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Abstract Effective material parameters for diffusion and elastic deformation are calculated
for porousmaterials using a continuum theory-based superposition procedure. The theory that
is limited to two-dimensional cases, requires that the pores are sufficiently sparse. Themethod
leads to simple manual calculations that can be performed by, e.g. hospital staff at clinical
diagnoses of bone deceases that involve increasing levels of porosity. An advantage is that the
result relates to the bone material permeability and stiffness instead of merely pore densities.
The procedure uses precalculated pore shape factors and exact size scaling. The remaining
calculations do not require any knowledge of the underlying field methods that are used to
compute the shape factors. The paper establishes the upper limit for the pore densities that are
sufficiently sparse. A cross section of bovine bone is taken as an example. The superposition
procedure is evaluated against a full scale finite element calculation. The study compares the
pore induced change of the diffusion coefficient and elastic modulus. The predictions differ
between superposition and full scale calculations with 0.3% points when pore contribution
to the diffusion constant is 3–7%, and 0.7% points when the pore contribution to the modulus
of elasticity is 4.5–5%. It is uncertain if the error is in the superposition method, which is
exact for small pore densities, while the full scale finite model is not.

Keywords Porous materials · Mechanical · Stiffness · Diffusion coefficient ·
Superposition principle

1 Introduction

Bone is a complex material, with a multiphase, heterogeneous and anisotropic microstruc-
ture. One of the main goals of this work is to define the relationship between bone porosity
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and both diffusion coefficient and elastic modulus. The reason for calculating the material
parameters is that they are difficult to obtain experimentally or clinically. Further, the state
of the diffusion coefficient and the modulus of elasticity may be used as a tool for clinical
diagnosis. The porosity of bone can vary continuously from 2–95%, and it is usually dis-
tinguished between trabecular bone with 40–95% porosity and cortical bone with 2–20%
porosity (Winkelstein 2012).

The porosity affects the diffusivity and the elastic modulus of the material. The diffusivity
is important for maintaining a proper supply of nutrients and for removing waste products,
while the elastic modulus determines the quality and the reliability of bone strength. Some
useful models have been proposed for studies of the properties of bone tissues in the presence
of pores. These are based on the poroelastic theory, in which the mechanical properties of a
material are affected by the movement of the fluid in the pores (Biot 1941; Rice and Cleary
1976; Showalter 2000; Cowin 2003). In bone tissue, the transport of fluids and solutes is
a concern for the bone formation and remodelling. The diffusion coefficients of different
solutes in cortical bone of mammals were investigated using different techniques (Patel et al.
2004;Wang et al. 2005; Li et al. 2009; Lindberg et al. 2014). Further, the diffusion coefficients
of water in trabecular bone tissue for humans were studied by Marinozzi et al. (2014a, b).
The result was needed to understand the transportation process of substances on the cell level
and to make realistic models for bone remodelling and bone healing.

It has been shown by Marinozzi et al. (2013) that hygroscopic driving forces lead to sig-
nificant swelling of bone. The deformation compatibility that generally restricts the swelling
introduces both compressive and tensile residual stresses in different parts of the bone. The
stresses that counteracts the swelling, depend on the stiffness of the bone. It is, therefore,
of interest also to estimate the elastic modulus and how it is affected by the pore sizes and
densities.

The mechanical properties such as elastic modulus of bone are affected by the pore sizes
anddensities. To investigate the interrelationships between the pore size and the bone strength,
several experiments are required. The relationship between the pore size and the elastic
modulus may be established analytically or experimentally. The elastic modulus decreases
as the pore size increases as obtained by Schaffler and Burr (1988) and Grimal et al. (2011).
In Helsing and Jonsson (2002) and Helsing (2011) numerical models with the capability
to compute mechanical properties of porous media containing many pores are given. The
methods give accurate results without any limitations regarding pore density and shape. Also
sharp corners that produce stress singularities are effectively treated.

One dimensional models Redwood et al. (1974); Safford et al. (1978); Nozad et al. (1985)
and Ochoa-Tapia et al. (1994) are developed with the ambition to simplify the calculations.
Two- or three-dimensional field calculations are avoided altogether. In these models the
diffusion coefficient is supposed to be different in one or several subregions and the result is
calculated as a series of one dimensional subregions. References to pores with real shapes
are absent apart from cylindrical/spherical pores which means that the applicability is limited
to nearly cylindrical/spherical pores or a wider range of shapes but randomly oriented. The
assumption is based on earlier results (Perrins et al. 1979) that concern pores with random
orientation. Pores inmammal bones are often irregular and not seldom crack like which affect
the diffusion and the stiffness. In human long bones, the pores are often shorter in the radial
directionwhich seriously increase the apparent diffusion coefficient andmodulus of elasticity.

The use of CT-scanning of human tissues in vivo is rapidly increasing. Frequently bone is
scanned to discover increased porosities. The estimation of the porosity is used for diagnoses
of osteoporosis and related illnesses. It is also used to keep track of the development of
diseases. However, diagnoses-based relevant parameters such as chemical permeability and
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stiffness should be better than simply total pore area which is used today. Moreover, the
analysis can still be simple and without requiring advanced field calculations on case level.
In the proposed model, only a small set of individual pores is pre-computed and is then used
as references together with an exact size scaling. To this end different reference sets could
be used for, e.g. female human long bones, male ditto, sets for other mammals, etc.

The present study demonstrates a simple but asymptotically exact procedure to calculate
the diffusion coefficient and the elastic modulus of a material with sparse irregular pores by
using superposition of known contributions to the diffusion coefficient and the modulus of
elasticity.Ageometry dependent correction factor is obtained for a fewpore shapes alongwith
a proper pore size scaling. The factor is based on a single finite element calculation of the local
diffusive and elastic properties of a region surrounding the pore. The orientation of the pore
is included as a model parameter. The method is demonstrated using a porous bovine bone
sample with irregularly distributed pores. The method does not require specific knowledge
of the continuum field treatment of diffusion or mechanics. However, a few precalculated
parameters for some characteristic shapes need to be done. The result is compared with a full
scale calculation of the same sample.

2 Theory

2.1 Diffusion

Consider a body containing a single pore. The material surrounding the pore is called the
matrix. In the pore, the diffusion coefficient is set to Dp and in the matrix the diffusion
coefficient is set to Dm. A two-dimensional flow of matter that is driven by the concentration
gradient is considered. The flow rate per unit of area, also called flux is denoted Ji , where
the index denotes the direction in Cartesian coordinates xi ≡ {x1, x2, x3}. Tensor notation
including the summation rule is applied. The indices i, j assume the values 1 and 2. The flux
vector Ji of a selected substance becomes, due to differences in concentration of matter,

Ji = −D
∂c

∂xi
, (1)

where c is the concentration of the flowing matter. The material parameter D is the diffusion
coefficient of the substance-matrix system. Further, matter is conserved giving that

∂c

∂t
= −∂ Ji

∂xi
. (2)

In the present study, steady-state solutions, i.e. ∂c/∂t = 0 are sought. The consequence is
that the flux will be divergence free, i.e.

∂

∂xi

(
D

∂c

∂xi

)
= 0. (3)

The governing Eq. (3) is solved for the boundary conditions

∂c

∂x2
= 0 at 0 < x1 < h for x2 = 0 and x2 = w0. (4)

Further,

c = 0 at x1 = 0 for 0 ≤ x2 ≤ w0 , (5)
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Fig. 1 A thin section containing an area h0×w0 with a pore. The average diffusion coefficient in the h0×w0
rectangular region is D0

and

c = c1 at x1 = h for 0 ≤ x2 ≤ w0. (6)

At first, a thin strip of the structure is examined, see Fig. 1. The strip contains a small
inserted section with the height h0 and the width w0, where a pore, or something else that
affects the effective diffusion coefficient, is located. In this small section, the effective diffu-
sion coefficient is set to D0. The diffusion is assumed to be uniaxial along the boundaries of
the section. The relation between D0 and the diffusion coefficients for the matrix, Dm, and
for the pore, Dp, and the influence of size and shape of the pore will be dealt with later in
this section.

The effective diffusion coefficient D1 for the strip is derived in the following. The total flux
J ′
a, see Fig. 1, through every cross section in the strip remains constant. Therefore according

to Eq. (1)

D1
c1
h

= Dm
c1 − cβ

hβ

= D0
cβ − cα

h0
= Dm

cα

ha
, (7)

applies. The concentrations cα and cβ are the concentrations on each side of the insert section
as can be seen in Fig. 1. By using that h = hβ + h0 + hα , some algebra gives

D1 = Dm

(
1 −

(
1 − Dm

D0

)
h0
h

)−1

. (8)

Now a wider structure, where the strip is being an insert, is considered, see Fig. 2. By
introducing an effective diffusion coefficient De for the entire structure, the average flow
through the entire structure is described as

Ja = −De
c2
h

. (9)

Uniaxial flow is again assumed for along the boundaries of the strip with the width w0. The
requirement is again that the pore should be sufficiently small for this to be an acceptable
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Fig. 2 The geometry from Fig. 1
embedded in a larger section

assumption. According to Fig. 2, it is then obvious that the total amount of matter that passes
a cross section of the structure is

Jaw = −D1
c2
h

w0 − Dm
c2
h

(w − w0), (10)

where the first term on the right-hand side represents the flux through a cross section of
the inserted strip with the width w0. The second term is the remaining part of the total flux
through matrix material. If Eq. (8) is used to express D1 in given quantities and Eqs. (9) and
(10) are used to eliminate Ja and c2, then the effective diffusion coefficient is obtained as

De = Dm

(
1 + 1 − Dm/D0

1 − (1 − Dm/D0)
h0
h

h0w0

hw

)
. (11)

The derived scaling h0w0/hw relates the rectangular area, h0w0, to the area of the full body,
hw. The quantities defining De are the height ratio h0/h, the area ratio h0w0/hw and the
ratio of the diffusivity coefficients, Dm/D0.

Since the derivation leading to Eq. (11) did not explicitly utilise the shape of the region
h0×w0 it is here assumed that the result Eq. (11) can be used also for pores of general shape.
Therefore, the diffusivity inside the pores is given by the diffusion coefficient, Dp. Further,
the quantity h0w0 in Eq. (11) is replaced with θ Ap, where Ap is the pore area in the x1 − x2
plane, and θ is a geometrical factor that apart from shape and size of the pore also depends
on the orientation of the pore with respect to the nominal flow direction. Finally, the relative
height h0/h in Eq. (11) is replaced with

√
Ap/hw, and a shape correction factor κ . As a

consequence, the following two relations replace Eq. (11), and De is written

De = Dm

(
1 + θs

1 − κs
√

Ap
hw

Ap

hw

)
, (12)

where the relation between Dm and Dp for convenience is represented by the quantity

s = 1 − Dm

Dp
. (13)
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The values θ and κ , must be established. In order to do so Eq. (12) is expanded as a power
series of

√
Ap/hw as

(
De

Dm
− 1

)
hw

s Ap
= θ

[
1 + κs

√
Ap

hw
+ (κs)2O

(
Ap

hw

)]
. (14)

Finite element calculations for the current pore shape are done for different pore sizes
Ap, as described in Sect. 3. By studying the flux, it is now possible to determine θ and κ

from the two leading terms of the right-hand side of Eq. (14). The parameters are obtained
through least square fit. The determination of θ and κ is done for a range of pore sizes and the
limiting values for vanishing pore sizes are sought. The procedure is performed for relevant
pore shapes and orientations relative to the direction of the flux.

The effective diffusion coefficient De of the entire structure is defined as

De = −Ja
h

co
, (15)

where co is the prescribed concentration at x1 = h and Ja is the average flux through the
body calculated as

Ja = 1

w

∫ w

0
J1dx2 at x1 = h, (16)

where J1 is the flux in the x1-direction, cf. Eq. (1). The effective diffusivity coefficient De

can be calculated for bodies with large geometries and multiple pores. It is obvious from
the analysis above that as long as the individual pores do not interact, the result is found
using superposition of the individual contributions from each pore. This is supposed to be
possible if the pores are sufficiently small as compared with the distance between the pores.
The following is used,

De = Dm

(
1 + s

hw

N∑
i=1

θ̃ (i)A(i)
p

1 − sκ(i)

√
A(i)
P

hw

)
, (17)

where summation is performed for N pores. The geometry factors θ̃ (i) and κ(i) are chosen as
the result of θ and κ for sufficiently small pore sizes and are selected as the one of a limited set
of representative pores. By studying the pores in a region of the material specimen which is
believed to be representative for the total specimen, and follow the procedure just described,
the total De for the specimen can be established using Eq. (17).

2.2 Elastic Theory

In this section, a method to compute how present pores influence the elastic modulus is
presented. The same geometries and pores as above are assumed. To follow the conventional
tensor notation, the stresses are written σi j , the strains εi j and the displacements ui . The
stresses are given by Hooke’s law as

σi j = E

1 + ν

(
εi j + ν

(1 − 2ν)
δi jεkk

)
(18)

and the strains εi j , which are assumed to be small, are defined by

εi j = 1

2
(ui, j + u j,i ). (19)
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The equations of equilibrium, σi j, j = 0, after insertion of Eqs. (18) and (19) give the equation

ui, j j + 1

1 − 2ν
u j,i j = 0. (20)

Equation (20) governs the linear elastic behaviour of the body. For stretching in the x1-
direction, the boundary conditions are

u1 = 0 at 0 ≤ x2 ≤ w for x1 = 0 (21)

and

u1 = δ at 0 ≤ x2 ≤ w for x1 = h. (22)

Normal tractions on the remaining edges x2 = 0, 0 < x1 < h and x2 = w, 0 < x1 < h
vanish. Finally, shear tractions on all edges vanish.

The average tractions at x1 = h are calculated as

σa = 1

w

∫ w

0
σ11dx2. (23)

The effective modulus of elasticity is defined as

Ee = σa
h

δ
. (24)

The presence of pores will weaken the structure, whereas the stiffness of the pore material,
being a fluid, is assumed to be insignificant. It seems reasonable that the weakening may be
ignored at large distance from the pore. It is also assumed that the linear extent of this region
scale with the width of the pore b perpendicular to the loading direction. As for the diffusion
case the change of the modulus of elasticity is assumed to be proportional to the area of the
pore. To make it possible to include a crack, the square of the linear extent in the direction
perpendicular to the nominal loading direction versus the body area is selected as the scaling
parameter. The assumption is verified for a crack and a circular pore, see “Appendix”. In
the same way as for the diffusion theory a geometry factor θE is included for the influence
of other geometrical details of the pore apart from the width b. This leads to the first order
approximation

Ee = Em

(
1 − θE

b2

hw

)
(25)

for loading in the x1-direction. To obtain the geometry factor θE, numerical values of Ee for
single pore geometries for different pore sizes are calculated using the finite element method.
A power expansion for small pores gives the expression(

Ee

Em
− 1

)
hw

b2
= θE + O

(
b2

hw

)
, (26)

where Em is the modulus of elasticity of the matrix material. The value θE is fitted to the
numerical result of Ee for different pore shapes and orientations and by taking vanishing
pore size result. Details are given in Sect. 3.

For a large body with multiple pores, the effective modulus of elasticity, Ee, may be
calculated using the same superposition principle as for the diffusion case, cf. Eq. (17). The
calculation is performed as

Ee = Em

(
1 − 1

hw

N∑
i=1

θ
(i)
E

(
b(i)

)2 )
, (27)
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Fig. 3 a An original image of a typical pore with a linear extent of around 35 µm. The linear extent of the
cubic voxels is 4.2µm. b The geometry as a prepared object mesh using a 50% greyscale threshold. The object
mesh is in a last step transformed into a mesh of 6-node and 8-node isoparametric elements

where the summation is performed for N pores. The geometry factors θ
(i)
E are chosen for

sufficiently small pores and for a corresponding shape.
By studying the pores in a region of the material specimen that is believed to be repre-

sentative for the total specimen, if necessary by using statistics, and following the procedure
just described, the total Ee for the specimen can be established employing Eq. (27).

3 Numerical Analysis

The scanned bone images are transferred to amesh that is used for finite element calculations.
This is done in two steps. First a CAD program is used to create an intermediate object mesh
that describes the cross section of the bone sample (see an example in Fig. 3). Smaller sections
of the object mesh, each containing a pore, are then transferred to the finite element program
ABAQUS (2014) and covered by isoparametric elements in a preprocessor. ABAQUS offers
the possibility to compute elastic deformation and steady-state diffusion. Equation (3) is the
governing equation for diffusion and Eq. (20) is the governing equation for deformation. The
boundary value problem is solved for the region 0 ≤ x1 ≤ h and 0 ≤ x2 ≤ w using a free
mesh composed of trilateral 6-node and quadrilateral 8-node isoparametric elements. Full
integration is used. For each type of pore geometry, same element mesh is used for both the
diffusion and the deformation problem. A representative case is shown in Fig. 4.

The ratio of the linear extent of adjacent elements is never more than 2 and normally
around 1.2. The meshes for the different pore geometries are built up of eight to ten thousand
nodes and two to three thousand six-node and eight-node isoparametric plane elements.

4 Establishing Material Parameters

The procedure is evaluated using a sample of bovine ulna. A single CT scan image of the
bone sample is used, see Fig. 5. The image is produced by Ståhle et al. (2013). The original
image is a 10×10 mm2 cross section of an around 10×10×30 mm3 bone specimen from a
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Fig. 4 A typical mesh. Here for
pore C′ and with
h/a = w/b = 2. The pore is the
central grey area. In the original
image, the pore covers 6 × 9
pixels. The meshed area
hw = 97 × 57µm2

Fig. 5 a A 0.22×0.20mm2 part of a 10×10mm2 bovine ulna sample (Ståhle et al. 2013). A 50% greyscale
threshold has been used (cf. Fig. 4a, b). The pores A, B, C, and D are used as reference cases. Evaluation is
then performed on the region with numbered pores in the lower right corner of the image marked with dashed
edges. b Detailed view of the selected pores
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Table 1 Data for the pores A to
D and their counterparts A′ to D′
that are rotated 90◦

Case A B C D D′ C′ B′ A′

a 3 3 6 6 7 9 6 8

b 8 6 9 7 6 6 3 3

a/b 0.38 0.50 0.67 0.85 1.17 1.50 2.00 2.67

Ap 12 15 21 24 24 21 15 12Length scale is in units of pixel
size

bovine ulna. It shows traces of multiple cracks that almost inevitably occur in bone samples
as soon as they are exposed to air. The x1-axis goes from the endosteum (i.e. the inner surface
of the bone, facing towards the bone marrow) in the radial direction out to the periosteum
(i.e. the outer surface of the bone). The x2-axis is along the tangential direction of the bone
cross section. The longitudinal direction along the ulna is perpendicular to the plane of the
image in Fig. 4.

The four pores marked A to D are assumed to be a fair representation of the various
shapes that are present in the segment of the bone cross section, cf. Fig. 5a. Images showing
the geometrical details of the selected pores are shown in Fig. 5b. By rotating the pores 90◦
an additional set of pores A′ to D′ are obtained. Apparent values of θ, κ and θE are obtained
for small pore sizes. Convergent values for the set of parameters were obtained in all cases.

The height of the pores, a, is along the direction of the nominal flux or load, and the width,
b, is perpendicular to that. The ratio a/b is from 0.38 for pore A to 2.67 for pore A′, see
Table1. The unit of length is a pixel, that is 4.2 µm. The voxel depth is also a unit making a
cubic shape with the length of each side of 4.2 µm.

4.1 Diffusion Coefficient Results

The content of the pores is assumed to have diffusive and mechanical properties simi-
lar to water. Diffusion coefficients of a large number of substances in water are listed in
the book (Cussler 1997). With only a few exceptions, the diffusion coefficients are in the
range 1 × 10−9–3 × 10−9 m2/s and the diffusion coefficient in the pore is here taken to be
Dp = 2 × 10−9 m2/s. Patel et al. (2004) studied diffusion of different molecules in bovine
bone. They found that the diffusivity varied considerably when measured on tissue level,
cellular syncytium level and matrix microporosity level. On the matrix microporosity level,
the diffusion coefficient was found to be close to 1× 10−13 m2/s for a molecule mass of 300
atomic mass units (u). Therefore, the calculations in the present study are performed for a
ratio of the diffusion coefficient in water versus that in bone of Dp/Dm = 2 × 104.

The distribution of the normalised concentration inside the computed region is shown in
Fig. 6. The geometry corresponds to the one found in Fig. 6. The pore C′ is displayed as the
dashed curve. The extent of the geometry is h × w. The side ratio of the geometry is the
same as the ratio of the pore size meaning that a/b = h/w. The extent of the area of the
pore versus that of the geometry is Ap/hw = 0.09. One readily observes how the flux in the
neighbourhood of the pore diverts from uniaxial flux and approaches the pore.

The colours represent constant concentration. The increased diffusion rate in the neigh-
bourhood of the pore reveals itself as an increase of the distances between the colour contours.
The flux direction is perpendicular to the concentration levels as indicated by the inserted
arrows. The diffusion, which nominally flows in the x1-direction, is observed to be diverted
towards the pore. Obviously, the increased diffusion rate also increases in a region surround-
ing the pore. Close to all four edges of the geometry, the diffusion is less affected by the
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Fig. 6 Distribution of the
concentration. The nominal flux
is vertical. The contour shows
pore C′ with an around 20,000
times larger diffusion constant
than the surrounding bone

Fig. 7 Normalised average flux Jah/(Dm�c) for pores A (�), B (◦), C (�) and D (×) (solid lines) and A′ to
D′ with corresponding markers and dashed lines, as a function of the pore size

√
Ap/hw

presence of the pore. The affected region seems to be a few times the extent of the pore (see
Fig. 6).

The calculated normalised average flux, Jah/(Dm�c), where �c is the difference in con-
centration between x1 = 0 and x1 = h for different flow directions and different pore sizes,
is displayed in Fig. 7. The nominal flux, i.e. the flux for

√
Ap/hw = 0 is Jah/(Dm�c) = 1.

It is seen that the flux as expected increases with increasing pore sizes. As an example, when
the area of the pore is 30% of the total area hw, i.e.

√
Ap/hw = 0.55, the flux is in the region
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Fig. 8 The geometry factor θ for pores A (�), B (◦), C (�) and D (×) (solid lines) and A′ to D′ with
corresponding markers and dashed lines, as a function of the relative pore size

√
Ap/hw

of around 5–8% larger than the nominal flux in the absence of a pore. When the area of the
pore is 40% of the total area hw, the flux is as much as two times the nominal flux.

The interaction between the ratio of the pore size versus the linear body size
√
Ap/hw

in terms of its influence on the geometry factor θ is shown in Fig. 8. An interesting obser-
vation is that θ is practically constant for pores smaller than

√
Ap/hw < 0.3. The meaning

is that the value for very small pores is applicable as long as the linear size of the pore
is less than a third of the linear size of the body, or to be more precise, the calculated
cell hw. For application purposes, this would be replaced with the distance to the nearest
pore.

To utilise this, the small pore value of the geometry factor θ is denoted θ̃ and is defined
as,

θ̃ = lim√
Ap
hw

→0

θ. (28)

The limit value, θ̃ is a pure shape factor and is independent of the relative size of the
pore Ap/hw. To achieve reliable results, the numerical values for θ , which are vitiated with
scatter, are least square fitted using the first four terms of a series expansion of θ as it is
obtained for different pore sizes, as described in Sect. 2. A Matlab function that employs the
least square fit is used to find the leading term. The obtained factors θ̃ , κ and θ̃E are given in
Table2.

Figure 9 summarises the values of θ̃ as a function of the pore aspect ratio a/b. The
figure shows that θ̃ increases with increasing a/b. The result from a series of six rectangular
pores is included. The rectangular pores has a smaller scatter which indicates that there are
more influential possibly mesh related details, regarding the shape than merely the aspect
ratio.
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Table 2 θ̃ , κ , and θ̃E values for the pores A to D and A′ to D′

Case A B C D D′ C′ B′ A′

θ̃ 1.1 1.3 0.9 1.5 0.8 2.6 2.5 1.5

κ −1.10 −0.05 −0.11 −0.11 −0.01 −0.16 −0.02 −0.09

θ̃E 2.0 1.9 1.7 1.2 2.4 3.3 3.4 1.9

Fig. 9 θ̃ versus the shape ratio a/b for pores A to D and A′ to D′ (×). θ̃ for six rectangular pores with
a/b = 2.5, 2, 1.5, 1, 0.67, 0.5 are also included (�). The result for a circular pore is included (Ochoa-Tapia
et al. 1994)

4.2 Elastic Modulus Results

Calculation of the elastic modulus of a region containing a single pore is performed along
the same lines as for the diffusion analysis. The modulus of elasticity of the matrix is Em

and Poisson’s ratio is ν = 0.3. The displacement difference of two opposed edges, separated
by the distance h, is δ. Plane stress is assumed. The material in the pore is assumed to lack
stiffness, meaning that the body is treated as a hollow section.

The distribution of the normalised largest principal stress σ1h/Emδ for pore C′, for which
a/b = 1.5, is shown in Fig. 10. The figure shows that stresses are high at two points on the
edges of the pore. Here, the stress is expected to be high but is probably overestimated because
of the rather coarsemesh that is used in the vicinity of the pore. The pore geometry is obtained
from the CT scanned bone sample as displayed in Fig. 4. Due to the small dimensions of the
pore of only 6 × 9 pixels, the details of the pore are by necessity rather edgy. The shape is
obtained from a 50% greyscale threshold and interpolation between the pixels. The process
removes the original zig-zag contour but leaves some sharp corners (cf. Fig. 3).

The stress distribution along the edges of the body is fairly homogeneous and close to the
nominal value σ1h/Emδ = 1, which shows that the disturbance of the remote uniaxial stress
field is more or less localised to a fairly small region around the pore.

The average stress, σe/σm, for different loading directions and different pore sizes is
shown in Fig. 11. The nominal stress is defined as σm = Emδ/h. The effective stress σe is
obtained from the finite element calculations. As expected, the figure shows that the stress
decreases as the pore size increases. For large pores (b/

√
hw > 0.3), the resulting stress
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Fig. 10 Distribution of the
largest principal stress
σ1h/Em�u for pore C′ with
a/b = 1.5. The nominal loading
is in the x1-direction

Fig. 11 Computed average normalised stress σe/σm for pores A (�), B (◦), C (�) and D (×) (solid lines) and
A′ to D′ with corresponding markers and dashed lines, for different pore sizes

√
Ap/hw. σm is the stress in

the matrix without a pore

decays approximately linearly with b/
√
hw. Obviously, the stress should become zero at

b/h = 1 when the entire body is transversed by the pore which decreases the stiffness to
zero.

The shape factor θ̃E is defining the influence of pores of infinitesimal size. As for the
diffusion case, the estimated value of the geometry factor is denoted θE. Following Eq. (25)
the definition is
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Fig. 12 Influence factor θE for poresA (�), B (◦), C (�) andD (×) (solid lines) andA′ toD′ with corresponding
markers and dashed lines, for different pore sizes b/

√
hw

θE =
(
1 − Ee

Em

)
hw

b2
. (29)

The obtained θE for different b2/hw values is shown in Fig. 12. As shown in the figure,
the resulting θE is dependent on the pore shape and size. Further, θE decreases as the pore
size increases which is an expected consequence of the switch off behaviour of the pore size
dependence described in the previous paragraph. The limiting value for small pores is

θ̃E = lim
b2
hw

→0
θE. (30)

The obtained θ̃E for pores A to D′ and the rectangular pores versus the ratio a/b is shown
in Fig. 13. In Table2 θ̃E is listed for pores A to D′. A couple of diverging results are observed.
Both are for the slender pores A and C when the nominal stress is along the longest side of
the pore, which is b for both. It is known from crack mechanics that energy released at the
introduction of a crack vanishes for a crack that is parallel with the loading direction and
reaches a maximum if the crack is perpendicular to the loading direction. The exact result as
derived in the Appendix, θ̃E = π/2 for a crack and θ̃E = 3π/4 for a circular pore, is added to
Fig. 13. The result is obtained by using the analytical solution for an infinite stretched plane
body with a circular hole cf. (Muskhelishvili 1953). For pores with a > b, the nominal stress
is parallel with the longer side of the body, while Eq. (25), that defines the θE, only involves
the pore width b. This inadvertence might be the reason for the observed influence on the
results.

5 Qualifying Examples

The method is qualified by applying the superposition technique on real cases for diffusion
coefficients and elastic moduli. The porous region of the image in Fig. 5 is chosen. The region
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Fig. 13 θ̃E versus the shape ratio a/b for pores A to D′ with markers ×. The θ̃E for six rectangular pores
with side ratios a/b = 2.5, 2, 1.5, 1, 0.5, 0.67 are also presented here with markers �. The side length is a in
the direction of the load. The known limit result as a/b →0, i.e. for a crack, with θ̃E = π

2 and for a circular

hole, θ̃E = 3π
4 with a/b = 1 are included

is recognised as the region with pores labelled A and 1 to 11, framed in the dashed rectangle.
Finite element calculations were performed using 17 682 8-node isoparametric elements.

The diffusion coefficient was found to be De,FEM = 1.033Dm in the radial (x1) direction,
and 1.071Dm in the tangential (x2) direction. This is compared with the superposition tech-
nique using (17), where values for the characteristic shapes were determined using FEM, and
are listed in Table2. The resulting De,sup = 1.030Dm in the radial direction and 1.068Dm in
the tangential direction.

The numerically calculated elastic modulus was found to be Ee,FEM = 0.895Em in the
radial direction and 0.955Em in the tangential direction. The superposition technique gives
Ee,sup = 0.889Em and 0.948Em in the radial and the tangential directions, respectively. In
both cases, the superposition method gives smaller moduli than the finite element method.

The reason for these differences regarding diffusion coefficient and elastic modulus is
for the presence somewhat unclear. For the superposition model, applied in both radial and
tangential directions, the increase of the diffusion coefficients due to the pores is 0.3% points
less, while the decrease of the elastic moduli is 0.7% points more than the FEM result (see
Table3. The expectations from the result displayed in Figs. 8 and 12 where the real diffusion
coefficients are larger and the elastic moduli are smaller for larger pore densities excludes
the possibility that the deviations should be caused by a too small mesh to pore size ratio.
Another possibility is that the meshing of the regions between the cells with pores where
the flux and stress, in the superposition model is supposed to be uniaxial. The uniaxial field
should be modelled with a very high accuracy, if not with machine precision. On the other
hand, 0.7 and 0.3% is normally considered to be rather good for being a FEM result.

Finite element approximations are known to give a upper bound for the stiffness when full
integration is performed, as is done here. At prescribed displacements and concentrations,
stress and flux is overestimated which leads to an overestimation of De and Ee. It is also
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Table 3 Superposition and FEM
results compared, for diffusion
and elastic deformation

Sup. (%) FEM (%) Difference (%)

Radial diffusion 3.0 3.3 0.3

Tangential diffusion 6.8 7.1 0.3

Radial stress −11.1 −10.5 0.7

Tangential stress −5.2 −4.5 0.7

worth noting that the result in this respect is the same in both radial and tangential directions,
which could indicate a relatively weak dependence of the pore shape and orientation. The
latter could implicate that the superposition results are the most accurate. A definite answer
regarding the accuracy requires further studies of more examples with a variation of pore
densities.

The differences between the FEM results and the superposition model as fractions of the
rather small pore induced changes are between 4 and 16%. Considering this it is important to
realise that the obtained results should be used with caution especially at low pore densities.

6 Conclusions

Superposition principles are derived that employ dimensional scaling of material parameters.
The correction asymptotically is exact for small pore sizes. In the present study, the error is
found to be less than 10%of the pore correction of the diffusion coefficient if

√
Ap/hw < 0.3,

and 10% of the correction of the modulus of elasticity if b/
√
hw < 0.1 (cf. Figs. 8, 12).

In the present analysis, the pores have width to height ratios w/h in the range 0.37–2.7.
The difference between a the pore influence on the effective diffusion coefficient and the
modulus of elasticity is of the order of 2.5, cf. Figs. 9 and 13.

The method is evaluated for a sample of bovine ulna for both the diffusion and defor-
mation cases. The superposition results are compared with full scale finite element results.
Specifically, the change of the diffusion coefficient and the change of the elastic modulus
due to the presence of pores, are compared with the corresponding finite element results.
The change of the diffusion coefficient is 3–7% depending of the direction of the flux. The
change of the modulus of elasticity is 5–11% depending on the loading direction.

Comparedwithfinite element results a difference of 0.3%of the diffusion coefficient and of
0.7%of themodulus of elasticity is found. Relative to the correction itself the differencemake
up 4–16%. The reason for the differences between the two models is discussed considering
that the requirements that the pores should be sparse is well fulfilled. A possible reason
could be that the smallness of the correction amplifies expected errors of the finite element
calculation. A support is found in the fact that the superposition is definitely leading to the
trivial result De,sup = Dm and Ee,sup = Em for vanishing pores, whereas the finite element
result may depend on the element size and the irregular mesh that is produced by the finite
element preprocessor, cf. (ABAQUS 2014).
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Appendix: Using the M-Integral

The reduction of the stiffness of a large panel with a circular hole or a crack through its
thickness is calculated using the path independent M-integral. The integral is based on a con-
servation law applicable to elastostatics that was obtained by Knowles and Sternberg (1972).
The integral is a function of the stress and displacement gradient field. As a consequence of
the path independence, it vanishes for a closed loop path bounding a regular region. Opposed
to that, integration along a closed loop bounding a non-regular region, e.g. a region contain-
ing a pore, such as a hole or a crack, does generally not vanish. Budiansky and Rice (1970)
showed that in this case the M-integral can be interpreted as the potential energy release
rate associated with an expansion of the region. For more details regarding the M-integral
cf. (Freund 1978). Expand in this context means a scaling of all geometrical characteristics.
From the energy release rate follows the change of the stiffness of the structure.

The value of M is defined by the line integral

M =
∫

Ω

(
Wni − Tj

∂u j

∂xi

)
xidΓ , (31)

where W is the elastic energy density, ni is the unit normal to Ω which is directed to the
right relative to the direction of the path Γ in the x1-x2 plane, Ti are the tractions acting on
the material to the left of Ω relative to the direction of Γ and ui are the displacements. The
elastic strain energy density is defined by

W = 1

2
σi jεi j , (32)

where the stress components σi j are related to the strain components εi j via Hooke’s law.
The path independence of M in Eq. (31) follows directly from a corresponding conservation
law (cf. Budiansky and Rice 1970).

Consider a stretched large plane panel with height h and width w so that 0 ≤ x1 ≤ h and
0 ≤ x2 ≤ w in a Cartesian coordinate system as shown in Fig. 14. The pore is here either
a circular hole with the diameter b or a crack with the length b. The stretching is given as
a constant displacement u1 = δ of the edge at x1 = h. The displacement u1 = 0 along the
edge at x1 = 0. Remaining boundary conditions are absence of tractions along all edges.
Without loss of generality plane stress is assumed.

The integration loop is divided into eight segments, Ω1 to Ω8, that form a closed loop
encompassing a regular region, see Fig. 14. The contributions M1 to M8 from integration
over the corresponding segments add up to

M1 + M2 + · · · + M8 = 0. (33)

The contributions are defined as

MN =
∫

ΩN

(
Wni − Tj

∂u j

∂xi

)
xidΓ for N = 1, . . . , 8. (34)

Because of the reversed direction of both the outward normals and the tractions, the contri-
butions from the integration along Ω2 and Ω8 annulate each other, i.e. M2 + M8 = 0.
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On segments Ω3 and Ω7: x2 = w , n1 = 0, n2 = −1, T1 = T2 = 0, and dΓ = −dx1
which gives

M3 + M7 = − w

2Eb

∫ h

0
σ 2
11dx1. (35)

On segment Ω4: x1 = 0, n2 = 0, T2 = 0, and u1 = 0 ⇒ ∂u1/∂x2 = 0, which gives

M4 = 0. (36)

On segment Ω5: x2 = 0 , n1 = 0, and T1 = T2 = 0, which gives

M5 = 0. (37)

Finally on segment Ω6: x1 = h, n1 = −1, n2 = 0, T1 = −σ11, T2 = 0, ∂u1/∂x1 = ε11 =
(σ11 − νσ22)/Eb, ∂u1/∂x2 = 0, and dΓ = dx2 which gives

M6 = h

2Eb

∫ w

0

(
σ 2
11 − σ 2

22

)
dx2. (38)

Now Eq. (33) reduces to

M1 = −M3 − M7 − M6 , (39)

which reads

M1 = w

2Eb

∫ h

0

{
σ 2
11

}
x2=w

dx1 − h

2Eb

∫ w

0

{
σ 2
11 − σ 2

22

}
x1=h dx2. (40)

By splitting the stresses into

σ11 = σo + �σ11 and σ22 = �σ22 , (41)

where σo is the stress in a homogeneous panel and �σ11 and �σ22 are stresses that arise
because of the pore, in this case the circular hole or the crack. Since the pore is supposed to
be small as compared to the extent of the panel the result is that �σ11/σo and �σ2/σo → 0.
After excluding second-order terms of Eq. (40), it follows that

M1 = σo

Eb

{
w

∫ h

0
{�σ11}x2=w dx1 − h

∫ w

0
{�σ11}x1=h dx2

}
. (42)

Fig. 14 a Integration path for a panel with a crack. b Same for a panel with a circular hole
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Per definition Eqs. (24) and (23) give

Ee = h

δw

∫ w

0
{σ11}x1=h dx2. (43)

Using that the nominal stress σo = δ
h Eb gives

Ee = Eb − h

δ2w
M1 + 1

δ

∫ h

0
{�σ11}x2=w dx1. (44)

For a small pore in a wide panel, i.e. w 
 h, the integral term in Eq. (44) becomes insignif-
icant, i.e.

Ee = Eb − h

δ2w
M1. (45)

A Panel with a Crack

Consider the path M1 along a crack in an anti-clockwise direction for a crack that is placed
perpendicular to the loading direction as shown in Fig. 14a. The crack path follows along the
surfaces and encircling the crack tips to avoid the stress singularities present at the crack tips.
According to (Budiansky and Rice 1970) the value of the M-integral is related to the crack
tip driving force G as

M1 = bG. (46)

For a small crack G is given by the relation

G = K 2
I

Eb
= π

2

σ 2
o b

Eb
, (47)

where KI = σo
√

πb/2 is the stress intensity factor.
With this inserted in Eq. (45)

Ee = Eb

(
1 − π

2

b2

hw

)
. (48)

By comparing with Eq. (25), the shape factor θ̃E for a crack is identified as

θ̃E = π

2
. (49)

A Panel with a Hole

A closed loop encircling a circular hole in a panel also in an anti-clockwise direction is
displayed in Fig. 14b. Calculation of M1 requires the stresses and strains on the perimeter of
the hole.Absent tractions, i.e. Tr = Tφ = 0 reduces the strain energy density toW = σ 2

φ/2Eb,
whereas the only non-zero stress component is σφ . With n1 = cosφ, n2 = sin φ, x1 =
b
2 cosφ, x2 = b

2 sin φ, and dΓ = b
2 dθ, M1 becomes

M1 =
∫ 2π

0

σ 2
φ

4Eb
bdφ. (50)

The stress σφ may be found in text books on elastostatics, see e.g. (Fung 1965). The stress
distribution is provided as

σφ = σo(1 − 2 cos 2φ). (51)
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Inserting this into Eq. (50) one obtains

M1 = σ 2
o b

2

8Eb

∫ 2π

0
(1 − 2 cos 2φ)2dφ = 3π

4

σ 2
o b

2

Eb
, (52)

after using the relations r2 = x21 + x22 = b2/4 and dΓ = rdφ. Inserted in Eq. (45) the result
now reads

Ee = Eb

(
1 − 3π

4

b2

hw

)
. (53)

The θ̃E for a circular hole is identified using Eq. (25) as

θ̃E = 3π

4
. (54)
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