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Abstract Groundwater abstraction wells are commonly protected by zones of restricted
land use. Such well protection areas typically cannot cover the entire well catchment, and
numerous risk sources remain. Each risk source could release contaminants at any time, affect
the well earlier or later, and thus put the quality of supplied water at risk. In this context,
it seems fortunate that most well catchments are equipped with monitoring networks. Such
networks, however, often grew historically while following diverse purposes that changed
with time. Thus, they are often inadequate (or at least suboptimal) as reliable risk control
mechanism.We propose to optimize existing or newmonitoring networks in amulti-objective
setting. The different objectives are minimal costs, maximal reliability in detecting recent
or future contaminant spills, and early detection. In a synthetic application scenario, we
show that (1) these goals are in fact competing, and a multi-objective analysis is suitable,
(2) the optimization should be made robust against predictive uncertainty through scenario-
based or Monte Carlo uncertainty analysis, (3) classifying the risk sources (e.g., as severe,
medium, almost tolerable) is useful to prioritize the monitoring needs and thus to obtain
better compromise solutions under budgetary constraints, and (4) one can defend the well
against risk sources at unknown locations through an adequate model for the residual risk.
Overall, the concept brings insight into the costs of reliability, the costs of early warning,
the costs of uncertainty, and into the trade-off between covering only severe risks versus the
luxury situation of controlling almost tolerable risks as well.
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1 Introduction: Motivation and State of the Art in Monitoring Well
Catchments

Ninety-seven percent of the world’s usable freshwater is stored as groundwater. Groundwater
abstraction wells produce amajor share of the worldwide daily water demand (Sampat 2000),
but they are often threatened by a large number of hazardous land use activities (called risk
sources in the following). Each risk source may or may not release contaminants into the
aquifer, and thus put the produced water quality at risk. The World Health Organization
proposed Water Safety Plans to control this risk (Davison et al. 2005) by (1) knowing the
entire inventory of risks within the well catchment, (2) identifying measures to control these
risk sources, and (3) ensuring that they are in fact controlled.

For risk reduction, the most common measure is to restrict the land use within well
protection zones (USEPA 1993). Yet, it is typically not possible to remove all risks through
declaring protection zones due to two reasons: (1) Restricting the land use everywhere in
a large well catchment is often impossible, especially in urban regions, and (2) there is
uncertainty in the actual outline of the well catchment. Thus, there is always an inventory
of risk sources in the catchment that remains to be assessed and controlled. Accordingly,
there is ample literature on capture zone delineation and its uncertainty (e.g., Varljen and
Shafer 1991; Jacobson et al. 2002; Moutsopoulos et al. 2008; Stauffer et al. 2005), on aquifer
vulnerability (e.g., Aller et al. 1987; Overheu et al. 2014; Zwahlen 2003), on (probabilistic)
well vulnerability (e.g., Enzenhoefer et al. 2012; Frind et al. 2006; Enzenhoefer et al. 2014),
and on risk analysis (e.g., Cushman et al. 2001; Tartakovsky 2013). While such works help
to evaluate the risk sources to which the production well is exposed, it is not yet helpful in
controlling them.

In order to track the quality of groundwater prior to pumping, most well catchments are
equipped with monitoring networks (at least in countries like Germany and Denmark). Such
networks often grew historically while following diverse purposes that changed with time
(e.g., monitoring groundwater levels or risks that ceased to exist). Therefore, unfortunately,
they are inadequate (or at least suboptimal) for rigorous and cost-efficient risk control. A
prioritization according to the severity of the perceived risk is sometimes done implicitly
(through adding monitoring wells to monitor the risk sources that are currently perceived
as the most severe ones), but seldom in a coordinated fashion. In situations like this, a re-
optimization of the existing monitoring networks can be advisable. Opposed to that, there
are well catchments in other countries without any monitoring networks for controlling risk
sources. Absence of monitoring networks often coincides with the absence of corresponding
budgets or regulations.However, it is in strong contrastwith the recommendation of theWorld
Health Organization to use a risk control structure (see above). In order to initialize cost-
minimal risk control in such cases, again, optimization of monitoring networks is advisable.

Thus, in any case, one could achieve or increase reliability and cost efficiency of
monitoring-based risk control through formal, risk-prioritized optimization. When doing
so, it is apparent that the goals of monitoring are manifold and often competing (e.g., Reed
and Minsker 2004). In the current context, they should include at least the following three
objectives: (1) a maximal detection probability of contaminant spills, because otherwise
the risks cannot be controlled at a high reliability level, (2) a maximal early-warning time
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(i.e., earliest possible detection of new contaminant spills after they have occurred), because
countermeasures such as installing additional water treatment steps require time for imple-
mentation, (3) minimal costs for installation and operation of the monitoring network. In
the following, these three objectives will be called detection probability, early-warning
time, and costs. It is intuitive that these objectives are partly competing (a cheap moni-
toring network cannot offer a high detection probability and a large early-warning time).
Hence, concepts of multi-objective optimization (e.g., Marler and Arora 2004) seem appro-
priate.

Along the lines of long-term groundwater qualitymonitoring (see review byLoaiciga et al.
1992), there is a large body of literature on multi-objective groundwater quality monitoring
(e.g., Reed andMinsker 2004). The focus of these studies ismostly on long-termwater quality
monitoring or on monitoring the evolution of a single, known contaminant plume, but not on
early warning. Typical objectives include the estimation of plume shapes (e.g., MacFarlane
et al. 1983), estimation of total contaminant fluxes (e.g., Schwede andCirpka 2010; Troldborg
et al. 2008), and contaminant source identification (Saenton and Illangasekare 2004;Michalak
and Kitanidis 2004).

Monitoring networks as early-warning systems are often associated with disaster man-
agement for natural hazards such as tsunami or earthquake warning systems, e.g., Allen and
Kanamori (2003). Alternatively, there is research on detection sensor networks in the signal
processing literature (e.g., Chamberland and Veeravalli 2003), but without existing appli-
cations to well catchments. In the area of hydrogeology, there are two relevant studies that
investigate the monitoring of a single landfill (e.g., Yenigül et al. 2006; Meyer et al. 1994).
Both studies use the objectives of high detection probability and early warning. The first
study, however, works with a cost formulation for increased groundwater remediation costs
after late detection, while the second study minimizes the area covered by the contaminant
plume before the plume is detected. Meyer et al. (1994) also minimized the installation costs
of a monitoring network counted through the number of required monitoring wells, which is
the same approach aswe use in our current study. The necessity to consider robustness of their
monitoring networks against uncertainty in hydrogeology and spill location is done in both
previous studies through Monte Carlo simulation over hydraulic conductivity and potential
leak locations. In our current approach, we also consider uncertain ambient flow conditions
and water production rates. Additionally, we propose an approach for treating contamination
spills at entirely unknown locations. The major difference between our current approach and
these two studies, however, is that these studies do not consider the protection of a ground-
water well against an inventory of risk sources. Instead, they focus on monitoring of a single
landfill. Thus, to the best knowledge of the authors, there is no study to date that approaches
the problem of robust optimal monitoring for multiple risk sources as an early-warning sys-
tem in drinking water well catchments. In Nowak et al. (2015), the authors already described
the general concept behind our current approach, yet without any implementation, without
application to a synthetic test case, andwithout the concept for entirely unknown risk sources.
Also, we refine now the definition of our objective functions.

2 Goals and Approach

Our overall goal is to provide risk control in well catchments through optimal early-warning
monitoring networks. We wish to detect with maximum probability all possible future conta-
minations thatmight affect thewell’swater quality. Additionally, wewish to providemaximal
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early-warning time for installing counteractions. Finally, we seekminimal costs for installing
and operating the monitoring network.

As already described inNowak et al. (2015), the considered three objectives are competing.
Multi-objective optimization will reveal the competition and trade-offs between the goal
attainment levels in these three objectives, and will provide a transparent decision basis.
For the optimization procedure, the first step is to formulate a corresponding multi-objective
optimization problem (see Sect. 3.1).

In a second step, scenario analyses or Monte Carlo simulation should be used to represent
predictive uncertainty. Uncertainty in predicting the yet nonexistent contaminant transport
from the risk sources to the drinking water well is substantial. Appropriate treatment of these
uncertainties and a corresponding robust formulation of the multi-objective optimization
problem will make the optimization results robust against the considered uncertainties. The
affected objective functions need to be formulated according to well-known rules of robust
optimization (see Sect. 3.2).

In a third step, qualitative risk categorization is used. Sufficient monitoring is not practi-
cally affordable, if the risk inventory of the featured well catchment is large. A categorization
of the risk sources according to their severity and a corresponding re-formulation of the opti-
mization problem will help to prioritize and better focus the monitoring network. Therefore,
separate optimization objectives for each risk category need to be introduced (see Sect. 3.3).

The last step is to introduce an additional risk category for unknown risks together with
corresponding additional optimization objectives. This is necessary because knowledge of the
risk inventory is unlikely to be complete, especially in densely populated areas. The early-
warning system can be made robust against the residual risk only through an appropriate
representation in the optimization (see Sect. 3.4).

After presenting this approach in Sect. 3, we present in Sect. 4 a synthetic application
scenario and provide implementation details. Sect. 5 uses variants of the application scenario
in order to demonstrate stepwise the benefits of our proposed approach (see above), followed
by a conclusion and outlook in Sect. 6.

3 The Proposed Concept and Methods in Detail

Our approach assumes that a sufficiently well-calibrated simulator for flow and transport in
thewell catchment is available. For the treatment of uncertainty and unresolved heterogeneity,
please see Sects. 3.2 and 5.2. In practical applications, such a simulator will typically solve
the groundwater flow equation at steady state, and the advection–dispersion equation. Steady-
state groundwater flow can be described by

− ∇ · (K∇φ) = qs in Ω, (1)

with hydraulic conductivity K (x), hydraulic head φ, and source and sink term qs in the
domain Ω . Eq. 1 is subject to the general boundary conditions:

− (K∇φ) · n = q̂ on Γ1 and (2)

φ = φ̂ on Γ \ Γ1, (3)

using the predescribed fluxes q̂ and heads φ̂ on theNeumann boundaryΓ1 and on theDirichlet
boundary Γ \ Γ1. The normal vector n points outward on the domain. Advective–dispersive
transport for conservative tracers is described by:
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∂c

∂t
+ ∇ · (vc − D∇c) = 0 in Ω, (4)

with concentration c, time t , velocity v = q/ne, Darcy velocity q, effective porosity ne and
hydromechanic dispersion tensor D (Scheidegger 1954):

D = (αt‖v‖ + Dm) I + (α� − αt)
vvT

‖v‖ . (5)

Here, α� and αt are longitudinal and transversal dispersivities, Dm is the molecular diffusion
coefficient, and I is the identity matrix. The boundary conditions for Eq. 4 are given by:

−n · vc + n · (D∇c) = Ĵ on Γ2 and (6)

c = ĉ on Γ \ Γ2, (7)

with Ĵ as a prescribed normal flux density and ĉ as prescribed concentrations.
We also assume that there is a list of known locations where contaminant spills could

occur. These risk sources will typically include agriculture, housing areas with oil tanks,
sewer systems and wastewater treatment plants, and industrial sites.

First, using the available simulator, we solve a reverse transport problem (Neupauer and
Wilson 2002) that starts at the production well. The resulting backward plume identifies
the transport-relevant catchment of the well that needs to be monitored. Then, we discretize
the identified catchment with a fine spatial mesh of potential monitoring well locations
Mj , j = 1, . . . , nM. For each potential location, the drilling costs should be known. All
risk sources Ri , i = 1, . . . , nR within the identified catchment are relevant in the following.
We assume that conservative estimates of contaminant mass mi in case of spill events are
available for each relevant risk source Ri , and that the corresponding chemical detection limit
cdeti is known.

Second, starting from all relevant risk sources, we solve instantaneous-release forward
transport problems to simulate the contaminant plumes that would emerge in case a risk
source actually released contaminants into the subsurface. Following the discussion of risk
estimation in well catchments in Enzenhoefer et al. (2015), we distinguish here the different
spatial extent of risk sources (e.g., point sources, line sources and areal sources versus point
sources with uncertain position along a line or within an area) through corresponding source
geometries. From all these transport simulations, we store the following data:

δi j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 a contamination released at risk source Ri exceeds the

detection limit cdeti at monitoring candidate location Mj

0 no detectable concentration at Mj .

(8)

If δi j = 1, we can also obtain the travel time τ deti j between contaminant release at risk source

Ri and first exceedance of the detection limit cdeti at monitoring candidateMj .We also extract
a travel time τi,well for first arrival of a critical concentration ccriti at the production well. The
difference yields the respective early-warning time ti j :

ti j =
{
max

(
τi,well − τ deti j , 0

)
early-warning time

(
if δi j = 1

)

0 no early warning
(
δi j = 0

)
.

(9)
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Further, we extract the duration 
tvisi j for which the contaminant plume from risk source
Ri is visible at a monitoring candidate Mj , i.e., the duration for which the simulated plume
from Ri exceeds the detection limit cdeti at the position of Mj .

3.1 Multi-objective Optimization Formulation

We formulate the multi-objective optimization problem at hand as follows:

dopt = argmin
d∈D

[ fdet, fwarn, fcost] . (10)

Here, dopt is the optimal set of decision variables d. The decision variables d characterize the
planned monitoring system (e.g., number and positions of monitoring wells, filtering depth
and window, frequency of sampling), D is the space of allowable designs (e.g., restricted to
accessible positions within the catchment, maximum admissible installation and operation
costs), and fdet, fwarn and fcost are the objective functions that assign goal attainment levels
to each design d ∈ D. These three objective functions are explained in the following.

Detection probability The values δi j from Eq. 8 express, which contaminant plumes from
the risk sources Ri can in principle be detected by the monitoring wells Mj . However, the

monitoring wells are only sampled in time intervals of
t sample
j , while the plumes exceed the

detectable concentration cdeti only for a duration 
tvisi j . This fact causes a probability that a
plume may pass unnoticed through a monitoring well position due to unfortunate timing. To
account for this effect, we correct from δi j to a probability of detection Pdet

i j as follows:

Pdet
i j (d) = min

⎛

⎝

tvisi j


t sample
j (d)

, 1

⎞

⎠ · δi j . (11)

The aggregation of the obtained probabilities Pdet
i j over all risk sources Ri , i = 1, . . . , nR

and over all monitoring wells suggested from the candidates Mj , j = 1, . . . , nM by any
given design d is rather complex, and hence outsourced to the Appendix (see Eqs. 15, 16).

Early-warning time The achievable early-warning time values for different risk sources may
vary between none and several decades, such that a simple linear relation between individual
early-warning time values and the overall early-warning performance of the monitoring
network is not suitable. Therefore, we use a nonlinear utility function (see Fig. 1), defined
by a desirable minimal early-warning time t̂min, a corresponding early-warning utility ûmin,
and the maximal useful early-warning time t̂max. For an early-warning time t for any given
risk source that falls between t̂ = 0 and t̂min, the growth of the utility is steep. Beyond t̂min,
the utility grows slower, until it reaches its maximum value of one at t̂max. Finally, for longer
early-warning time than t̂max, there is no additional benefit. Since ûmin defines the steepness
of the utility curve between 0 and t̂min, it can be seen as a catchment-specific weighting
factor for early or late detection and needs to be chosen carefully. Changes in all three values
(ûmin, t̂min and t̂max) might influence the final results more or less distinctively.

While the objective behind fwarn is straightforward, themathematical formulation of fwarn
is surprisingly complex—especially when a risk source is visible to several monitoring wells.
Thus, the definition of fwarn is postponed to the “Appendix.”
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Fig. 1 Case-specific utility function Ui (t) defined in Eq. 18 (see “Appendix”)

Table 1 Parameter values chosen for the objective functions and their required components defined in Eqs. 8,
9, 11 and 15–18

Name Symbol Units Value

Sampling interval 
t
sample
j (years) 1

Non-dimensional spill mass m0 (–) 1

Detection limit cdeti (1/m3) 1 · 10−12

Critical concentration ccriti (1/m3) 1 · 10−12

Desirable minimal early-warning time t̂min (years) 10

Maximal useful early-warning time t̂max (50) 50

Minimal desirable early-warning utility ûmin (–) 0.7

Costs The objective function for costs, fcost, could be a summation of depth-specific drilling
costs that are spatially variable, plus operation costs that are composed of costs per sampling
round within a given budget period. For the sake of simplicity, we use only drilling costs,
and the drilling depth is an identical value across the entire domain. As a slight complexity,
we use spatially variable drilling costs that are linked to the zonation pattern of hydraulic
conductivity. The spatial variations, however, are rather small (±10%) and have almost no
effect on the optimization results. Therefore, in the remaining study,wemostly use the number
of installed monitoring wells to express costs. Table 1 provides the relevant parameters in
the objective functions chosen in our study.

Each objective is formulated as minimization problem, i.e., fdet is the probability of
not detecting any emitted plume, fwarn evaluates the time lost between contaminant spill and
detection, and fcost specifies the costs of installation and operation. Furthermore, all objective
functions are normalized to the interval [0, 1], such that the theoretical optimal value in all
individual objectives is zero. While fdet falls between zero and one by definition, we express
fwarn through a utility function that we chose to be normalized to that interval, and the costs
function fcost is normalized through division by a maximal admissible cost value.

The solution of a multi-objective optimization problem (e.g., Marler and Arora 2004) is
not a unique optimum, because multiple competing objectives do not infer a unique ranking.
Instead, solutions are ranked according to their domination. A solution is said to be dominant
over a second solution, if it is better in at least one objective, and equal in all others. The
multi-objective solution is the set of non-dominated solutions, called Pareto front. The final
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Fig. 2 Illustration of
multi-objective optimization
results for monitoring networks

decision is found by discussion and then choosing a case-specific compromise solution from
the Pareto front.

Figure 2 is a graphical illustration of how the optimization resultsmay look like. The figure
shows the performances in all three objective functions for the set of possible monitoring
networks considered during an optimization. Each sphere represents one possible network
design and is located in the diagram according to its goal attainment levels. The theoretical
optimum (blue) is idealistic: Fully certain and early detection cannot come at zero costs.
The red spheres mark the Pareto front: None of them is dominated by any other sphere. All
dominated solutions/designs are shown in black and drawn transparent according to their
domination rank (from black to invisible for increasing rank).

3.2 Extending the Multi-objective Optimization for Model Uncertainty

The objective functions fdet and fwarn use the simulation-based data specified in Sect. 3.1.
Hence, they rely on model-based predictions about flow and transport in the catchment,
which are subject to uncertainty. The uncertainty arises from many sources, such as from
model errors, from numerical errors, from the post-calibration uncertainty of the flow and
transport simulator, from unresolved aquifer inhomogeneities, from uncertainty in the hydro-
geological boundary conditions, and from different scenarios in water extraction rates and/or
hydrological conditions (e.g., wet, medium, or dry seasonal conditions; high, medium, or
low pumping rates at the well) (Carrera 1993). When not accounting for this uncertainty, the
optimized monitoring network will most likely achieve a lower performance (when applied
in practice) than wrongly predicted during the optimization. Vice versa, accounting for this
uncertainty at least to some extent will make the optimized monitoring networks robust
against the considered uncertainties.

Thus, our concept proposes to perform Monte Carlo simulations (e.g., using calibration-
constrainedMonteCarlo simulations (Tarantola 2005) or Bayesianmodel averaging (Hoeting
et al. 1999)) or at least scenario analyses. Each scenario or Monte Carlo realization k, k =
1, . . . , nMC leads to its own values δi jk, τ

det
i jk , τik,well and 
tvisi jk for the quantities defined

in Sect. 3.1. Then, we replace the affected objective functions fdet and fwarn in Eq. 10 by
adequate statistics over the objective function values f (k)

det and f (k)
warn obtained per realization:

dopt = argmin
d∈D

[
f̃det, f̃warn, fcost

]
, (12)

where f̃ could denote, e.g., the largest value or a high percentile (since the objective functions
are formulated for a minimization problem) or the arithmetic mean. The expected value is
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a risk-neutral approach to optimization under uncertainty (e.g., Faber et al. 2004), while
working with extremes or percentiles is a risk averse and even more robust approach.

3.3 Extending the Multi-objective Optimization for Risk Categories

The optimization problems formulated above do not yet prioritize according to the severity
of risk sources. A risk source can be more or less severe depending on the type of the
hazardous activity, stored or handled contaminants and contaminantmasses, compliancewith
the applying regulations and so forth. A common approach to prioritizing risk sources is to
use weights. Provided that all required data are available to calculate these weights through
quantitative and probabilistic risk estimations (e.g., Enzenhoefer et al. 2012, 2015), this
approach would be statistically rigorous. Unfortunately, it is often impractical, or sometimes
even impossible to get all relevant data concerning the risk sources (e.g., the probability of
failure of a nuclear power plant).

Therefore, following concepts of qualitative risk assessment, we categorize all risk sources
into the classes severe, medium and almost tolerable (Cox 2008). This categorization can
be visualized through the color scheme of traffic lights, i.e., as red, yellow, and green. It
expresses the prioritization preferences for monitoring in the sense that red risk sources
should be monitored with first priority, yellow ones later, and green ones with the smallest
priority.

In order to accommodate for this categorization in the optimization problem, we introduce
separate objective functions for the detection probability and for the early-warning time
of each risk category. Because individual monitoring wells can cover risk sources from
several risk categories, the cost function cannot be separated. Thus, we obtain a total of seven
objectives:

dopt = argmin
d∈D

[
f̃ (red)
det , f̃ (red)

warn , f̃ (yellow)
det , f̃ (yellow)

warn , f̃ (green)
det , f̃ (green)

warn , fcost
]
. (13)

3.4 Extending the Multi-objective Optimization for Remaining Risk

The last extension of the optimization problem addresses the fact that the list of known
risk sources is very likely to be incomplete. Reasons for this include the limited existence
of information on land use in the private or industrial sector, restricted access to existing
information due to data privacy policies, known risk sources with unknown locations (from
vague historical records) or unforeseeable hazards that fall under the classical category of
black swans (Taleb 2007).

Although the remaining risk is unknown in existence and location, we can only achieve
robustness against its possible existence by representing it through an additional risk model
within the risk inventory. The approach presented in the following addresses the total lack
of knowledge about locations of potential risk sources. Uncertainty in the exact location of a
known risk source can also be handled with this approach, but in a slightly different manner
that is not subject to the discussion below.

As a possible modeling approach, we represent the remaining risk as a dense fence of
point sources, called line of attack in the following, that encircle the drinking water well. The
line of attack is located at a distance in travel time coordinates that can be freely chosen to fit
the respective application context (e.g., the minimal time needed to install countermeasures).
This is a plausible model because any possible contaminant spill beyond this line will have
to pass through the line on the way to the drinking water well. For all these possible spills,
it is a conservative (worst-case) representation in the following aspects (compared to the
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Table 2 Transport-relevant parameters

Average conductivity
K (m/s)

Porosity n (−) Molecular
diffusion
coefficient
Dm

(
m2/s

)

Longitudinal
dispersivity α� (m)

Transversal
dispersivity αt (m)

3.15 · 10−4 0.35 1 · 10−9 3 0.3

The hydraulic conductivity value provided here is the arithmetic mean of all zone-wise values

actual properties of the unknown risk source represented by this model): (1) The modeled
travel time from the line of attack to the well is always shorter; (2) the detectable width of
the modeled plumes is always smaller; (3) the contaminant impact on the well is always
larger. All residual risks between the line and the well cannot be controlled with the resulting
monitoring networks. Hence, the choice of travel time to the well is a compromise between
residual risk coverage and achievable early-warning time.

A different approach to representing the remaining risk would be to assume risk sources at
locations randomly chosen from a uniform distribution over the entire catchment area. This
technique is intuitive, but cannot guarantee to really cover all potential positions of unknown
risk sources. A guaranteed control of the remaining risk can only be ensured by assuming
risk sources to be everywhere in the investigated catchment, but would lead to an explosion
of calculation time.

Following the same approach as in Sect. 3.3, we introduce a new color for the remaining
risk (e.g., blue) and extend the optimization problem accordingly:

dopt = argmin
d∈D

[
f̃ (red)
det , f̃ (red)

warn , f̃ (yellow)
det , f̃ (yellow)

warn , f̃ (green)
det , f̃ (green)

warn , f̃ (blue)
det , f̃ (blue)

warn , fcost
]

(14)

4 Application Scenario and Numerical Implementation

In order to demonstrate and discuss our proposed approach, we set up a synthetic application
scenario. The scenario with its flow and transport model is inspired by typical models used for
well catchment management. The model describes a single geological layer of an aquifer as a
quasi-three-dimensional domain (15,000m × 7000m × 10m) and is divided into few zones
with different hydraulic conductivity values. All relevant model parameters are provided in
Table 2, and a system sketch is shown in Fig. 3. Near the eastern boundary, there is a gallery
of 15 pumping wells with 50-m spacing between neighboring wells. The figure also shows
the location and classification of the considered risk sources. For simplification reasons, all
risk sources are assumed to be point sources with a pulse release of their contaminant.

The regional flow direction is from east to west, defined through Dirichlet conditions at
all domain boundaries. The prescribed boundary values follow geometrically from a uni-
form gradient that is specified through its absolute value and its orientation relative to the
east–west axis. For the robustness aspect mentioned in Sect. 3.2, we work with four different
hydraulic scenarios (c.f., Table 3) that differ in the strength of the regional head gradient,
in its orientation angle, and in the overall pumping rate of the well gallery. These scenarios
serve to represent aspects of hydrological uncertainty. They do not consider the other sources
of uncertainty listed in Sect. 3.2, because we prefer to keep the application scenario straight-

123



Optimization for Early-Warning Monitoring Networks in Well… 271

Fig. 3 Model domain for the well catchment. Gray scale zonation and values of hydraulic conductivity;
black rectangle position of the well gallery; colored lines: catchment outlines obtained from reverse transport
simulations in the four different hydraulic scenarios (see Table 3); blue overlay union of all scenario-wise well
catchments; colored circles risk sources classified according to severe (red), medium (yellow), and almost
tolerable (green)

Table 3 Definition of four
different hydraulic scenarios

Hydraulic
scenario

Gradient
strength (−)

Gradient
angle

(◦) Pumping
rate (l/s)

1 0.01 0 15

2 0.01 15 15

3 0.015 0 15

4 0.01 0 7.5

forward. The different scenarios result in travel time values from the most distant risk sources
to the well of up to 80years. Again for the sake of simplicity, we assume conservative tracer
transport. This assumption may seem crude, but it is justifiable as a worst-case scenario for
contaminant impact on the well.

We discretize the domain with rectangular, equispaced cells sized 10m × 10m × 10m
and simulate groundwater flow with the standard Galerkin finite element code already used
in Nowak et al. (2008). For all subsequent transport simulations, we rely on the particle-
tracking random walk (PTRW) code used earlier by Enzenhoefer et al. (2014) and by Koch
and Nowak (2014). We chose PTRW due to its ease of implementation and its absence of
numerical dispersion (e.g., Kinzelbach 1988; LaBolle et al. 1996; Salamon et al. 2006).

In Sect. 3, we decided to discretize the well catchment by a fine grid of candidate positions
for monitoring wells. We use the same grid as for the flow simulations. Thus, the decision
vector d in Eqs. 10 –14 includes a Boolean (yes/no) variable for each of the 1,050,000
candidate locations. For the sake of simplicity,we do not optimize but fix the sampling interval

t sample

j to a value of one year for all monitoring wells. Choosing Boolean variables results
in a discrete optimization problem. Regardless of that choice, the resulting optimization
problem is multi-objective, nonlinear and high-dimensional. For our problem, we tailored a
problem-specific fusion of the well-known multi-objective optimization algorithms NSGA-
II (Deb et al. 2002) and Borg (Hadka and Reed 2013). Both algorithms are evolutionary
algorithms.We refrain from reporting details here, because the problem-specific fusion yields
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Fig. 4 Pareto front for the basic
multi-objective optimization
without uncertainty and without
risk categorization (see Eq. 10
and Sect. 5.1). Red spheres
Pareto-optimal solutions; blue
sphere idealistic (unattainable)
optimum; green sphere
performance of the selected
monitoring network shown in
Fig. 5. Gray dots projections of
the Pareto front onto the planes of
the coordinate system

the same results as the individual algorithms, but merely does so in smaller computational
time. All codes and additional implementations were written in MATLAB. The simulations
and optimization runs reported below were performed on a contemporary desktop computer
with an Intel Core 2 Quad CPU (2.83GHz) and 16GB RAM within 20h.

5 Results and Discussion

In the following, we present the results obtained by applying our proposed method to the
application scenario presented in Sect. 4. In specific, we investigate the four steps listed in
Sect. 2 one by one (see Sect. 5.1 through 5.4) through corresponding modifications of the
application scenario.

5.1 Multi-objective Optimization is the Appropriate Approach

The design of early-warning monitoring networks is subject to competing objectives. The
first step of our approach was to formulate this problem as a multi-objective optimization
problem. For demonstrating and discussing this step, we perform an optimization according
to Eq. 10. In this formulation, we do not yet consider robustness against uncertainty and
hence work only with hydraulic scenario 1. Also, we do not apply any risk classification.

Figure 4 shows the Pareto front obtained during this optimization variant. In comparison
with Figs. 2, 4 does not include dominated solutions, but instead shows the projections of
the three-dimensional Pareto front onto the planes of the coordinate system. Figure 5 shows
a selected Pareto-optimal monitoring network.

Figure 4 clearly reveals that the three considered objectives are competing.One can achieve
a full coverage of all risk sources at maximal early-warning utility, but only with an extreme
budget that allows installing 22 monitoring wells (bottom right tip of the Pareto front). At
decreasing costs, one can either maintain maximal detection probability (front/left edge of
the Pareto front) while losing early-warning time, or one can try to lose less early-warning
functionality but restrict that functionality to a smaller number of risk sources (back/right
edge of the Pareto front). In general, there is a list of five geometric aspects in the Pareto
front that will hold for any catchment: (1) The idealistic goal of benefits without costs (blue
sphere in Fig. 4) can never be reached. (2) Maximizing detection probability and yet min-
imizing costs is only possible by directly monitoring the mixed water of the pumping well
gallery (upper back/left corner of the Pareto front). Since we did not consider this case in our
application, there is no solution at this part of the Pareto front. (3) The solution with almost
no costs and a very late and poor detection of the risk sources (upper back/right edge of the
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Fig. 5 One selected Pareto-optimal monitoring network from the basic multi-objective optimization without
uncertainty andwithout risk categorization (see Eq. 10 and Sect. 5.1).Blue areawell catchment from hydraulic
scenario 1; Black rectangle position of the well gallery; orange point clouds visualization of the simulated
plumes from each risk source; black circles risk sources without categorization; cross markers: optimized
positions of monitoring wells. The goal attainment levels of this specific solution are shown as green sphere
in Fig. 4

Pareto front) is to place one individual monitoring well at the cheapest individual drilling
position and depends only on the complexity of fcost. This selection defines the upper/back
right corner of the Pareto front. (4) The 45◦ inclination of the back/right edge of the Pareto
front is caused by a correlation between attainable early-warning time and detection proba-
bility. It originates from the detailed formulation of the objective functions (see Sect. 3.1 and
“Appendix”), where we count an early-warning utility of zero for all risk sources for which
the potential plumes are predicted to be undetectable. (5) The lower/front tip of the Pareto
front is given by themost expensive solution that places onemonitoring well just downstream
of each risk source. These five facts define the fundamental geometry of the Pareto front.
Only the curvature of the Pareto front toward the idealistic unattainable optimum depends on
the properties of the investigated catchment and the positions of its risk sources. Risk sources
arranged in a line transverse to the dominant flow direction would lead to a strong competing
(and hence to a low curvature of the Pareto front), because non-overlapping plumes pro-
hibit the monitoring of several risk sources with only a few monitoring wells. Risk sources
arranged in a longitudinal line would lead to one overlapping plume, with almost no compe-
tition between costs and detection. Clustered risk sources would fully remove the competing
character of all objective functions, because these risk sources could be monitored with good
early-warning time by just one or a few monitoring wells very close to the spill location.

Given this information basis, the decision maker can investigate the trade-offs in perfor-
mance under budgetary constraints and find a situation-specific good compromise. Hence,
it is legitimate to say that multi-objective optimization is an adequate approach to find-
ing proper early-warning monitoring networks. The selected monitoring network shown in
Fig. 5 is the so-called best compromise solution (e.g., Talbi 2009), which is defined as the
one Pareto-optimal solution with the smallest distance to the idealistic unattainable optimum
in normalized axes (such as it is the case in Fig. 4). Through optimized positioning of only
eight monitoring wells (34% of the cost maximum), it attains a detection probability of 91%
and an early-warning utility of 0.73. This relatively high performance at relatively low costs
can be achieved by two strategies: (1) monitoring the well catchment at positions where
several predicted contaminant plumes coincide and neglecting risk sources that have clearly
separated plumes; (2) by avoiding to attain early-warning functionality through covering the
most remote risk sources.
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5.2 Robustness of Monitoring Networks Can Be Improved by Considering
Uncertainties

When looking at the relatively thin predicted plumes in Fig. 6, it quickly becomes clear that
the actual performance of optimized early-warning monitoring networks (compared to the
performance predicted during the optimization) is highly sensitive to predictive uncertainties.
Therefore, the second step of our approach was to include a corresponding representation of
uncertainty during the optimization in order to achieve robustness. We call a Pareto-optimal
monitoring network robust against considered uncertainties, when its performance is not
sensitive to theses uncertainties. Hence, a suitable measure of robustness is the difference
between the optimized predicted performance and the particular performance obtained after
actual installation. For demonstrating and discussing this step, we perform an optimization
according to Eq. 12. Compared to the basic application scenario considered in Sect. 5.1, we
now work with a modified scenario that uses as robust objective functions the average over
the respective goal attainment levels across the four hydraulic scenarios listed in Table 3.
To demonstrate the effect of uncertainty and the benefit of robustness, we consider three
different uncertainty scenarios for the optimization:

1. We have an idealistic situation without any uncertainty.
2. We assume that we have an idealistic situation, but in reality the used model is subject

to uncertainties.
3. We have uncertainty in modeling our system and also consider it during the optimization

procedure.

Figure 6 shows the obtained Pareto fronts. For better comparison within a single figure, we
show only projections onto the cost/time plane. Scenario one leads to the same results to
those from Sect. 5.1 (black). Compared to the other fronts, these solutions perform the best.
However, in practice, the scenario without uncertainty does not exist. Ignoring uncertainty
(scenario two) leads to differences between the expected performance (black) and the actual
performance in reality (green), an average over all hydro(geo)logic scenarios. In theory, the
most expensive solution (from the black front) has a close-to-perfect benefit in early-warning
time. Compared to that, the same solution performs poorly in reality (green). Considering
uncertainty (third scenario), the results (red) are more modest in their claims of performance
during the optimization compared to these without uncertainty (black). The results are less
optimistic, because it is harder to guarantee a reliable and early detection of contaminant
plumes when admitting that one does not know their exact locations and mutual overlaps.

Fig. 6 Projection of the Pareto
front for the robust
multi-objective optimization (see
Eq. 12 and Sect. 5.2). Black
Pareto front from an optimization
that does not consider uncertainty
(same as in Sect. 5.1). Red Pareto
front obtained when optimizing
the performance on average over
four hydraulic scenarios (see
Table 3). Green performance of
the non-robust optimization
results on average over the four
hydraulic scenarios
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Fig. 7 Comparison of a risk-prioritized solution from the robust multi-objective optimization (see Eq. 13 and
Sect. 5.3) to a solution without risk categorization (see Eq. 12 and Sect. 5.2). Plus marks prioritizedmonitoring
network; cross marks network without prioritization; all other symbols and colors same as in Fig. 5

Compared to the green front, one could either find monitoring networks with the same
performance in early-warning time but with less costs, or monitoring networks with a much
better performance with identical costs. Obviously, the black solutions are only optimal for
one hydraulic scenario, but not for the considered uncertainties.

The difference in early-warning time between the black front and the red front at given
cost values can be interpreted as the costs of having (and considering) uncertainty. The
difference between the black front and the green front at given cost values can be interpreted
as costs of not considering uncertainty, and these costs are larger than the costs of considering
uncertainty.Without any surprise, all scenarios agree that one cannot expect any performance
at the limit of no costs.

We can conclude that considering uncertainties in the optimization is in fact required,
because otherwise one will obtain overly optimistic model-based results that do not perform
as desired when installed in reality. The scenario analysis performed here is very crude and
serves mainly for illustration. In practice, it would be advisable to also account for the other
sources of uncertainty mentioned in Sect. 3.2, and to work with a much larger number than
four hydraulic scenarios or realizations.

5.3 Risk Prioritization Can Help to Find Good But Low-Cost Monitoring
Networks

The third step of our approach was to categorize risks according to severity. Such a cate-
gorization can be used to prioritize the monitoring of risk sources during the optimization.
This leads to practically affordable early-warning monitoring networks that cover the risk
sources in proportion to their (perceived) risk. For demonstrating and discussing this step, we
now perform an optimization according to Eq. 13, i.e., working with a risk categorization. In
this optimization, we categorize the same inventory of risk sources used above into severe,
medium, and tolerable risk sources, and compare the results to those obtained without risk
categorization according to Eq. 12 (see Sect. 5.2).

In Fig. 7, we compare a selected Pareto-optimal monitoring network from the risk-
prioritized formulation (plus marks) with a selected one obtained from Sect. 5.2, i.e., without
risk prioritization. The prioritized solution was selected to achieve a 100% detection prob-
ability and a large early-warning time utility (here: 86%) for all severe risk sources while
maintaining the number of monitoring wells at eleven, i.e., using the same number as the
non-prioritized solution. This results in a reduced detection probability and early-warning
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Table 4 Key data of the different monitoring networks illustrated in Fig. 7

Monitoring
network

Performance for
risk sources…

Detection proba-
bility (−)

Early-warning
time utility (−)

Non-prioritized All 0.97 0.79

Non-prioritized Severe 0.88 0.72

Prioritized All 0.80 0.66

Prioritized Severe 1 0.86

utility across the remaining risk inventory. The key performance data of both networks can
be found in Table 4. By comparison of these two networks, one can see that two additional
severe risk sources (red) are nowmonitored [one at (4km, 1.5km) in domain coordinates and
one at (7km, 3km)]. Onemonitoring well roughly at (7km, 4km) has been removed, because
it mainly served to monitor medium and almost tolerable (yellow, green) risk sources. Other
significant changes appear around (11km, 4.5km), where a group of three monitoring wells
was replaced by two monitoring wells that coincide better with the possible plume paths of
only severe risk sources (red).

The decision maker has several strategies to screen through the list of Pareto-optimal
results. One option is to screen through the possible compromises between overall coverage
and prioritized coverage at fixed costs. A second option is to start with perfect coverage
of severe risk sources, and then to investigate the additional costs and willingness to pay
for additional coverage of medium and almost tolerable risk sources. With this, decision
makers are able to make the necessary compromises between the performance for different
risk categories under budgetary constraints in an informed and transparent manner.

5.4 Remaining Risk Can Be Managed

The fourth step of our approach was to introduce an appropriate representation of unknown
risk sources in the risk inventory in order to make the early-warning system robust against
residual risks. For demonstrating and discussing this step, we now perform an optimization
according to Eq. 14 (see Sect. 5.4), i.e., working with a model for residual risks, with a
respective risk category, and with two corresponding additional objective functions. For
simplicity of the analysis, we drop the classification of the known risk sources.

Figure 8 shows one selected Pareto-optimal network, which can be separated into two
parts with different tasks: The first part specializes only on good coverage of the residual
risks (line of defense close to the line of attack), and the second part is an augmentation of the
line of defense in order to improve the performance in monitoring all the known risk sources.
The model for residual risks is the representation by the line of attack (blue circles) that lies
between the well gallery and the bulk area of the catchment. Again, the line of attack is a line
of hypothetical point sources placed at a travel time of two years away from the well gallery.

The performance data for both parts are shown in Table 5. The strategy for covering the
residual risk is a line of defense that directly matches the line of attack. In the solution shown,
this line is composed of 17 monitoring wells. This strategy achieves a detection probability
of 81% and claims an early-warning utility of 68%. The detection probability number is
accurate for all residual risks (behind the line of attack). The early-warning time, however,
is strongly suboptimal, because most residual risks could be detected earlier when knowing
their location.
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Fig. 8 Comparison of two early-warning network from the optimization with residual risks (see Eq. 14 and
Sect. 5.4). Cross marks monitoring network specialized only on residual risks; plus marks augmentation to
improving the performance for the known risk sources; blue circles: model of residual risk (line of attack); all
other symbols and colors same as in Fig. 5

Table 5 Key data of the different monitoring networks illustrated in Fig. 8

Monitoring
network

Performance
for risk sources
…

Detection
probability
(−)

Early-warning
time utility
(−)

Number of
monitoring
wells

Only residual Residual 0.81 0.68 17

Only residual All known 0.65 0.07 17

Augmented Residual 0.81 0.68 26

Augmented All known 0.96 0.66 26

The line of defense provides a good coverage for almost all possible residual risk sources
anywhere in the catchment. Only 19% of the entire catchment area cannot be controlled by
the line of defense. Hence, it is clear that it should also provide a good detection probability
for the known risk sources. However, the detection probability of the line of defense for
all known risk sources is only 65%. This means that 35% of the known risk sources lay
inside the area which is not controlled by the line of defense, which is more than the 19%
predicted during the optimization. This can be explained by considering the known risk
inventory as only a small sample out of all potential risk source positions (the remaining
risk). The early-warning utility for the known risk sources, however, is unsatisfactory (7%).
In order to improve this performance, additional monitoring wells in the more remote parts of
the catchment are required. The plus marks show a selected corresponding augmentation of
the current network by nine monitoring wells. These additional wells increase the detection
probability for the known risk sources from 65 to 96%, and the corresponding early-warning
utility from 7 to 66%.

Depending on her/his risk aversion and risk perception, a decision maker could either
start with coverage of residual risks and then buy more early-warning time for known risk
sources (possibly for the severe ones first), or start with network solutions that offer a sat-
isfactory performance for known risk sources at affordable costs, and then investigate the
cost–performance trade-offs for additional coverage of residual risks. The provided informa-
tion is valuable decision support in situations where decision makers are highly risk averse,
or where the residual risks are known to exist at unknown locations. In situations penetrated
with deep uncertainty in flow conditions, we expect the residual risk solution to provide a
large degree of robustness.
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6 Conclusion and Outlook

Finding optimal early-warning monitoring networks for well catchments is challenging
because the desired qualities of monitoring networks are multiple and mostly competing. In
our study, we proceed from the assumption that risk control in drinkingwater well catchments
requires monitoring networks to detect all possible future contaminant spills at a maximum
reliability level and that they should detect the corresponding contaminant plumes as early as
possible in order to allow for a maximum time to install counter measures. Nevertheless, the
installation and operation costs should be as low as possible. We proposed a multi-objective
and risk-prioritized optimization approach for early-warning monitoring networks that is
based on four steps and leads to four corresponding key findings:

1. The considered objectives are in fact competing, and multi-objective optimization is an
adequate approach to solving the problem.

2. The actual performance of optimized early-warning networks is highly susceptible to
predictive uncertainty of contaminant transport toward the well. Therefore, mechanisms
for robust optimization under uncertainty (e.g., based on Monte Carlo simulation of
scenario analysis) should be applied.

3. A prioritization of risk sources and a corresponding augmentation of the multi-objective
optimization offers options for cost-efficient focus on only the most severe risks, and
provides valuable insights into the trade-offs for additional coverage ofmedium or almost
tolerable risks.

4. Early-warning monitoring networks can even be optimized to cover risk sources that are
unknown in existence or location through an adequately chosen residual risk model.

As anoutlook for future studies,weplan (1) to extend the scenario-based uncertainty approach
to a Monte Carlo approach that considers a more comprehensive list of uncertainties and (2)
to apply this method to real catchments.
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Appendix

Here, we provide the mathematical definition of our objective function for early-warning
time and the link to the objective function detection probability.

For any given design d, there is a list Ld of monitoring wells to be installed. From that
list, several monitoring wells Mj , j ∈ Ld could have nonzero detection probabilities Pdet

i j
for any given risk source Ri . These monitoring wells could differ in early-warning time and
detection probability, andwe need to define a rule how to identify a unique value for detection
probability and early-warning utility for each risk source Ri . We need such a rule to avoid
that the monitoring wells have to be sampled for a large list of contaminations (alternatively,
this could also be solved by optimization). There is no general rule that the monitoring well
with the best early-warning time for a risk source Ri will automatically have the best value
in detection probability for the same risk source. As rule to identify a unique monitoring
well, we use a method of best compromise, i.e., we select the monitoring well position Mj

for the risk source Ri out of the list Ld that maximizes the product of detection probability
and early-warning time ti j :
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�i = argmax
j∈Ld

[
Pdet
i j ti j

]
. (15)

Finally, we average the values of Pdet
i j with j = �i over all risk sources Ri to obtain the

overall detection probability Pdet
d of the monitoring network and define:

fdet (d) = 1 − 1

nR

nR∑

i=1

Pdet
i�i

︸ ︷︷ ︸

Pdet
d

. (16)

As argued in Sect. 3.1, the achievable early-warning time values for different risk sources
may vary between none and several decades, such that a simple linear relation between
individual early-warning time values and the overall early-warning performance of the mon-
itoring network is not suitable. Instead, we work with a nonlinear utility functionUi

(
ti j

)
that

expresses (on a normalized scale) the early-warning time achieved by a monitoring well Mj

for a risk source Ri . Thus, in analogy to fdet, we define:

fwarn (d) = 1 − 1

nR

nR∑

i=1

Ui
(
ti�i

)

︸ ︷︷ ︸
Uwarn
d

, (17)

whereUwarn
d is the overall early-warning utility of the monitoring network defined by d. The

utility functionUi (t) is defined by a case-dependent piecewise linear function. The respective
sections of piecewise linearity are separated by predefined values t̂min and t̂max. t̂min is the
desirable minimal early-warning time, and t̂max is a maximal useful early-warning time
beyond which there is no additional utility. t̂max

i = t̂max is a user-defined value, but is set
to t̂max

i = τi,well whenever τi,well is smaller than the user-defined value. This modification
serves to ensure that a monitoring well that achieves the maximal possible early-warning
time (defined through τi,well) is rated with the maximal possible utility value. Then, we
assign U (t = 0) = 0,U (t = t̂min) = ûmin and U (t ≥ t̂max) = 1. This yields as utility
function:

Ui (t) =

⎧
⎪⎪⎨

⎪⎪⎩

1 ∀t : t ≥ t̂max

ûmin·(t−t̂max
i )

t̂min−t̂max
i +1

+ 1 ∀t : t̂min ≥ t ≥ t̂max
i ∧ t ≤ t̂max

i ûmin

t
tmax
i

∀t : t ≤ t̂min ∨ t > t̂max
i ûmin.

(18)

The utility function Ui (t) is illustrated in Fig. 1.
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