductivity, D, [L]—thickness of the aquifer, H,
[L]—height of the river water table, 4 [L]—hydraulic head at the right boundary, L, [L]—
length of the aquifer, W, [L]—half-width of the river, D, [L]—thickness of the aquifer above
the river bed, A = /T,.c [L]—corrected leakage coefficient, 7, [L2 /T]—transmissivity of the
aquifer under the river bed, ¢ [T]—river sediments resistance (¢ = d/ ks, where dy [L] is the
thickness of the river sediments and kg [L/T]—hydraulic conductivity of the river sediments).

Nawalany and Grodzka (2014) have compared this approximation of the total flux Qg
with the VOA-calculated flow Qvoa. Theratio Qi / Qvoa turned out to be practically equal
to the ratio Q5 / Qexact, Where Qexact 18 the three-dimensional analytical exact solution, i.e.,
not based on the Dupuit approximation, found by Nawalany (1993). This ratio is less than
1 for all possible sets of hydraulic parameters involved, which indicates that the Dupuit
approximation over estimates the water exchange between river and aquifer. Since the three-
dimensional analytical solution is quite cumbersome from a numerical point of view and,
therefore, impractical for numerical solutions on a regional scale, and since the MODFLOW-
VOA model is very accurate (the ratio Qvoa / Qexact being practically equal to 1), Nawalany
and Grodzka (2014) decided to use MODFLOW-VOA as a reference model. The major
conclusion from this research was that in case of river—aquifer interactions one should apply
the MODFLOW-VOA model to get physically meaningful results.

Here we follow this conclusion and present the numerical implementation of the
MODFLOW-VOA model using Visual MODFLOW. As the numerical aspects of solving
the four Egs. (11a)—(11d) are well known, the focus is on how the VOA-type boundary con-
ditions have to be specified. Following the theory presented in Sect. 5, the VOA boundary
conditions are specified for Egs. (11b) and (11d) for e, and ¢, respectively. It is also assumed
that HOA equation (11a) with hydraulic head % as the state variable is solved numerically
prior to solving the VOA Egs. (11b) and (11d), see Table 1 and Fig. 2.
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Table 1 Boundary conditions for Eq. (11a)

Boundary Type of boundary Formula forb - ¢ Functionality of the HOA soft-
condition ware MODFLOW

AB Robin Ky % + % = %, n=z RIV package

BC Robin Kh% + % = %, n=-x RIV package

CD Neumann % =0, n=z No need to define?

DE Dirichlet h =hgy Constant head

EF Neumann % =0, n=—z No need to define?

FA Neumann % =0, n=—x No need to define?

4 Boundaries without specified boundary conditions MODFLOW automatically assume the Neumann bound-
ary condition equal to O

Fig. 2 Boundary conditions for calculating &

6.1 Calculating h from HOA Equation (11a) Using MODFLOW

In this section, the river—aquifer boundary conditions for Egs. (11a)—(11d) and (4) are pre-
sented for the perfectly layered anisotropic (orthotropic) case, i.e., when K, = Kj(z),
K, = K,(z). In the tables below, the normal derivative d//dn represents the normal compo-
nent of the head gradient n-Vh, where n is the unit normal vector on the boundary pointing
out of the groundwater modeling domain.

Boundary conditions for Eq. (11a) are formulated in the conventional manner and pre-
sented in Table 1 and illustrated in Fig. 2.

6.2 Calculating e, from VOA Equation (11b) Using MODFLOW
The VOA boundary conditions for calculating e, = g,/Ky as presented in Sect. 5 follow

from Eq. (11b) and are listed in Table 2 with references to functionalities of Visual MOD-
FLOW (Fig. 3).
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Table 2 Boundary conditions for Eq. (11b)

Boundary Type of boundary Formula forb - ¢ Functionality of the HOA
condition software MODFLOW
AB Robin Ky aa% +% =0, n=z RIV package
BC Dirichlet ey = Iig*h Constant head (& calculated
ne .

from Eq. (11a) using
conventional MODFLOW)

CD Neumann 33% =0,n=—z2 No need to define?

DE Neumann 38% =0,n=x No need to define?

EF Neumann 38% =0,n=—z2 No need to define?

FA Dirichlet ex =0 Constant head

4 Boundaries without specified boundary conditions MODFLOW automatically assume the Neumann bound-
ary condition equal to 0

K,c
h calculated from eq. (11a) using
conventional MODFLOW

Fig. 3 Boundary conditions for calculating ey

6.3 Calculating ¢, from VOA Equation (11d) Using MODFLOW

Similarly, the VOA boundary conditions for calculating g, from Eq. (11d) are listed in Table 3
with references to functionalities of Visual MODFLOW (Fig. 4).

7 Results

In the case of river—aquifer interaction, the components e, and ¢, of the Darcy velocity
(specific discharge, flux density) have been calculated using Visual MODFLOW as a solver
for the VOA equations. The software functionalities have been used not only to specify the
boundary conditions, but also to visualize the numerical solutions. Differences in g, values
calculated with the HOA and VOA models are shown in Fig. 5a, b. The greatest differences
are found just above the aquifer bottom close to the left boundary of the aquifer—see Fig. 5.
When analyzing the differences in ¢, calculated as I[g, (HOA) - g, (VOA)] /g, (HOA)I - 100%,
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Table 3 Boundary conditions for Eq. (11d)

Boundary Type of boundary Formula forb - ¢ Functionality of the HOA
condition software MODFLOW
AB Dirichlet q; = h*L_H" Constant head [h calculated

from Eq. (11d) using
conventional MODFLOW]

BC Robin Ky %Ln + %7 =0, n=—xb RIV package

CD Dirichlet q; =0 Constant head

DE Dirichlet q; =0 Constant head

EF Dirichlet q; =0 Constant head

FA Neumann 33% =0, n=—x No need to define?

4 Boundaries without specified boundary conditions MODFLOW automatically assume the Neumann bound-
ary condition equal to 0
b Derived under the condition that K H» Ky and c are independent from z in part BC of the aquifer

h calculated from eq. (11d) using
conventional MODFLOW

Fig. 4 Boundary conditions for calculating ¢

the largest discrepancies can be found at the top/bottom and close to the right boundary of the
aquifer. Clearly, the large %.,- differences in ¢, at the right-hand side of the flow field are due to
the high accuracy of the VOA model (for which g, (VOA) = 0 as expected) and g, (HOA) #
0 due to errors in estimating g, by the HOA model—see also Grodzka-t.ukaszewska (2015).

Also river—aquifer interaction in terms of path lines in the aquifer has been calculated
using the VOA and HOA models. The velocity components and path lines calculated using
discretization with 20, 40 and 80 horizontal layers combined with, respectively, 100, 200
and 400 vertical columns of blocks are shown below—Figs. 6 7, 8 and 9. All the VOA-
calculated path lines shown in Fig. 6 are practically identical for the three discretization
densities 20 x 100, 40 x 200 and 80 x 400 (layers x columns) grid blocks. Hence, even
for the lowest discretization densities of the grid, MODFLOW-VOA results in a very good
approximation of the path lines.

In Figs. 7, 8 and 9, the VOA path lines calculated with a discretization density of 20 x 100
grid blocks are used as a reference. With increasing discretization density, i.e., with grid
refinement to more grid blocks that are smaller, the conformity between the HOA- and the
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Fig. 5 a Difference in g; values calculated using HOA and VOA models (m/d). b Difference in g, values
calculated using HOA and VOA models (%)
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s

-
"
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Fig. 6 Water path lines beneath and in the vicinity of a river bed calculated by VOA models with 20 x 100
(red solid line), 40 x 200 (dashed line) and 80x400 (solid line) grid blocks

(o D
B

Fig.7 Water path lines beneath and in the vicinity of ariver bed calculated by a VOA model with 20 x 100 (solid
line) and a HOA model with 20 x 100 (dashed line) grid blocks
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Fig. 8 Water path lines beneath and in the vicinity of a river bed calculated by a VOA model with 20 x 100
(solid line) and a HOA model with 40 x 200 (dashed line) grid blocks

Fig. 9 Water path lines beneath and in the vicinity of a river bed calculated by a VOA model with 20 x 100
(solid line) and a HOA model with 80 x 400 (dashed line) grid blocks

VOA-calculated path lines increases—Figs. 7, 8, 9. But even for the maximum discretization
density, 80 x 400, the HOA-calculated path lines differ considerably from the reference VOA-
calculated path lines.

8 Final Remarks
8.1 Theoretical Remark

In the VOA equations, the state variables £, ey, e, and g, are continuous and piecewise
differentiable functions in space. In the derivation presented here, the hydraulic conductivities
K, and K, are assumed to be constant in the x and y direction, but may be piecewise
discontinuous (“jumping”) in the z direction. More importantly, if the values of K and K,
“jump” from layer to layer, also the values of the fluxes ¢, and g, and of the head gradient
e; = ¢q;/K, will “jump,” i.e., are discontinuous. (The mathematics of this all is based on
Stokes’s and Gauss’s integral theorems.) The assumption of hydraulic conductivities that do
not vary in the horizontal directions can be relaxed to conductivities that vary “smoothly”
in the horizontal directions (Zijl and Nawalany 1993). Also extension to specific storage is
possible.

However, it has still to be investigated whether it is worthwhile to implement such exten-
sions of the VOA presented in this paper. In fact, there are two directions for further research:

(i) Extension of the above-presented VOA to horizontally varying conductivity and to stor-
age.
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(i) Application of the three-dimensional stream function method, a method that honors the
water balance exactly, as presented by (Zijl and Nawalany 2004; Mohammed et al. 2009).

The advantage of research direction (i) is that it can relatively easily be based on existing
groundwater modeling software (MODFLOW, say), while its disadvantage is the horizontal
smoothness requirement. However, numerical experiments by Kuppen (1988) show that, even
when allowing for smoothness, good results can be obtained for practical problems.

The advantage of research direction (ii) is its greater flexibility in handling heterogeneity
(discontinuities in any direction), while its disadvantage is the relatively great programming
effort, because standard software for the three-dimensional stream functions does not exist,
and we should also take into account that the stream function method is mathematically
equivalent to the block-centered finite difference method (Mohammed et al. 2009). As a
consequence, if the system of linear algebraic equations of the block-centered finite difference
method is solved exactly (i.e., with sufficient iterations to solve the water balance exactly),
the accuracy of the stream function method is the same as the accuracy of the block-centered
finite difference method (MODFLOW), while the MODFLOW-based VOA is much more
accurate.

8.2 Practical Remarks

Numerical approximation of groundwater flow beneath and in the vicinity of ariver bed result-
ing from the use of the MODFLOW-based VOA model demonstrates that the VOA model
offers high accuracy in approximating all three components of the Darcy velocity in terms of
water path lines. The results also confirm former findings of Nawalany and Grodzka (2014)
on the supremacy of the VOA model over the HOA model for a similar, but simpler, example.
The most important general result of this research is that the Visual MODFLOW platform
has a potential for combining the HOA and VOA approach applied to three-dimensional flow
models. Such a HOA-VOA combination well suited to determine the state variables #, ey, ey
and ¢, with high accuracy. This is especially true when exchange of water between rivers and
aquifers is part of a regional groundwater flow system. In practical terms, the MODFLOW-
based VOA model eliminates the complexity of merging three-dimensional numerical models
for regional groundwater flow with local numerical or analytical models in cases where high
accuracy of the flow velocity is locally required. Additionally, the use of one of the most
common numerical software models (Visual MODFLOW) offers the hydrogeological com-
munity considerable lowering of modeling effort. As a consequence, the implementation of
the VOA can easily be based on standard software; there is no need for having access to the
source code for an additional programming effort. This is in contrast to a velocity-oriented
approach based on a three-dimensional stream function. Since the 3-D stream function is a
vector potential, of which its velocity components have to be calculated along the grid edges
of the numerical model, a relatively large programming effort in the source code is required.
In many modeling projects, the source code is not even available while such a programming
effort is exceeding the project resources.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
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