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Abstract Effective permeability is an essential parameter for describing fluid flow through
fractured rock masses. This study investigates the ability of classical inclusion-based effective
medium models (following the work of S@vik et al. in Transp Porous Media 100(1):115-142,
2013. doi:10.1007/s11242-013-0208-0) to predict this permeability, which depends on sev-
eral geometric properties of the fractures/networks. This is achieved by comparison of various
effective medium models, such as the symmetric and asymmetric self-consistent schemes,
the differential scheme, and Maxwell’s method, with the results of explicit numerical sim-
ulations of mono- and poly-disperse isotropic fracture networks embedded in a permeable
rock matrix. Comparisons are also made with the Hashin—Shtrikman bounds, Snow’s model,
and Mourzenko’s heuristic model (Mourzenko et al. in Phys Rev E 84:036-307, 2011.
doi:10.1103/PhysRevE.84.036307). This problem is characterised by two small parame-
ters, the aspect ratio of the spheroidal fractures, «, and the ratio between matrix and fracture
permeability, k. Two different regimes can be identified, corresponding to «/k < 1 and
a/k > 1. The lower the value of «/«, the more significant is flow through the matrix. Due to
differing flow patterns, the dependence of effective permeability on fracture density differs
in the two regimes. When o/k >> 1, a distinct percolation threshold is observed, whereas
for a/k < 1, the matrix is sufficiently transmissive that such a transition is not observed.
The self-consistent effective medium methods show good accuracy for both mono- and poly-
disperse isotropic fracture networks. Mourzenko’s equation is very accurate, particularly for
monodisperse networks. Finally, it is shown that Snow’s model essentially coincides with
the Hashin—Shtrikman upper bound.
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1 Introduction

Most rocks are fractured to one extent or another. Fractures that are more permeable than their
host rock can act as preferential (or at least additional) pathways for fluid to flow through the
rock, which is relevant in several areas of earth science and engineering, e.g. radioactive waste
disposal in crystalline rock, exploitation of fractured hydrocarbon and geothermal reservoirs,
or hydraulic fracturing (Bonnet et al. 2001; Neuman 2005; Salimzadeh and Khalili 2015;
Tsang et al. 2015). In describing or predicting flow through fractured rock, the effective
permeability of the rock, comprising rock matrix and a network of fractures, is a crucial
parameter and may depend on several geometric properties of the fractures/networks, such
as size, aperture, orientation, and fracture density.

Itis possible to compute this effective permeability by numerically modelling flow through
discrete fracture networks (DFN) and upscaling the results (e.g. Ahmed Elfeel and Geiger
2012; Lang et al. 2014). However, this numerical upscaling is computationally expensive.
Considering the fact that the geometric information that is typically available on fracture net-
works is stochastic in nature, several realisations are required to obtain representative values
for effective permeability. In addition, due to the degree of uncertainty inherent to fracture-
network properties, one is often interested in quantifying the effect of this uncertainty on
effective permeability by probing a multi-dimensional parameter space, e.g. when assessing
the suitability of sites for radioactive waste disposal. Thus, there is a necessity for predictive
analytical methods.

A prominent example of a predictive model in three dimensions is the heuristic equation
proposed by Mourzenko et al. (2011). It was developed based on a vast collection of numerical
simulations and theoretical arguments. Savik et al. (2013) confirm the accuracy of the method,
thoughitis, per definition, not applicable at low fracture densities when the background matrix
has a non-negligible permeability.

The present work studies inclusion-based effective medium models which treat fractures
as spheroidal inclusions embedded in a homogeneous and permeable rock matrix. Research
on the use of such models to predict effective fractured-rock permeability, particularly at high
fracture densities with intersecting fractures, has advanced rapidly recently (Fokker 2001;
Pozdniakov and Tsang 2004; Barthélémy 2009; Sevik et al. 2013, 2014). Following the work
of Saevik et al. (2013, 2014), the suitability and accuracy of some inclusion-based effective
medium models are investigated here. In addition, the framework of the effective medium
theory (EMT) is exploited to identify two characteristic regimes, depending on whether the
overall flow through the rock mass is dominated by the fracture network or by the matrix.
Due to distinctly differing flow patterns, the dependence of effective permeability on fracture
density differs in the two regimes.

The effective permeability expressions obtained from the various effective medium the-
ories (symmetric and asymmetric self-consistent, differential, Maxwell) are applied here
to polydisperse fracture networks. Comparisons are also made with the Hashin—Shtrikman
bounds, Snow’s equation, and Mourzenko’s equation.

2 Characterisation of Fractures and Fracture Networks

For the purpose of the effective medium models, a fracture is defined here geometrically as
an oblate spheroidal inclusion within a rock matrix. The two equal semi-axis lengths are the
fracture radius, R, and the length of the short semi-axis is one half of the maximum aperture,
i.e. h/2. Then, the aspect ratio, «, of the fracture is
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Several other conceptual models (e.g. Mourzenko et al. 2011), however, define fractures
as flat objects (in this case, discs) with an equivalent aperture, ar. These two geometrical
representations can be related by equating the volumes of a single fracture, yielding:

4
af = —Ra 2)
3

A fracture set is defined as a group of fractures which share common properties, e.g. radius
and permeability. The density, p, of fracture set i is the number of fracture centres, N¢, per
volume, i.e.
o Mg
Pi = 13
where L is the length of a finite-sized cubic domain for which the permeability is to be
determined. Note that, in this study, L > 2R. Let ¢; be the total volume occupied by a
fracture set per unit volume of rock mass. Assuming all fractures have the same aspect ratio,

3

4 n

¢ = TR o =2 ¢ “
i

where 7 is the total number of fracture sets. The following definition for fracture density is

used:

n
8i=p,’R?, 8=Z€i (5)
i

Several other definitions of fracture density have been used in the literature (see, e.g.
Mourzenko et al. 2011; Sevik et al. 2014; Li and Li 2015). The one used here is common,
particularly in the context of effective medium models.

Each fracture is assigned a permeability, K¢, which may depend on several factors includ-
ing aperture, surface roughness, filling material. The un-modified cubic law (Zimmerman
and Bodvarsson 1996) is used here, for concreteness, and to provide a simple way for readers
to relate the order of magnitude of the fractures permeability to its geometry:

Ky = aj (6)
T 12
The cubic law is not a prerequisite for using these effective medium methods, and other
expressions can be used for the permeability of the individual fractures, which attempt to
account for factors such as roughness and contact areas (Zimmerman and Bodvarsson 1996).
Moreover, a level of upscaling is inherent in the assignment of a “permeability” to the fracture,
since the above equation is obtained by integrating the velocity across the entire aperture of
the fracture, after which the “fracture” is treated as a locally homogeneous porous medium
with a locally uniform permeability.
Finally, « is the permeability ratio,

K e <) @)
Kk=— (k ,
Ky
where K, is the permeability of the background rock matrix. In the context of this work, frac-
ture permeability is always several orders of magnitude greater than the matrix permeability,

i.e. « is very small; the case of “filled” fractures having low permeability is not considered.
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The ratio, o/k, between the two small, dimensionless parameters will be shown below to be
an important characteristic of the system.

3 Upper Bounds

The Hashin—Shtrikman (H-S) bounds are rigorous upper and lower bounds for the effective
conductivity of a two-component system. In the present context of fractured-rock permeabil-
ity, the lower bound is almost equal to the matrix permeability, and is therefore trivial. The
upper bound, however, yields interesting and non-trivial information. This upper bound is
expressed here for monodisperse, isotropic networks as (Zimmerman 1989):

3Kt (Km — Kt) (1 — ¢)

Kf.=K 8
s = A e (K — KD ¢ ®

An early, simple model for the permeability of a fractured rock mass, which is only defined
when K, = 0, was introduced by Snow (1969) under the assumption that the fractures in the
domain are infinitely long and therefore are part of the percolating network. His estimate was
extended by Oda (1995) to include fractures of finite length. This estimate will be referred
to hereafter as Snow’s model. In the monodisperse, isotropic case, this estimate is

2
Ksnow = gP”Rszaf ©)

Using the definitions for equivalent aperture in Eq. (2) and fracture volume fraction in Eq. (4),
Eq. (9) can be simplified to

2
Ksnow = §¢Kt (10)

In order to compare this to the Hashin—Shtrikman upper bound, the H-S bound can be
evaluated at zero matrix permeability, yielding

29K
%:3_¢. (11)
Comparison of Egs. (10) and (11) shows that
K
Kby = —omw (12)
1—(¢/3)

Since the fracture porosity ¢ is necessarily very small, it follows that Snow’s model essentially
coincides with the H=S upper bound. This justifies the commonly made, but not previously
proven, heuristic assumption that Snow’s model gives an “upper bound” to the actual per-
meability.

4 Dilute-Limit Solution

The starting point for effective medium models is the calculation of the effect of a set of
inclusions on the effective property at the dilute limit, i.e. an infinitesimally small concen-
tration of inclusions (Zimmerman 1989). For randomly oriented spheroidal inclusions, this
problem has been solved by Fricke (1924):
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Fig. 1 The parameter § for the dilute-limit solution [see Eq. (13)] plotted as a function of aspect ratio, ¢, for
various values of the permeability ratio, x. Here, when o < «, B does not depend on aspect ratio. Conversely,
when o > «, B, and hence effective permeability, does not depend on fracture permeability. Though the latter
statement is obviously not correct at high fracture densities with multiply intersecting fractures, the figure
helps demarcate the two distinctly different regimes ¢ < x and & > «

K =Kn(l+ B¢) (13)
r—1 4 1
p= =D + (14)
3 24 —DM 14+ —1(1—-M)
were K is the effective permeability of the rock mass, r = «~ ! and
26 —sin2G
, Where ® = arccos «. (15)

- 2 tan © sin? ©

For flat spheroids, i.e. wheno < 1, M ~ a% (Savik et al. 2013, 2014) which is also a small
number, leading to 1 — M = 1. Combining these approximations with » > 1, Eq. (14)
becomes

4r 8

P =0+ ta) " @ rne)

(16)

Figure 1 shows the variation of 8 with « for various values of x. The graphs clearly show
the two asymptotic regimes,

8
— fora >«
3ra

B= ) (17
— fora <k
3k

along with the nonlinear transition between the two. Note the apparent paradox that, when the
aspect ratio is much greater than the permeability ratio, i.e. « > «, the effective permeability
does not depend on the fracture permeability. This peculiar fact alone highlights the need for
effective medium models to extend the results to higher fracture densities, in which regime the
effect of Ky will eventually appear in the resulting expressions. Nonetheless, Fig. 1 already
hints at the significance of «/k as a key parameter in determining effective permeability.
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5 Effective Medium Models

The various effective medium models, as derived and presented by S@vik et al. (2013), are
reviewed here. These include the asymmetric and symmetric self-consistent methods, the
differential method, and Maxwell’s approximation. All of the methods are presented below
for a finite number of fracture sets, n, and their various contributions are summed. However,
for a continuous distribution of fracture radii, these contributions need to be integrated. In
such cases, the integration can be performed numerically.

5.1 Maxwell Approximation

Following Maxwell’s conceptual model, the overall effect of several inclusions on the pressure
distribution, and hence on permeability [Eq. (13), summed over all fracture sets], is equated
to the effect of a large sphere of permeability K, representing the effective medium embedded
in the same background rock matrix as the inclusions (see, e.g. Sevostianov 2014; Lutz and
Zimmerman 2016). i.e.,

> Biti = Bsphere (18)

Bsphere can be calculated from Eq. (14) with Mgphere = 2/3 and rsphere = K /K. Rearranging
the above equation yields

1+ 2 noa.a.
K = me' (19)
— 32 b
Inserting the expression for B; [Eq. (16)] for several fracture sets and ¢; = %rrow,', one may
rewrite the Maxwell equation as

K—Kn=2( k2K ¢ (20)
o3 34 L

5.2 Asymmetric Self-Consistent Method

Starting from the dilute-limit solution [Eq. (13) combined with Eq. (16)] for several fracture
sets,

bi. 2D

K—Kn= Kn————

Z (4 Ko 7'[0[)
This method attempts to account for the hydraulic influence of the various fractures on each
other by replacing Ky, on the right-hand side of Eq. (21) by K. By also introducing fracture
density, ¢;, in the equation, one obtains

32 < &
i +1

oKy ;

which is the form used in S@vik et al. (2013). Notice the implicit assumption that K¢ ; > K
in applying Eq. (16) here.
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5.3 Symmetric Self-Consistent Method

This method is similar to the asymmetric self-consistent method, with the exception that the
matrix is also represented as a set of inclusions, having spherical geometry (Sevik et al. 2013,
2014). Although this assumption seems arbitrary, and lacking a physical basis, it will be seen
below that the predictions of this model are surprisingly accurate at low fracture densities.
This model leads to the following expression (see S@vik et al. 2013):

32 (2 1 ! &

5.4 Differential Method

In this approach, fractures are assumed to be added in infinitesimal increments, with the
result homogenised at each step, so that the (j + 1)th group of fractures are embedded in a
hypothetical homogeneous medium whose permeability already reflects the effect of the first
J fracture groups. Although the predictions of the differential method depend slightly on the
integration path, for cases in which there are multiple inclusion sets, a natural integration
path can be chosen such that the infinitesimal amount of each fracture set added, at each step,
is proportional to the final proportion of the set’s volume fraction (Szvik et al. 2013), i.e.

(@1/9); = (@i /D) j+1 = bi. (24)

The result is the following differential equation for the evolution of the effective permeability
with fracture porosity (McLaughlin 1977; Zimmerman 1996; Sevik et al. 2013):

dK "
Fraal lZﬂi¢i (25)

In the case of interest, where « and « are both very small, this equation takes the form (see
Savik et al. 2013)

n

dK 32 g
PR Dy o 6)
i +1

7T0le7,'

where &; is defined analogously to éi in Eq. (24). For monodisperse, isotropic fracture net-
works, this differential equation can be integrated to yield (Savik et al. 2013):

32
e (K — Kn) +In(K/Ky) = 38 27)

6 Heuristic Model of Mourzenko et al. (2011)

In addition to the effective medium methods, the equation for prediction of fracture-network
permeability proposed by Mourzenko et al. (2011) (see also Bogdanov et al. 2003, 2007,
Mourzenko et al. 2005) is included here for comparison. For polydisperse isotropic networks
with disc-shaped fractures embedded in a permeable medium:
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K = K + Ksnow X

1 Blo' — pl)?
N 3 28
( 1+%0/70.7 [ p’{1+ﬂ[l—(p’—ﬂé)]}:|) .

where Kspow = %pn (R*Krar), p' = m%p(R3), p, = 2.41 represents the percolation thresh-
Kf,max Aaf max

old for disc-shaped fractures (Mourzenko et al. 2011), and ¢’ = (with the

Rmax
subscript max denoting values for the fracture of maximum size). Finally, B is a fracture-
shape-specific fitting parameter. To date, no Bvalue for discs is available, and so the value
for hexagons, E = 0.18, given by Mourzenko et al. (2011) is used here. Eq. (28) has been
suggested for use only when p’ > 4.
For monodisperse networks, Kspow reduces to Eq. (9), p’ = 72¢, and

P _ 4
3k’

(29)

7 Numerical Model and Simulations

The predictions of the various approximate models are now tested against explicit numerical
simulations. These use the method presented by Lang et al. (2014) to calculate fractured-
rock permeability as implemented in the modelling framework CSMP++. The approach
works on unstructured finite-element meshes where fractures are represented explicitly as
lower-dimensional objects, i.e. surfaces embedded in a volumetric domain which represents
the host rock. The full permeability tensor of the fracture—matrix ensemble is obtained by
means of volume averaging of the local pressure gradients and fluxes for three independent
steady-state flow simulations, and the subsequent solution of an overdetermined system of
equations. Calculating the permeability tensor over a restricted sub-volume (here, 90 % of the
total volume) of the flow model allows the use of arbitrary fracture-network geometries that
need not be restricted by periodicity or other constraints (for details, see Lang et al. 2014).

Each effective-permeability data point represents a statistically averaged value (here
median) over 2040 realisations. Of the three eigenvalues of the permeability tensor, the
mean is calculated as a representative value. Figure 2 shows examples of realisations of
fracture networks as used in the simulations to determine permeability.

Each of these permeabilities can be corrected for discretisation errors in the same way as
done by Mourzenko et al. (2011). A linear relationship between the computed permeability
K and the dimensionless discretisation length 6/ R is assumed, where § is the maximum size
of a triangular fracture element.

K
K=—"+ (30)

1+D8
R

For each set of simulations, D varies with fracture density and is determined at various
densities by plotting the computed permeability as a function of §/ R and extrapolating down
to 8/R = 0 (see Fig. 3).

To explore the characteristics of the effective medium models, six different cases are
defined here, each case posing a particular challenge to the prediction method. All of the
fracture sets are isotropic and contained in a cubic domain with side lengths of 100m.
See Table 1 for a summary. Cases 1 and 2 are monodisperse networks. From the dilute-
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Fig. 2 Examples of varyingly dense polydisperse networks of disc-shaped fractures embedded in a cubic
domain, as used in the simulations (from Case 5 in Table 1). The colouring shows fracture aperture which
scales with radius in this example. As shown in (a), the element size used for the triangular mesh on the
fractures depends on fracture size (see Table 1).ae =0.2.be =03.ce =1.0.de =1.6

limit solution, it is clear that there is a substantial difference in the dependence of effective
permeability on fracture density (or volume fraction) when the aspect ratio is much less or
much greater than the permeability ratio. These two regimes, o« < « and o > «, are studied
in Cases 1 and 2, respectively.

In Case 3, the fracture network comprises two isotropic fracture sets of strongly differing
fracture radii (and, as such, aperture and permeability). Assuming that the relative number of
fractures in each of the fracture sets follows a power-law distribution (many short fractures
and few long fractures) with an exponent of n, = 3.5, the densities of the fracture sets are
linked:
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Fig. 3 Example of the dependence of the computed permeability Kg on spatial discretisation. Here, D =
0.365, R =10m, e = 1.12, K = 130.33Kn

o (R (31)
=g

Finally, Cases 4-6 consider continuous distributions of fracture radii, using the radii of the
two fracture sets in Case 3 as the minimum and maximum values for a power-law distribution.

—np
I—np 1—np
max Rmin

with np = 3.5 in Case 4,
np = 1.51n Cases 5 & 6;

and4m < R <20m.

P(R) = R7™;

P(R)dR is the probability of observing fracture radii within [R, R + dR] (see, e.g. Lang
et al. 2014; Mourzenko et al. 2005).

8 Comparison to Numerical Data

A comparison between the various effective medium models, the upper bound(s),
Mourzenko’s model, and numerical data is achieved here by plotting K /Ky, as a function
of ¢. For the numerical data, the range between the 5th and 95th percentiles of the 20—40
realisations are shown as a measure of spread in addition to the median value (see Fig. 4).

8.1 Case 1

As shown in Fig. 4a, all of the effective medium methods, as well as Mourzenko’s equation,
give accurate predictions for effective permeability in this regime, except the Maxwell and
symmetric self-consistent methods. Their predictions start to deviate from the data when
& > 0.5, each in a different direction. The H-S/Snow upper bounds are very close to the
actual permeability, which means that almost all the fractures within the medium contribute
to flow.
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Table 1 Simulation parameters for Cases 1-6

Parameter Value Comment
Cases 1-6
Km 1014 m?
L 100m
Case 1 (monodisperse, ¢ K k)
o 3.75 x 1076 % =0.078
K 4.8 x 1073
10m
ag 50 pm
Ky 2.084 x 10* x K
3/R 0.3
Case 2 (monodisperse, a > k)
a 3.75 x 1075 2 =78
K 4.8 x 1077
R 10m
af 500 pm
K¢ 2.084 x 10° x K
3/R 0.3
Case 3 (two fracture sets with different radii)
o 3.75 x 1073
3/R 0.6
Fracture set 1
K1 1.2x 1077 ¢ =313
R 20m
ar,| 1000 pm
Kt 8.33 x 10% x Ky
Fracture set 2
P 3x 107 % =125
Ry 4m
ar o 200 pm
K¢ 2 333 x 10° x K
P2 =pi (2—5)3‘5 Eq. 31)
Cases 4-6 (continuous power-law distribution of radii)
3/R 0.6
ar = §Ra Eq. (2)
K =a}/12 Eq. (6)

Maximum and minimum radii are the same as for the fracture
sets 1 and 2, respectively, of Case 3.

3.5,3.75x 1073 Case 4
np, @ 1.5,3.75 x 107 Case 5
1.5,3.75 x 107 Case 6
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Fig. 4 Effective fractured-rock permeability: asymmetric self-consistent (SSC), asymmetric self-consistent
(ASC), differential (Diff.), Maxwell (Maxw.), Mourzenko et al. (2011) (Mourz.), H-S and/or Snow’s upper
bounds (HS+, Snow), and numerical data (Data). The upper bounds in c¢)-f) are from Snow’s model. The
numerical data—represented by the median over 20—40 realisations, and the range between the 5th and 95th
percentiles—comprises a total of 1431 realisations (mean permeabilities averaged over three eigenvalues),
yielding 53 data points (median permeabilities). The maximum number of fractures in the results shown
here range from 1375 (Case 5/6) to 10,035 (Case 3). a Case 1 (monodisperse, o/k = 0.078). b Case 2
(monodisperse, a/k = 78). ¢ Case 3 (two fracture sets, {&/k)y = 105). d Case 4 (power law with np = 3.5,
(a//c)¢ = 111). e Case 5 (power law with np = 1.5, (a//c)¢ = 177). f Case 6 (power law with np, = 1.5,
{a/k)y = 0.177) {&/k) 4 is a volume-weighted average of o/ over the fracture sets (explained in Sect. 9.3.2)

Neither the numerical data nor the approximate models predict a distinct percolation
threshold here. Apart from Maxwell’s approximation and the symmetric self-consistent
method, the results even appear to be linear. For this monodisperse case, exploiting o /x < 1
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in the asymmetric self-consistent [Eq. (22)] and differential [Eq. (27)] methods yields a linear
relationship between K and ¢, irrespective of the value of ¢:

8
K=Kn+ ?al(fs (32)

The second term on the right side of the above equation represents the effective perme-
ability of the fracture network, if the matrix permeability were zero. Hence, the above result
shows that the effective permeability of the fractured/porous rock mass is simply equal to the
sum of the permeability of the matrix, plus the permeability of the “fracture network”. This
type of simple additivity is very rare in effective medium problems and arises here only in
the extreme range of the parameter space in which ¢ « 1 and ¥ < 1.

8.2 Case 2

Here, the regime o > « is studied. As in the opposite regime (Case 1), Fig. 4b shows that the
H-S upper bound and the Snow model are practically equal. The Maxwell approach tends to
infinity when the denominator in Eq. (19) tends to zero, i.e. when ¢ — % (;—’; + 1). Hence,
in this particular case, Maxwell’s equation gives meaningless predictions when ¢ > 0.86. In
theory, the percolation threshold for this set of randomly oriented disc-shaped fractures is at
& = 0.244 (Mourzenko et al. 2005). As mentioned in Sevik et al. (2013), the asymmetric self-
consistent method is able to predict the percolation threshold. However, the symmetric self-
consistent approach is better at capturing the general behaviour of the curve at low fracture
densities. At higher densities (¢ > 0.5), the same type of deviation from the numerical data
as in Case 1 can be observed. In this range of higher densities, the gradient of the asymmetric
self-consistent curve is more accurate, though it overestimates the effective permeability. The
predictions of the differential method are much lower than the numerical data. Sevik et al.
(2013) state that the differential method only gives useful results when o < «.

In this example, Mourzenko’s equation provides an excellent match to the numerical data,
accounting well for both medium- and high-fracture-density ranges. Mourzenko et al. (2011)
point out that, according to percolation theory, K is expected to be a quadratic function of ¢ at
densities above but close to the percolation threshold. This statement is valid when Ky, = 0,
but also appears to hold here. At higher densities, K then becomes a linear function of €.

It can easily be shown that both self-consistent methods become linear in € when K > Kpy:

K To 32 .

— x—— | —e—1 asymmetric (33)
Km 45\ 9

K Ta (64 .

— x———=¢e—-1 symmetric (34)
Kn 4 k \27

Under the assumption that, at very low densities (i.e. below the percolation threshold),
K < aK; (which, in this case, implies that effective permeability is similar in magnitude
to matrix permeability), one can derive the following equations from the effective medium
models:

K 1

—— = —,— asymmetric self-consistent (35)
K - 5¢

K 1+ 32¢

— = 721 symmetric self-consistent (36)
K — 3¢

K 32

— =exp| —¢) differential 37
Km P ( 9 ) 7
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K 14+ %e

— = —=— Maxwell (38)
Km — fs

K _4 + 32, dilute limit (39)
e —¢& 11ute [imri

Km 9

In these expressions, the effective permeability is independent of fracture permeability
because, well below the percolation threshold, the fluid always has to pass through the
matrix, making matrix permeability the limiting factor.

8.3 Case 3

There are two fracture sets with distinctly different fracture radii (4 and 20 m) and, hence, dif-
fering fracture permeabilities. This produces a significant skew in the effective-permeability
distribution, as can be seen in the asymmetric spread of the values of the numerical data in
Fig. 4c. While the fracture set with many small fractures leads to a relatively low median
value, the large-radius fracture set is responsible for the upper outliers. In general terms, the
accuracy of predictions of the effective medium models does not seem to change because of
this. They tend to over- or underestimate effective permeability in much the same way they
do in Case 2. However, the skewed nature of the fracture network appears to pose a problem
for Mourzenko’s heuristic model, which overestimates effective permeability in a manner
very similar to the asymmetric self-consistent method.

8.4 Cases 4-6

The comparison between the effective medium models and numerical data using a power-law
distribution (Fig. 4d—f) reinforces the findings of Cases 1-3. The symmetric self-consistent
model performs best at low fracture densities and eventually diverges from the data. The
asymmetric self-consistent model generally overestimates effective permeability, but con-
verges towards the correct gradient of K to & at large fracture densities (this is more
obvious in Fig. 4e than in Fig. 4d), where full convergence has not yet occurred. The
accuracy of both self-consistent methods is unaffected by the properties of the fracture-size
distribution.

Mourzenko’s heuristic model performs very well in these cases. Its accuracy appears
to increase with decreasing values of the power-law exponent, np. This is because part of
the fitting of Eq. (28) relies on the dimensionless fracture transmissivity o’ of the largest
fracture. As np, decreases, the influence and relevance of o', and hence the accuracy of the fit,
increases.

9 Discussion

Figure 5 summarises the various characteristics of effective rock-mass permeability addressed
in this study. The ratio o/« is a measure of the relative contributions of the fracture network
and the matrix to overall flow, going from no preferential flow through the fractures when
a/k — 0 to no flow through the matrix when a/k — 00.

In the following, one of the two self-consistent methods [Eq. (22) or (23)] is used to
explore particular aspects of the permeability of a fractured rock mass.
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a/k <1 a/k>1

Flow direction ——>

:

e =0.07

« Relatively regular pressure contours e Mildly irregular pressure contours
o Both matrix and fracture network
contribute to flow

. K—ffn =1+ 87 % (see Eq. (32)) . Ién ~(1- %e)_l (see Eq. (35))

« Non-percolating fracture network

o Very irregular pressure contours

o Most flow goes through fracture net-
work

o F' (g, Km, K, K) =0 (see Eq. (22))

Fig. 5 Overview of flow characteristics and effective permeability of a fractured-rock mass. Figures depict
slices through the middle of a 3D cubic domain from Cases 5 and 6 (right and left column, respectively).
Contour lines and map represent pressure with flow from /left to right. Fracture trace lines are shown as thick
black lines. The given equations are derived from the asymmetric self-consistent method for monodisperse,
isotropic networks

9.1 Percolation Threshold

While there is a clear percolation threshold in Fig. 4b where o > «, it is clearly lacking in
Fig. 4a where o < k. A closer look at this behaviour for various values of o/k and ¢ < 0.5
using the symmetric self-consistent method reveals how the linear behaviour of effective
permeability with ¢ for o¢/k <« 1 (described in Sect. 8.1) transitions into the distinctly
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Fig. 6 Effective permeability at low fracture densities for various values of o/« using the symmetric self-
consistent method. The parameters used here are based on Case 2 (see Table 1). Variations are achieved by
varying the fracture radius, and correspondingly, fracture aperture and permeability. The two vertical lines
represent the percolation threshold when the matrix is impermeable as determined numerically by Mourzenko
et al. (2005) (dashed) and predicted by the symmetric self-consistent method (dash-dotted)
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Fig.7 Contour map showing the relative difference between the predictions of the asymmetric self-consistent
method, K asc, and the H-S upper bounds, i.e. (Kﬁ_s - KASC)/KI'_'I'S. The parameters used here are the same
as in Fig. 6

nonlinear regime as «/k increases (Fig. 6). Hence, the smaller the contribution of the rock
matrix to flow, the more distinct the percolation threshold is. This occurs because, when
the permeability of the matrix is non-negligible, fluid can easily bridge any gaps between
unconnected fractures by passing through the matrix (Bogdanov et al. 2003).

In the numerical data generated by Bogdanov et al. (2007) of effective permeability for
fracture networks and varying values of «/k, the percolation threshold as a distinct, discon-
tinuous feature tends to disappear when «/«x < 7.5. This is in agreement with the findings
discussed here, although Bogdanov et al. (2007) do not consider the case o/k < 1.

9.2 Upper Bounds

Figure 7 is a contour plot of the relative difference between the H-S upper bounds and the
effective permeability as calculated using the asymmetric self-consistent method for various
values of ¢ and «/«. It can be seen as a measure of the fraction of fractures that contribute to
flow. When o > «, this difference is maximal below the percolation threshold and reduces
to a constant value with increasing €. Essentially, the contribution of non-percolating clusters
to overall flow is very low. At very high densities, almost all clusters are connected, and only
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peripheral parts of the fractures do not contribute to flow (Mourzenko et al. 2011; Leung and
Zimmerman 2012).

For o <« «, effective permeability is consistently close to the upper bounds. Flow through
the matrix is important, always connecting fracture clusters and maximising the number of
fractures that contribute to flow. This suggests that, in this regime, theoretical upper bounds
are reasonably accurate estimates for effective permeability.

9.3 Polydisperse Networks
9.3.1 Smallest Fracture Radius

Polydisperse fracture networks are typically dominated by large fractures with high perme-
abilities. However, they also usually contain many small fractures with low permeabilities.
A threshold fracture radius, Ry, may exist, for which, the contribution of smaller fractures to
flow is negligible (see, e.g. Berkowitz et al. 2000; Dreuzy et al. 2001). When characterising
fracture networks, it is important to know which fracture sets may be neglected within a given
range of accuracy. The additive nature of effective medium methods provides a convenient
framework for addressing this issue.

Consider, as an example, Case 4 in Sect. 8.4. Assuming now that there is no clear minimum
fracture radius, i.e. Rpin = Om (as opposed to 4m in Case 4), one may be interested in
determining the threshold radius, Ry,. This can be assessed, e.g. using the asymmetric self-
consistent method, by neglecting the contributions of all fractures in Eq. (22) for which
R; < Ry Figure 8 shows the effect this would have on the predicted effective permeability
for various values of Ry,. Note that € in Fig. 8 (i.e. the x-axis) is calculated with Eq. (5) for
all fracture radii.

9.3.2 Characteristic {«/k)

For fracture networks with several fracture sets of differing o/« , as is the case in polydisperse
networks (including Cases 3—6), an obvious question that arises is how to define an average

400 T T T T T
350 Rth/Rmax = 0 ——
r Ri/Rpay = 1/8 -
300l Rin/Rinax = 3/16 i
RiRmax = 114 -
250 —
£ 200
2
150 —
100 —
50 —
0 1 1 1 1
0 0.5 1 1.5 2 2.5 3

Fracture density,

Fig. 8 Effect of neglecting the contribution of fractures with radii smaller than Ry, on effective permeability
as calculated with the asymmetric self-consistent method. This is equivalent to Case 4 with Rppjp = Om
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Fig. 9 Effective permeability as a function of fracture density for various values of (/)¢ using the asym-
metric self-consistent method. The parameters used here are based on Case 4 (see Table 1), with Rypi, = Om.
Here, Rmax is varied between 0 and 20m

(a/K) that is representative of the fracture network and rock matrix. A simple arithmetic
average does not make sense, since it lacks information on the sizes of the fractures. Instead,
a volume-weighted average seems more appropriate:

o 1< o
(g = 5,2 g (40)

Using the example in Sect. 9.3.1 (i.e. Case 4 with Ry, = Om), effective permeability is
plotted in Fig. 9 over fracture density. By varying Rpnax between 0 and 20 m, various curves
can be plotted covering a range of values of (/). Here, the asymmetric self-consistent
method is used to calculate K.

Equation (40) can be used to calculate (c/« ) in Cases 3—-6. In Case 3, this yields (a/x )y =
105. Cases 4-6 require an integration over the fracture radii, eventually leading to

o @ —np[RE - RS
(=) = — —5. 41)
K 27K (6 — np) [ i — Rf;‘m”")]

ie. (a/k)y = 111 in Case 4, and (a/k)y = 177 in Case 5. Finally, («/k)y = 0.177 in
Case 6. These values adequately depict the nature of the curves shown in Fig. 4c—f, i.e. linear
when (a/«)y = 0.177 and very nonlinear for (a/«x)y = 111 and {a/Kk)y = 177.

Figure 10 compares effective permeability predictions by the asymmetric self-consistent
method for various fracture-size distributions. Here, a monodisperse case (Case 2) with
a/k = 78 is plotted on the same graph as two polydisperse cases (Cases 4 and 5). In Cases 4
and 5, the aspect ratio, o, has been altered such that (o /«)y = 78. The comparison touches
on some of the points that have previously been made for the asymmetric self-consistent
method when o /k > 1:

1. Below the percolation threshold, K does not depend on o/« [see Eq. (35)].
2. For a given value of o /k: When K > Ky, K is linearly proportional to ¢ [see Eq. (33)].
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Fig. 10 Effective permeability as a function of fracture density for various fracture-size distributions using
the asymmetric self-consistent method. The three curves represent Case 2 (a/k = 78), and Cases 4 and 5 with
altered values of « to ensure that («/k)g = 78 in both cases

However, one can also see that while o/« and («/k )¢ can be used to characterise the system,
they cannot be expected to uniquely represent the behaviour of the effective permeability,
particularly when or/k > 1.

10 Previous Work Dealing with the Parameter o/«

Bogdanov et al. (2003) introduced a parameter to characterise their numerical data on
monodisperse, isotropic networks,

’ Kfaf . , 40!
o = —

= , lLe. 0 =—— 42)
RK 3k

in the current notation. Their values for o’ ranged from 107° to 10%. However, in the cases
where 0’ < 1, fracture permeabilities were either similar in magnitude to or lower than
matrix permeability, i.e. k & 1 or k > 1. In the present work, however, only fractures that
are very permeable compared to the matrix are considered, i.e. k < 1, making a comparison
in the regime o’ < 1 infeasible.

Nonetheless, when Bogdanov et al. (2003) gradually increase ¢’ from 10 to 10*, they
also find an increasingly more distinct percolation threshold (as discussed in Sect. 9.1). Their
investigation is limited to fracture densities of ¢ < 1. Bogdanov et al. (2003) seem to assume
that the effective permeability is only linear with fracture density at very low fracture densities
below the percolation threshold or when k > 1. As pointed out in Sect. 8.1, if @ < «, this
linearity also holds at high fracture densities even when « < 1.

In Bogdanov et al. (2007), the range 1 < ¢’ < 104 is studied, again for ¢ < 1. Note
that in the calibration of the model by Mourzenko et al. (2011), higher fracture densities are
considered. Bogdanov et al. (2007) extend the definition of ¢’ to account for polydisperse
networks and size-dependent fracture permeability (see Sect. 6):

K‘
o' = Lf.max 4f,max (43)
RmaXKm
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This depends solely on the properties of the largest fracture and is inherently different from
the averaging conducted in Sect. 9.3.2.
Sevik et al. (2013) use the parameter

=2k, (44)
K
in their study, and varied «/k between 1 and 100. Here, again, ¢ < 1 (when Ky # 0).
Note that they considered both isotropic and anisotropic (albeit monodisperse) fracture dis-
tributions. Their results show a similar transition from an almost linear, to an increasingly
nonlinear, character as depicted in Fig. 6.
Savik et al. (2014) consider the parameter A~' = «/«, varying it between 10 and 10%,
withe < 5.

11 Conclusions

In predicting the effective permeability of a three-dimensional fractured rock mass, two dis-
tinct regimes can be distinguished, depending on the relative size of two small, dimensionless
numbers: the aspect ratio of the spheroidal fractures, «, and the permeability ratio, k. When
a/k <K 1, effective permeability is linearly dependent on fracture density without a distinct
percolation threshold. With increasing «//«, this relationship becomes increasingly nonlinear
at low and intermediate fracture densities, but remains linear at high fracture densities. The
ratio o /k can therefore be interpreted as a measure of the relative contributions of the fracture
network and matrix to the overall flow, similar to the flux ratio discussed by Paluszny and
Matthai (2010), and Nick et al. (2011). For polydisperse fracture networks, a characteristic
value of (/k) can be determined by weighting the individual values of o/« of the various
fracture sets with fracture volume while averaging.

Comparison to explicit numerical simulations of mono- and polydisperse isotropic fracture
networks (with fracture-size dependent fracture permeabilities) shows that the self-consistent
effective medium methods are generally capable of predicting effective permeability over a
wide range of conditions. While the symmetric self-consistent method is particularly accurate
at low fracture densities, the asymmetric self-consistent method predicts the correct asymp-
totic behaviour (cf. Sevik et al. 2013). The differential method is only useful when oo/k < 1.
In that regime, even the Hashin—Shtrikman and Snow upper bounds appear to give good
approximations. Maxwell’s approximation is only reliable at very low fracture densities.

These effective medium models have been shown to be powerful tools. They are valid at
both low and high fracture densities. When considering polydisperse fracture networks, the
type and characteristics of the fracture-size (as well as aperture and fracture-permeability)
distribution do not affect the applicability or accuracy of these models. These results are
perhaps surprising, since intuitively, fracture intersections would seem to be a crucial factor
in controlling the effective permeability, and yet these models do not explicitly contain
fracture intersections as a parameter. Moreover, they are all based on the problem of a single
“inclusion”, for which the concept of intersection is not even meaningful.

It should be noted that the heuristic model proposed by Mourzenko et al. (2011) is good
at predicting effective permeability. It is very accurate for monodisperse fracture networks,
but suffers a slight loss of accuracy for polydisperse networks, that appears to depend on the
attributes of fracture-size distribution. The present work has in effect shown a link between
predictions of methods based on inclusions-in-a-matrix and methods based on fracture net-
works.

@ Springer



Inclusion-Based Effective Medium Models for the Permeability... 157

Finally, for the case of zero matrix permeability, the well-known approximation of Snow,
which is based on network considerations rather than a continuum approach, is shown to
essentially coincide with the upper Hashin—Shtrikman bound, thereby proving that the com-
monly made assumption that Snow’s equation is an “upper bound” is indeed correct.
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