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Abstract A stochastic Galerkin formulation for the transport of CO2 in a tilted aquifer with
uncertain heterogeneous properties is presented. We consider a simplified physics model
assuming capillary pressure to be negligible compared to hydrostatic and viscous pressure.
The flow is dominated by buoyancy and capillary trapping. We assume a stochastic perme-
ability field and a stochastic model for the uncertain relative permeabilities. We prove that
the proposed stochastic Galerkin formulation results in a hyperbolic system of equations, and
we devise a numerical method that captures the expected solution discontinuities. The shock-
capturing solver for the flux function is combined with an adaptive quadrature method for
discontinuous isosurfaces that is used to compute the discontinuous stochastic accumulation
coefficient. The stochastic solver is validated against Monte Carlo sampling of an analytical
solution for the deterministic problem. The sharp features of the statistics of the solution
are accurately captured by the numerical solver. The polynomial chaos framework admits
low-cost post-processing of the output to obtain statistics of interest. By construction of an
accurate polynomial chaos surrogate model of the output, fast sampling admits calculation
of risk for leakage and failure probabilities.

Keywords Sloping aquifers · Gravity currents · Vertical-equilibrium models ·
Stochastic Galerkin methods

1 Introduction

Permanent storage of CO2 in subsurface saline aquifers is a potentially effective means
to reduce anthropogenic CO2 emission to the atmosphere (Benson and Cook 2005). The
estimated quantities of carbon that must be stored to mitigate global warming are around 3.5
billion tons per year during the next decades (Pacala and Socolow 2004). Captured CO2 is
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transported to the storage site and injected at the bottomof brine-filled aquifers. Long after the
injection period has ended, CO2 will propagate upwards and laterally through the permeable
formation due to buoyancy and groundwater flow and is prevented from leaking out to the
atmosphere through various trapping mechanisms. Dissolution of the CO2 in brine leads to
solubility trapping, and geochemical reactions with the rock result in mineral trapping. The
temporal scales of these trapping mechanisms are relatively large and can be neglected for
time frames up to a few decades after the end of the injection period (Juanes et al. 2010).
More important on the shorter time scale are structural trapping due to the existence of a
caprock acting as a seal over the aquifer and capillary trapping of portions of the CO2 plume
left behind as the plume recedes.

Simulation of large-scale and long-term subsurface storage of CO2 is complex due to the
large spatial and temporal scales involved. Typical storage reservoirs are up to hundreds of
kilometers in spatial extent, and the slow migration of the CO2 plume may require up to
thousands of years before immobilization occurs (Hesse et al. 2008). In addition to the vast
temporal and spatial scales, heterogeneity in the storage aquifers implies uncertainty that
should be taken into account in the mathematical models. A feasible mathematical model
can only include the most relevant physics and the most prominent sources of uncertainty.
Model uncertainty inherent to simulation of long-term CO2 migration was demonstrated
inNordbotten et al. (2012),where a large-scale benchmark problemwas solved independently
with different methods, yielding significantly different results for the plume migration.

To reduce complexity of solving large systems, it is useful to simplify the fluid flowmodel.
Acommonassumption is the vertical-equilibrium (VE) assumption that implies instantaneous
gravity segregation of brine and CO2. The phase equilibrium results in hydrostatic pressure
distribution, and the governing equations may be integrated over the vertical direction to
reduce the dimensionality and computational effort of the problem. The VE assumption is
justified when the lateral extent of the formation is much larger than the vertical extent, which
is typically the case for storage formations of interest (Yortsos 1995). Due to the reduced
complexity of the problem, VE models often yield more accurate results compared to poorly
resolved three-dimensional models (Nilsen et al. 2011). Despite the reduced complexity
compared to full 3D models, VE models exhibit largely different fluid migration patterns
depending on the representation of subgrid processes, e.g., dissolution, residual trapping and
capillary fringe effects (Gasda et al. 2012).

Early developments in semi-analytical solutions to sharp interface models for gravity cur-
rents in tilted aquifers storage were presented in Bear (1972). More recent work in horizontal
domains for axisymmetric flow specifically applied to CO2 storage includes (Lyle et al. 2005;
Nordbotten and Celia 2011). Hesse et al. (2008) included capillary trapping and investigated
the limiting parabolic and hyperbolic cases of horizontal and sloping aquifers, respectively.
MacMinn et al. (2010) presented an analytical solution for a sloping aquifer with groundwa-
ter flow and capillary trapping in one spatial dimension and evaluated the model for storage
efficiency at the basin scale (Juanes et al. 2010).

Stochastic modeling for flow in porous media is an active area of research and includes
a range of different methods. In the stochastic hydrology community, statistical moment
equation methods have been popular in order to quantify uncertainty in aquifers with ana-
lytical, or semi-analytical, methods (Gelhar 1986; Zhang 2002). The variables and material
parameters are decomposed into mean and fluctuation, or as an infinite series, and partial
differential equations (PDEs) are derived for the moments of quantities of interest. Obtain-
ing closure of the PDEs may be hard, and the resulting expressions are limited to small
perturbations, i.e., small variance of input parameters (Caroni and Fiorotto 2005). Moment
equation methods resemble the stochastic Galerkin methods that will be employed in this
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paper in the sense that they rely on the solution of a coupled system of PDEs and thus poten-
tially cost-efficient in comparison with Monte Carlo sampling. Using surrogate models, e.g.,
streamline solvers, Monte Carlo sampling can be a viable method to estimate uncertainties
in CO2 storage (Kovscek and Wang 2005).

The polynomial chaos framework (Ghanem and Spanos 1991; Xiu and Karniadakis 2002)
for solution of PDEs subject to uncertainty has been applied in the context of subsurface flow
and CO2 storage, and may be an efficient alternative to Monte Carlo methods. Data-driven
polynomial chaos expansion to determine empirical stochastic model parameterizations was
successfully compared to Monte Carlo methods in Oladyshkin et al. (2011) and used for
identification of the most important sources of uncertainty through Sobol sensitivity indices
in a shallow marine deposit (Ashraf et al. 2013). Polynomial chaos-based surogate models
were built to minimize the risk of leakage by maximizing the probability of residual trapping
of CO2 in a saline aquifer (Zhang and Sahinidis 2013).

Previous work on stochastic Galerkin methods for hyperbolic systems of equations
includes nonlinear projection based on variable transformation to limit the oscillations around
discontinuities in stochastic space (Poëtte et al. 2009) and robust solvers for problems with
strong discontinuities (Tryoen et al. 2010). In the context of two-phase flow, a stochastic
Galerkin method with adaptivity in physical and stochastic space, well suited for parallel
computation, was introduced in Kröker et al. (2015).

In this paper, we present a stochastic Galerkin formulation and a numerical solver for a
simplified physics model of subsurface CO2 storage. The stochastic Galerkin projection is
based on the polynomial chaos framework but results in a single extended coupled system
of equations that are solved only once to obtain all statistical information. We present a
formulation that relies on precomputed stochastic quantities to the extent possible and prove
that it is hyperbolic.

Assuming a stochasticmodel for uncertain parameter values,wemay have solution regions
where both imbibition and drainage occur with certain probabilities. In order to handle these
situations, we generalize the deterministic model in MacMinn et al. (2010). The extended
deterministic model is verified numerically and subsequently used to obtain a stochastic
reference solution via Monte Carlo sampling. With the aim of extending the framework to
problemswhere analytical solutions are not available,wepresent a shock-capturing numerical
method to solve the stochastic problem projected onto the stochastic basis functions and
evaluate its performance through comparison with statistics obtained from the reference
solution. The stochastic model and the possibility of both drainage and imbibition along
the same interfaces lead to a stochastic discontinuous accumulation coefficient that may
take different values at a given point in space. To determine the accumulation coefficient
efficiently everywhere in discrete space and time, we adjust the adaptive quadrature method
for discontinuous interfaces presented in Müller et al. (2012).

2 Simplified Physical Model

We consider a one-dimensional model and assume incompressible flow in a homogeneous
tilted aquifer initially filledwith brine, invoke theVEassumption and assume a sharp interface
between the CO2 and brine phases. Following the work in Hesse et al. (2008), we consider an
aquifer of infinite lateral extent with constant thickness H , tilt angle θ, CO2 plume thickness
hc, porosity φ, and residual saturation Sαr (α = b, c). Supercritical CO2 is injected through
wells along a line at the bottom of the sloping aquifer. As the CO2 plume is transported
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upward through the aquifer by buoyancy and background flow, brine is displaced by CO2

at the leading edge of the plume through drainage, assuming that CO2 is the non-wetting
phase. Due to capillary pressure, not all brine is replaced but leaves a residual saturation Sbr
of brine in the advancing CO2 phase. As the CO2 recedes through imbibition when brine is
replacing CO2 at the wake of the plume, residual CO2 is trapped in the brine phase.

The transport of the CO2 phase is governed by the one-dimensional PDE

Rφ
∂hc
∂t

+ ∂Qc

∂x
= 0, x ∈ (−∞,∞), t ∈ [0,∞), (1)

where the discontinuous accumulation coefficient R takes different values during drainage
(CO2 replaces brine) and imbibition (brine replaces CO2).

R =
{
1 − Sbr − Scr if ∂hc

∂t < 0
1 − Sbr if ∂hc

∂t > 0
.

The flux of the CO2 phase is given by

Qc = hcqc = kg�ρ
λcλbhc(H − hc)

hcλc + (H − hc)λb

(
sin(θ) − cos(θ)

∂hc
∂x

)
,

where k [L2] is the permeability, g [LT−1] is the gravity acceleration, and �ρ [ML−3] is the
density difference between the two phases, assumed to be constant. The phase mobilities are
defined by

λα = kr,α
μα

, α = b, c,

where kr,α [1] is the relative permeability and μα [ML−1T−1] is the viscosity of phase α.
An additional net volume rate of fluid flow Qvol [L2T−1] (due to the VE assumption) is
introduced as an extra advective term to (1), and the permeability k is assumed constant in
space as in MacMinn et al. (2010). In order to include spatially varying k in future work,
the subsequent analysis and design of a numerical method will treat the PDE in conservative
form. We obtain

Rφ
∂hc
∂t

+ Qvol
∂

∂x

[
λchc

λchc + λb(H − hc)

]
+ �ρgk sin(θ)

∂

∂x

[
λcλbhc(H − hc)

λchc + λb(H − hc)

]

−�ρgk cos(θ)
∂

∂x

[
λcλbhc(H − hc)

λchc + λb(H − hc)

∂hc
∂x

]
= 0. (2)

The last (diffusive) term of (2) is assumed to be negligible compared to the advective forces
and capillary trapping mechanisms (Hesse et al. 2008; MacMinn et al. 2010). Setting

h ≡ hc/H,

Q ≡ Qvol/H,

K ≡ �ρgkλb sin(θ),

M ≡ λc/λb,

we get

Rφ
∂h

∂t
+ Q

∂

∂x

[
Mh

1 + (M − 1)h

]
+ K

∂

∂x

[
Mh(1 − h)

1 + (M − 1)h

]
= 0. (3)

The PDE (3) can be expressed as a conservation law

Rφ
∂h

∂t
+ ∂F

∂x
= 0, (4)
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Fig. 1 One-dimensional model of sloping aquifer of normalized height 1 and infinite length

with the flux function F , defined by

F(h) = Q
Mh

1 + (M − 1)h
+ K

Mh(1 − h)

1 + (M − 1)h
, (5)

and the Jacobian

F ′(h) = QM + KM(1 − 2h − (M − 1)h2)

(1 + (M − 1)h)2
.

Furthermore, for all h ∈ [0, 1], we have

F ′′(h) = −2M
(M − 1)Q + MK

(1 + (M − 1)h)3
< 0,

so there are no inflection points.
The problem setup is depicted schematically in Fig. 1. In reality, the lateral extent of the

aquifer ismuch larger than the depth. In the derivation of an analytical solution, as inMacMinn
et al. (2010) it will be useful to keep track of the end points of the plume, denoted xLL, xLR,
xRL and xRR.

3 Deterministic Analytical Solutions

The PDE (4) is a conservation law with discontinuous flux function F̃ = F/(φR) due to
the discontinuity in R. We seek a weak solution in the sense of distributions that satisfy the
Kružkov entropy inequalities (Kružkov 1970) away from the discontinuity in R. Results on
existence and entropy conditions for uniqueness of solutions to this class of problems have
been extensively investigated by several authors (Andreianov et al. 2011), and a comprehen-
sive summary is included in Andreianov and Mitrović (2014).

To derive analytical solutions,wewill use techniques similar to those employed in previous
work on exact solutions of CO2 transport PDEs (Hesse et al. 2008; Juanes et al. 2010;
MacMinn et al. 2010). To extend the analysis to cases of both drainage and imbibition along
the same interfaces and for completeness of the exposition, the derivations are included below.

We assume that the aquifer slope can be ignored during the injection phase and CO2

is injected with rate Qinj and spreading symmetrically from an injector well at a point x0.
Two interfaces separating the phases, denoted left (L) and right (R), are propagating as CO2

is replacing brine through drainage. The injection plume shape is determined by the flux
function Finj and its derivative,
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Finj = QinjMh

1 + (M − 1)h
, F ′

inj = QinjM

(1 + (M − 1)h)2
.

The spatial location of the right (left) interface during injection is governed by the ordinary
differential equation (ODE)

x ′(t) = +
(−) F

′
inj(h)/φ(1 − Sbr),

which can be integrated to time τ and solved for h to determine the plume shape after
injection. The result is the initial function hinit for the post-injection simulation, given by

hinit =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 x ≤ x0 − QinjMτ

φ(1−Sbr)√
QinjτM

(x0−x)φ(1−Sbr)
−1

M−1 x0 − QinjMτ

φ(1−Sbr)
< x < x0 − Qinjτ

Mφ(1−Sbr)

1 x0 − Qinjτ

Mφ(1−Sbr)
≤ x ≤ x0 + Qinjτ

Mφ(1−Sbr)√
QinjτM

(x−x0 )φ(1−Sbr)
−1

M−1 x0 + Qinjτ

Mφ(1−Sbr)
< x < x0 + QinjMτ

φ(1−Sbr)

0 x ≥ x0 + QinjMτ

φ(1−Sbr)

. (6)

After the injection period, the plume as a whole will move upslope, but depending on the
parameter values, parts of the phase interfaces will move in different directions. Along both
interfaces, both imbibition and drainage may occur. The solution to be presented here is
a generalization of the pure imbibition/drainage interfaces presented by MacMinn et al.
They show numerical results also for the case to be presented here, but we need analytical
expressions for comparison with the stochastic solution in subsequent sections and therefore
derive the corresponding expressions below. The solution for the case where only imbibition
occurs at the left interface and only drainage at the right interface can be found in MacMinn
et al. (2010).

To find a practical expression for the discontinuous accumulation coefficient R locally,
note that ∂h/∂t = −F ′(h)∂h/∂x , and ∂h/∂x > 0 everywhere on the left interface and
∂h/∂x < 0 everywhere on the right interface. We define the left and right interface accumu-
lation coefficients RL and RR,

RL =
{
1 − Sbr − Scr if F ′(h) > 0
1 − Sbr if F ′(h) < 0

, RR =
{
1 − Sbr − Scr if F ′(h) < 0
1 − Sbr if F ′(h) > 0

.

Note that these expressions only make sense as long as the solution remains locally smooth.
It holds that F ′(0) > 0 for all ranges of parameter values of interest, but F ′(1) may have
different signs depending on the parameter values M, K , Q. The accumulation coefficient
R changes value at h = h∗ defined by F ′(h∗) = 0.

For t > τ , the evolution of the right (left) interface is determined by

x ′(t) = +
(−) F

′(h)(t − τ).

Integrating this expression with x corresponding to h init as initial condition and evaluating
the resulting expressions at h = 0 and h = 1, we obtain the locations of the end points of
the two interfaces
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xLL = x0 − QinjMτ

φ(1 − Sbr)
+ M(K + Q)

(1 − Sbr − Scr)φ
(t − τ) (7)

xLR = x0 − Qinjτ

Mφ(1 − Sbr)
+ Q − MK

MRL(1)φ
(t − τ) (8)

xRL = x0 + Qinjτ

Mφ(1 − Sbr)
+ Q − MK

MRR(1)φ
(t − τ) (9)

xRR = x0 + QinjMτ

φ(1 − Sbr)
+ M(K + Q)

(1 − Sbr)φ
(t − τ) (10)

The left interface steepens, and the right interface is stretched over time. As long as the plume
height remains smooth, the solution is given by

h =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 x < xLL

1
1−M +

√
(M(M−1)Q+M2K )(t−τ)− QinjM(M−1)τRL

1−Sbr
(M−1)2[(M−1)(x−x0)φRL+KM(t−τ)] xLL ≤ x < xLR

1 xLR ≤ x < xRL

1
1−M +

√
(M(M−1)Q+M2K )(t−τ)+ QinjM(M−1)τRR

1−Sbr
(M−1)2[(M−1)(x−x0)φRR+KM(t−τ)] xRL ≤ x < xRR

0 x ≥ xRR

.

Note that the solution is defined implicitly since RL,RR are dependent on h. If F ′(1) > 0,
the situation is the same as in MacMinn et al. (2010). For completeness and since we will
investigate a stochastic model that includes that case as well, that solution is included in
“Appendix”. In the rest of this section, we will instead consider the case of both imbibition
and drainage along the same interface. Figure 2a depicts the early development of the plume,
and the regions of imbibition and drainage are given by the receding and advancing edges of
the plume, where the direction of propagation is indicated by arrows.

The points xLR and xRL move with different speeds and merge at time tLR→RL, obtained by
equating (8) and (9) and solving for time, i.e.,

tLR→RL = τ

⎛
⎝1 + 2Qinj(

1−Sbr
RL

− 1−Sbr
RR

)
(Q − KM)

⎞
⎠,

if the interfaces remain smooth. However, this will not be the case in the numerical exper-
iments to be considered here. Instead, the left edge of the plume will become steeper and
develop a shock. Unlike the case of a pure imbibition interface, this will not occur when
xLL = xLR, but instead when xLL reaches the left stationary point x∗ where F ′(h∗) = 0. The
shock is shown in Fig. 2b, and it arises at time

tLL→S = τ + 1 − Sbr − Scr
1 − Sbr

Qinj(M − 1)τh∗t[2 + (M − 1)h∗]
(K + Q)(1 + (M − 1)h∗)2

.

The shock, originally with strength (height) hS = h∗ and located at xS = x∗, is continuously
getting stronger and propagates to the right with speed determined by the Rankine–Hugoniot
condition, i.e.,

σS = F(hL) − F(hR)

φR(hL − hR)
,
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where the states immediately to the left and right of the shock are hL = 0 and hR = hS. This
is an imbibition process soR = 1− Sbr − Scr for all shock locations along the left interface.
With the flux (5), we obtain

σS(hS) = QM + KM(1 − hS)

φ(1 − Sbr − Scr)(1 + (M − 1)hS)
, (11)

for hS ∈ (h∗, 1). To find an expression for hS, note that the height of the shock is implicitly
determined by equating the spatial location determined by the shock with the left interface
spatial location as a function of h, evaluated at the shock height hS, i.e.,

x∗ +
∫ t

tLL→S

σS(hS(t
′))dt ′ = xL(hS(t), t),

which is differentiated with respect to t , resulting in the ODE

dhS

dt
= φ(1 − Sbr)σS − F ′(hS)

−F ′′
inj(hS)τ + F ′′(hS)(t − τ)

, hS(0) = h∗. (12)

In order to solve (12), set

G = 1 − Sbr
1 − Sbr − Scr

,

a = KM(1 − G)

M − 1
,

b = GM

(
Q + KM

M − 1

)
,

c = −M

(
Q + M

M − 1

)
, (13)

Introducing the variable substitution h′ = 1 + (M − 1)hS, the ODE (12) can be separated
and solved through integration. Provided that b2 − 4ac > 0, the shock height hS is defined
by

∫ 1+(M−1)hS

1+(M−1)h∗
dh′

h′(a(h′)2 + bh′ + c)

= 1

2c

[
ln

∣∣∣∣ (h′)2

a(h′)2 + bh′ + c

∣∣∣∣ + 2b√
b2 − 4ac

atanh−1

(
2ah′ + b√
b2 − 4ac

)]1+(M−1)hS

1+(M−1)h∗

= RHS(tS→RL, t)

≡ (M − 1)
∫ t

tS→RL

dt ′

2M
(
(M − 1)Qinjτ − ((M − 1)Q + MK )(t ′ − τ)

)

=
[
− (M − 1) ln(2M |(M − 1)Qinjτ − ((M − 1)Q + MK )(t ′ − τ))|

2M((M − 1)Q + MK )

]t
S→RL

, (14)

for t ∈ (tLL→S, tS→LR) where tS→LR will be defined below and hS ∈ [h∗, 1]. As time evolves,
hS increases and the shock speed decreases continuously. This is depicted in Fig. 2c where
the shock height increases from h∗ to 1 over time. The solution during the time interval
(tLL→S, tS→LR) can be written
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Fig. 2 Temporal development of the deterministic (exact) solution. Arrows indicate progression in time.
a Initial plume height (red) and plume height after T = 3 (black). b Formation of shock of height h∗ (red)
and, subsequently, shock of height 1 (black). c Close view of the strengthening of the shock, from height h∗
to 1. d Plume after T = 5 (red) and T = 10 (black)

h =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 x < xS

1
1−M +

√
(M(M−1)Q+M2K )(t−τ)− QinjM(M−1)τRL

1−Sbr
(M−1)2[(M−1)(x−x0)φ(1−Sbr)+KM(t−τ)] xS ≤ x < xLR

1 xLR ≤ x < xRL

1
1−M +

√
(M(M−1)Q+M2K )(t−τ)+ QinjM(M−1)τRR

1−Sbr
(M−1)2[(M−1)(x−x0)φRR+KM(t−τ)] xRL ≤ x < xRR

0 x ≥ xRR

.

The remaining smooth part of the left interface between xS and xLR (as long as hS < 1)
will continue to get steeper and propagate to the left, until xS and xLR coincide at time tS→LR,
a time which can be found analogously to hS above, by solving
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∫ tS→LR

tLL→S

dt ′

2M
(
(M − 1)Qinjτ − ((M − 1)Q + MK )(t ′ − τ)

)

= 1

2c

[
ln

∣∣∣∣ (h′)2

a(h′)2 + bh′ + c

∣∣∣∣ + 2b√
b2 − 4ac

atanh−1

(
2ah′ + b√
b2 − 4ac

)]M

1+(M−1)h∗
, (15)

for tS→LR. The spatial location where the shock reaches xLR can be written

xS→LR = x0 + (Q − MK )(tS→LR − τ) − Qinjτ

Mφ(1 − Sbr)
.

After that, the shock propagates to the right with constant strength hS = 1 and speed given
by (11) until it meets the left end point of the right interface, i.e., xRL. The solution between
time tS→LR and tS→RL is given by

h =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 x < xS→LR

1 xS→LR ≤ x < xRL

1
1−M +

√
(M(M−1)Q+M2K )(t−τ)+ QinjM(M−1)τRR

1−Sbr
(M−1)2[(M−1)(x−x0)φRR+KM(t−τ)] xRL ≤ x < xRR

0 x ≥ xRR

.

The shock then decreases in height as it continuously collides with the right interface
of the plume. At time t , the normalized plume height is implicitly defined by the equality
between the spatial location of the shock determined by the Rankine–Hugoniot condition
and the spatial location at the left interface where h = hS, i.e.,

xS→RL +
∫ t

tS→RL

σS(hS(t
′))dt ′ = x(hS, τ ) + F ′(hS)(t − τ)

φRR

, (16)

where the shock speed is again time dependent and given by (11). The expression in (16)
is discontinuous at time tI→D where hS = h∗ (where RR changes value) but continuous for
t ∈ (tS→RL, tI→D). Differentiating (16) with respect to t (t �= tI→D), we obtain the ODE

dh

dt
= σS − F ′(h)

φRR(h)

F ′′
inj(h)τ

φ(1−Sbr)
+ F ′′(h)(t−τ)

φRR(h)

, (17)

for t ∈ (tS→RL, tI→D) and t ∈ (tI→D,∞). With G = 1 and a, b, c defined in (13) (note that
a = 0) and the above variable substitution h′ = 1 + (M − 1)hS, we integrate the above
expression, for t ∈ (tS→RL, tI→D) and hS ∈ [h∗, 1],

∫ 1+(M−1)hS

M

dh′

h′(bh′ + c)
=

[
ln |cx |

c
− ln |c(bx + c)|

c

]1+(M−1)hS

M
= RHS(tS→RL, t)

≡ (M − 1)
∫ t

tS→RL

dt

−2M
(

RR
1−Sbr

(M − 1)Qinjτ + ((M − 1)Q + MK )(t − τ)
), (18)

from which we can solve for hS. For t ∈ (tI→D,∞) and hS ∈ [0, h∗], we obtain an expression
analogous to (14) but with a different right-hand side,
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∫ 1+(M−1)hS

1+(M−1)h∗
dh′

h′(a(h′)2 + bh′ + c)
= RHS(tI→D, t)

≡ (M − 1)
∫ t

tS→RL

dt ′

2M
(
(M − 1)Qinjτ + ((M − 1)Q + MK )(t ′ − τ)

)

=
[
− (M − 1) ln(2M |(M − 1)Qinjτ + ((M − 1)Q + MK )(t ′ − τ))|

2M((M − 1)Q + MK )

]t
tI→D

. (19)

The spatial shock location xS is identical to the spatial point on the continuous right interface
where h = hS. The solution after tS→RL can be written

h =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 x < xS

1
1−M +

√
(M(M−1)Q+M2K )(t−τ)+ QinjM(M−1)τRR

1−Sbr
(M−1)2[(M−1)(x−x0)φRR+KM(t−τ)] xS ≤ x < xRR

0 x ≥ xRR

,

whereRR = 1−Sbr−Scr if t < tI→D andRR = 1−Sbr if t > tI→D. Figure 2d shows the shock
before (red) and after (black) tI→D. Qualitatively, this is the last stage of the development of
the plume profile. The shock continues to the right, either until the shock height shrinks to
zero or until the plume reaches the sealing caprock.

4 Representation of Uncertainty

Stochastic functions can be represented using the generalized polynomial chaos (gPC) frame-
work, developed in Ghanem and Spanos (1991) and Xiu and Karniadakis (2002). To achieve
this, we introduce a probability space (Ω,F,P) with the set of elementary events Ω and
probability measureP defined on the σ -algebraF . Let ξ = (ξ1, . . . , ξd)

T be a d-dimensional
independent random vector defined on this space. Each vector component will typically rep-
resent a source of uncertainty in the CO2 migration problem. The inner product between two
stochastic functions f (ξ) and g(ξ) is defined by

〈 f, g〉 =
∫

Ω

f (ξ)g(ξ)dP(ξ) = 〈 f g〉,

where 〈·〉 denotes the expected value operator. Consider a complete basis {ψi (ξ)}∞i=1 for
the space of second-order (i.e., finite variance) random processes on this probability space.
Typically, the basis functions are orthogonal polynomials from the Askey scheme (Askey and
Wilson 1985) or, for functions with non-smooth behavior, stochastic multiwavelets (Alpert
1993). The basis functions are assumed to be orthonormal with respect to the inner product
with the measure P , i.e., they satisfy

〈ψiψ j 〉 = δi j , i, j ∈ N,

where δi j is the Kronecker delta. Multidimensional basis functions are generated by tensor
products of one-dimensional basis functions and retain orthogonality since the random vector
components ξ1, . . . , ξd are statistically independent by assumption. To handle discontinuities
that are expected to develop in the solution of a nonlinear hyperbolic system, we will use
multiwavelets (Alpert 1993) that are localized in stochastic space and were introduced for
non-smooth problems in uncertainty quantification in Le Maître et al. (2004).

123



468 P. Pettersson

Any second-order random field u(x, t, ξ) (e.g., material parameter or the solution of a
PDE) can be expressed as a gPC expansion of the form

u(x, t, ξ) =
∞∑
i=1

ui (x, t)ψi (ξ), (20)

where the coefficients ui (x, t) can be obtained from the projections

ui (x, t) = 〈u(x, t, ξ)ψi (ξ)〉, i = 1, 2, . . . (21)

The solution statistics are functions of the gPC coefficients and can easily be obtained by
post-processing of the solution. For instance, the expected value and variance are given by,
respectively,

E(u) ≡ 〈u〉 = u1, Var(u) =
∞∑
i=2

u2i , (22)

where the first relation relies on the identity ψ1 = 1. In practice, the expansion in (20) is
truncated to a finite number of terms P such that, for instance, the total polynomial order of
each ψi (ξ) is at most p. The total number of gPC terms is then prescribed apriori, unless
an adaptive method is used where the basis functions are allowed to change over time (Wan
and Karniadakis 2005). For long-term integration, this is a viable option to remedy the linear
error growth in time of truncated gPC (Gottlieb and Xiu 2008).

4.1 Stochastic Models for Uncertain Parameters

Finding optimal stochasticmodels for uncertain parameter values is a non-trivial task. Clearly,
a more generic model requires wider parameter ranges than does amodel tailored to a specific
geological formation. To give a feeling for the possible ranges, we will provide a brief review
of parameter values reported in previous studies. Bachu and Bennion report ranges in the
residual brine saturation Sbr from 0.2 to 0.68, and relative permeabilities for CO2 in the range
from 0.015 to 0.54 in saline aquifers (Bachu and Bennion 2008). Vilarrasa et al. (Vilarrasa
et al. 2010) investigated the impact of CO2 compressibility and reported CO2 densities
between 450 and 800 kg/m3 during the injection phase. In the numerical experiments, we
will use the representative values Sbr = Scr = 0.3 and �ρ = 300 kg/m3, but a future study
could include stochastic models for these parameters to reflect the variability reported in the
literature.

Several parameters may have a deep impact on the spreading of the CO2 plume. The
mobility ratio and the aquifer tilt angle relative to the background flow have been reported
crucial for the migration pattern (MacMinn et al. 2010). In this paper, we will assume a
uniform probability distribution (for lack of data indicating another distribution) for the
mobility ratio M , which is the maximum entropy probability distribution when upper and
lower bounds for the random variable are known. We assume a lognormal model for the
permeability. In addition to the permeability, the parameter K encompasses the tilt angle
and the density difference between the phases, both of which are also uncertain. From a
mathematical point of view, all of these sources of uncertainty will be included in the single
random field K . Sobol sensitivity indices obtained by simple post-processing of the gPC
coefficients of the normalized plume height indicate that the uncertain permeability and the
uncertain mobility ratio contribute relatively equally to the total solution variance.

In general, a strategy for identification of the most important sources of uncertainty could
be to run a coarse-scale or other surrogate model including several candidate sources of
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uncertainty. Sensitivity analysis based on Sobol indices can be used to find the random
variables that contribute significantly to the total variance of the surrogate model. These
random variables can then be included in the refined model (Formaggia et al. 2013).

5 Stochastic Galerkin Formulation of the Transport Problem

To obtain statistics of interest for the transport problem, one may efficiently sample the exact
solutions presented in Sect. 3, but for more complex problems one must rely on numerical
solution of the governing PDEs for uncertainty quantification. To anticipate the solution of
more complex problems with unknown exact solutions, we will apply the stochastic Galerkin
method to (4). The analysis and design of a numerical method for this problem is non-trivial
due to the nonlinear accumulation coefficient and the nonlinear fractional flux function.
Validation against a known solution is therefore essential before the numerical method is
extended to more complex problems.

To appreciate the difference in the problem formulation depending on what sources of
uncertainty are included in the model, in the analysis in this section we will consider both
the case of uncertainty in the permeability only, and the case of uncertain permeability and
mobility ratio. First assume that the mobility ratio M is a deterministic quantity. Insert the
truncated gPC expansion (20) for h, R, and F into (4), multiply with ψm for m = 1, . . . , P ,
and integrate w.r.t. the probability density of ξ ,

φ

P∑
i=1

P∑
j=1

Ri
∂h j

∂t

〈
ψiψ jψm

〉 +
P∑

i=1

∂Fi
∂x

〈ψiψm〉 = 0, m = 1, . . . , P. (23)

The gPC coefficients of the flux, in vector notation F = (F1, . . . , FP )T, are evaluated
as functions of the gPC expansions of h, Q, and K and can be approximated in different
ways. Here, we aim at precomputing all integrals in the stochastic space to avoid expensive
numerical quadrature evaluation of the flux function during simulation. Direct projection
of the fractional flux (5) would require approximation of stochastic integrals at every point
in space and time. This is avoided by multiplying (5) by the denominator of F (i.e., the
gPC expansion of 1+ (M − 1)h) and then performing stochastic Galerkin projection on the
resulting expression, i.e.,

〈(
(M − 1)

P∑
i=1

hiψi + 1

)⎛
⎝ P∑

j=1

Fjψ j

⎞
⎠ψm

〉

=
〈
M

⎛
⎝ P∑

i=1

Qiψi +
(

P∑
i=1

Kiψi

)⎛
⎝1 −

P∑
j=1

h jψ j

⎞
⎠
⎞
⎠

(
P∑

k=1

hkψk

)
ψm

〉
. (24)

We have assumed gPC representations for the parameters Q, K , and quantities dependent
on them, i.e., h, F , andR. The background flow Q is in general determined by an uncertain
pressure field and modeled as a stochastic field in the analysis. However, in the numerical
results section, Q will be treated as a deterministic constant.

To facilitate the notation, for any u, v,w ∈ RP , let the matrices A, B, and C be defined
by
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[A(u)]i j =
P∑

k=1

uk
〈
ψiψ jψk

〉
, i, j = 1, . . . , P,

[B(u, v)]i j =
P∑

k=1

P∑
l=1

ukvl
〈
ψiψ jψkψl

〉
, i, j = 1, . . . , P,

[C(u, v,w)]i j =
P∑

k=1

P∑
l=1

P∑
m=1

ukvlwm
〈
ψiψ jψkψlψm

〉
, i, j = 1, . . . , P. (25)

The stochastic integrals above can be precomputed and stored, but the cost of evaluating the
matrices for given vector arguments increases with the number of basis functions. Therefore,
we aim for PDE representations where no higher-order tensors are needed.

Let I denote the identity matrix and e1 = (1, 0 . . . , 0)T. Then, (24) can be written in
matrix-vector form, and the stochastic Galerkin flux F is obtained by the solution of the
linear system

(I + (M − 1)A(h)) F = M
[
A(Q) + B(K , e1 − h)

]
h, (26)

assuming that I + (M − 1)A(h) is positive definite (invertible is sufficient).

Remark 1 The requirement that I + (M − 1)A(h) is positive definite is not particularly
restrictive. We expect the minimum eigenvalue of A(h) to be nonnegative and M > 1 due
to the higher mobility of CO2 compared to brine.

With the vector and matrix notation introduced above, the stochastic Galerkin system (23)
for the evolution of the normalized plume height can be expressed

φA(R)
∂h
∂t

+ ∂F
∂x

= 0, (27)

where R = (R1, . . . ,RP )T .

Proposition 1 Let I + (M − 1)A(h) be positive definite and let P be any order of gPC
approximation. Then, the stochasticGalerkin formulation (27) is hyperbolic, i.e., the Jacobian
of the flux (26) is diagonalizable with real eigenvalues.

Proof The Jacobian is defined through its kth column vector,

∂F
∂hk

= −M[I + (M − 1)A(h)]−1A((M − 1)ek)

× [[I + (M − 1)A(h)]−1(A(Q) + B(K , e1 − h)
]
h︸ ︷︷ ︸

v

+ M[I + (M − 1)A(h)]−1 [A(Q) + B(K , e1 − h) − B(K , h)
]
ek. (28)

Using the identity A(u)w = A(w)u, that holds for all u,w by the definition (25), we have

∂F
∂h

= M[I + (M − 1)A(h)]−1 [(1 − M)A(v) + A(Q) + B(K , e1 − 2h)
]
. (29)

The flux Jacobian in (29), ∂F/∂h, is a product of two symmetric matrices. By assumption,
[I + (M − 1)A(h)]−1 is positive definite (since its inverse is positive definite), and there
exists an invertible and symmetric square rootmatrix, denoted R1/2

g , that satisfies R1/2
g R1/2

g =
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M[I + (M −1)A(h)]−1. With M̃ = [
(1 − M)A(v) + A(Q) + B(K , e1 − 2h)

]
, ∂F/∂h =

R1/2
g R1/2

g M̃ is similar to the symmetric matrix

R−1/2
g R1/2

g R1/2
g M̃ R1/2

g = R1/2
g M̃ R1/2

g .

Since ∂F/∂h is similar to a diagonalizablematrixwith real eigenvalues, ∂F/∂h is also diago-
nalizable with real eigenvalues; hence, the stochastic Galerkin formulation (27) is hyperbolic.

��
5.1 Stochastic Mobility Ratio M

Next, letM be stochastic, for example as a result of uncertain end point relative permeabilities,
resulting in uncertain phase mobilities. Performing stochastic Galerkin projection of (3) with
stochastic M(ξ), the flux is given by

(I + B(M − e1, h)) F = [
B(Q, M) + C(K , M, e1 − h)

]
h. (30)

Proposition 2 Let I + B(M − e1, h) be positive definite and let P be any order of gPC
approximation. Then, the stochasticGalerkin formulation (27)with the flux (30) is hyperbolic.

We follow the proof of Proposition 1 to prove Proposition 2.

Proof Set

v = [I + B(M − e1, h)]−1 [(B(Q, M) + C(K , M, e1 − h)
]
h.

Then, differentiating (30), we obtain the Jacobian

∂F
∂h

= [I + B(M − e1, h)]−1 [B(Q, M) + C(K , M, e1 − 2h) + B(M − e1, v)
]
,

which is again a product of two symmetric matrices, one of which is positive definite. The
rest of the proof is identical to that of Proposition 1. ��
Remark 2 The proof of Proposition 2 relies on the formulation with the fifth-order tensor
expressed as the matrix C. Pseudo-spectral formulations that replace B and C by repeated
application of A lead to significantly reduced computational cost and may lead to breakdown
of hyperbolicity, see Pettersson and Tchelepi (2014).

Remark 3 Proposition 1 is a special case of Proposition 2, obtained by setting M = Me1
and using the definitions of the stochastic tensors B and C to reduce the complexity of the
system. It illustrates the difference in complexity as a function of the number of stochastic
dimensions. The orders of the precomputed stochastic tensors increase with the stochastic
dimensionality.

6 Numerical Method

We have shown in Sect. 5 that the stochastic Galerkin formulation of the tilted aquifer model
is a nonlinear hyperbolic system; hence, we expect the solution to develop discontinuities.
The system will therefore be discretized using a robust numerical method that can handle
discontinuities.
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6.1 Spatial Discretization of the Flux

Consider a non-uniform spatial discretization of cells x j , j = 1, . . . ,m. The grid is generated
by a smooth transformation of a uniform grid through the sinh function centered around the
injection point x0. The grid is finer close to the injection well, where the solution changes
the most after the first years after the end of injection. Each spatial cell j is separated by the
edges x j− 1

2
and x j+ 1

2
. Let H j = (h1(x j ), . . . , hP (x j ))T be the discretized vector of gPC

coefficients of h and let G j+ 1
2
be the numerical flux function at edge j + 1

2 . The problem
(27) is semi-discretized,

φA(R)
dH j

dt
= −

G j+ 1
2

− G j− 1
2

�x j
.

The numerical flux function G j+ 1
2
is taken to be the Godunov-type central-upwind flux

defined in Kurganov et al. (2001),

G j+ 1
2

=
σRF

(
H L

j+ 1
2

)
− σL F

(
H R

j+ 1
2

)
+ σLσR

(
H R

j+ 1
2

− H L
j+ 1

2

)

σR − σL
,

where F is given by (26) or (30) depending on the sources of uncertainty and H L
j+ 1

2
and H R

j+ 1
2

denote flux-limited left and right states, respectively. The scalars σL and σR are estimates of
the smallest and largest Jacobian eigenvalues. For the moderate system sizes considered here,
we calculate the eigenvalues using MATLAB’s eig() function. For large P , the eigenvalue
estimator for stochastic Galerkin Jacobian matrices via polynomial approximation presented
in Tryoen et al. (2010) might be a more efficient option. We use the second-order minmod
limiter to limit the spatial derivative and capture discontinuities (Roe 1986).

6.2 Updating the Plume Height and the Discontinuous Accumulation Coefficient

Explicit Euler is used for the time integration with a time step small enough to yield a
negligible error contribution compared to the other sources of numerical error. (A fourth-
order Runge–Kutta method was also tested, but did not significantly affect the results.) For
every time increment, the normalized plume height needs to be updated for every spatial grid
point based on whether the process is imbibition or drainage, determined by the local sign
of the time derivative of the plume height. The discontinuous accumulation coefficient R is
uncertain as a result of the uncertainty in the temporal derivative of the plume height and
may be expressed as a sum of two indicator random variables,

R = (1 − Sbr − Scr)1{
∂h
∂t <0

} + (1 − Sbr)1{
∂h
∂t >0

},

where the indicator random variable is defined by

1{
∂h
∂t <0

} =
{
1 if ∂h

∂t < 0
0 if ∂h

∂t ≥ 0
.

At a solution discontinuity, where ∂h/∂t does not exist, R is determined by the sign of the
shock speed. In order to compute the gPC coefficients ofR, we perform numerical quadrature
in stochastic space over a discontinuous integrand involving R. Standard Gauss quadrature
is not suitable here due to the discontinuity in ξ -space. Instead, we use an adaptive tree-based
numerical integration method for level set functions (Müller et al. 2012). The location of the
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Fig. 3 Adaptive partition of the stochastic domain at two spatial locations near the stationary height location
on the left and right interface at time T = 2. The red curve is the expected discontinuity in R. Each blue
square is approximated by a local quadrature rule during integration. a Partition of ξ at x = E(x∗

L). b Partition
of ξ at x = E(x∗

R)

interface separating the two continuous regions evolves over time and is known implicitly
through the zero isocontour of a level set function based on the gPC expansion of ∂h/∂t . The
stochastic domain is a polytope in d dimensions, initially partitioned into a relatively small
number of subpolytopes. Here, d = 2 and the polytopes are squares.

If a subpolytope is cut by the discontinuity, it is further partitioned into subpolytopes and
the process continues until the finest level of partition is reached. Subpolytopes that are not
cut by the interface constitute regions of smooth integrands and can be integrated by standard
quadrature rules without further partition.

The location of the discontinuity is not known explicitly but is implicitly defined by
1{

∂h
∂t <0

} as a function of ξ . In order to decide whether a given (sub)polytope is cut by the

discontinuity (and needs further refinement), we evaluate the quadrature nodes defined by
the coordinates of the polytope corners. If 1{

∂h
∂t <0

} attains different values at the corners, the
subpolytope is necessarily cut by the discontinuity. If 1{

∂h
∂t <0

} takes the same value at all

corners, the polytope may still be cut by the discontinuity along its edges. Although there
are remedies for this issue by means of estimating the curvature of the discontinuity, we
will assume that a polytope with the same value of 1{

∂h
∂t <0

} at all corners is not cut by the

discontinuity. As a motivation for this decision, note that we expect non-smooth solutions for
the normalized plume height and will therefore typically use localized basis functions of low
polynomial order. These basis functions will result in relatively low curvature locally, and
hence, a polytope where the corner nodes take the same value should be well approximated
by a polytope where all nodes within the polytope attain the same value. This is illustrated
in Fig. 3 where the domain ξ is adaptively partitioned to approximate R at the two spatial
locations where the expected plume height is equal to the expected stationary plume height.
These locations are chosen since this is whereR is expected to dependmost strongly on ξ . For
each of the blue squares, we apply a local quadrature rule to compute the gPC coefficients of
R by projection (integration) onto the basis functions. Since the integrand is smooth on each
square (unless it is cut by the discontinuity), a standard local quadrature rule is employed.
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In the numerical calculations, we use Simpson’s rule locally, but other methods, e.g., Gauss
quadrature, are also possible to use for the smooth subpolytope integrands.

7 Numerical Results

For the numerical simulations, we set Q = 1·10−8 m2/s , θ = 0.03, φ = 0.16, Sbr = Scr =
0.3, Qinjτ = 10 m2 and �ρ = 300 kg/m3. The permeability k is lognormal with mean 200
mD and standard deviation 20 mD. With μb/μc = 8, kr,b = 1, kr,c ∼ U (0.4, 0.8), we have
M ∼ U (2.3, 6.5).

An approximation of the normalized plume height h is obtained from the numerical solu-
tion of (27) for the vector of gPC coefficients h. This serves as a stochastic surrogate model
from which we can sample efficiently to obtain statistics for scenarios of interest. The accu-
racy of these surrogate models depends on how well the numerical method approximates the
true gPC coefficients and howmany gPC coefficients are included. To refine the multiwavelet
representation, one may increase the piecewise polynomial order, increase the number of res-
olution levels (localization of the basis functions), or both. High polynomial order leads to
increased oscillations over the discontinuities in stochastic space and does not lead to conver-
gence of the problems investigated. If increased resolution is required, the gPC basis should
instead be enriched by increasing the number of wavelet levels. For the numerical experi-
ments, two one-dimensional cases where we use two or three resolution levels and piecewise
linear or quadratic polynomials will be investigated (resulting in 6 and 8 basis functions,
respectively). A two-dimensional case will also be studied with piecewise linear basis on two
levels and a total order basis, resulting in a total of 12 basis functions.

To investigate the accuracy, we compare the computed expected value and standard devia-
tion with the exact expected value and standard deviation obtained by sampling the analytical
solution. The reference solution statistics have been obtained from 20,000 Monte Carlo
samples of the exact solution. It was found that further increasing the sample size had an
insignificant effect on the error in comparisonwith the error of the gPC solution. The expected
value and standard deviation are representative of the full gPC solution since they depend on
all the gPC coefficients. For a realistic problem with multiple sources of uncertainty (high
stochastic dimensionality), each stochastic dimension can only be represented with low-
order stochastic basis functions due to the computational cost. Therefore, we are primarily
interested in investigating low-order approximations of the effects of each stochastic variable.

For the test cases investigated below, each realization of the stochastic model corresponds
to a solution of the form presented in Sect. 3 or “Appendix.” Depending on the parameter
values attained for each realization, the solution is either smooth or discontinuous at a given
time. Since the time evolution of the realizations are different, for the given time the stochastic
solution may be smooth or non-smooth with some nonzero probability. The exact statistics
are in general smooth due to the effect of averaging even if all possible realizations are discon-
tinuous. When we refer to emergence of discontinuities in the exact solution statistics below,
it refers to discontinuities in the realizations corresponding to the exact stochastic solution.
Some features of the exact statistics of the test problems are sharp, but they are not discontin-
uous. On the other hand, the numerical solution is an approximation to a finite-dimensional
gPC representation of the original problem. This problem is nonlinear hyperbolic and will
exhibit discontinuities that tend to emerge around the same time as the discontinuities of the
realizationswould emerge, werewe to use a sampling-basedmethod instead. Formore details
on the regularity of the statistics and gPC approximations, we refer to Pettersson et al. (2015).
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7.1 Stochastic K , Deterministic M

Assume that M = 3.6 is deterministic and K is lognormally distributed as described above.
Note that K ∼ lnN (2.65, 0.7) corresponds to mean 200 mD and standard deviation of 20
mD. The expected value and standard deviation of the normalized plume height are shown
in Fig. 4 from time T = 1 after the end of the injection period and up to time T = 7 after
injection. During the time until T = 2, the formation of shocks is unlikely and the expected
value and standard deviation are well represented by the multiwavelet gPC approximation of
piecewise quadratic basis functions on two levels, resulting in a total of 6 basis functions.

After T = 3, the solution exhibits a sharp peak in the standard deviation that is well
captured by the numerical solution given the difficulty to accurately capture this kind of
solution features. Initially, the variance peak is overpredicted, but as the solution evolves and
the peak widens, the solution is accurately captured.

The truncated stochastic Galerkin system displays different dynamics compared to the
original stochastic problem. This is illustrated in the sharp region of the expected value of
the plume, represented by two sharp regions (discontinuities) separated by a smooth region
in the numerical solution around x0 = 0 for times larger than T = 6.

7.2 Stochastic M, Deterministic K

Assume now that M is uniformly distributed and k = 20 mD, resulting in a deterministic K .
The expected value and standard deviations of the normalized plume height are depicted in
Figs. 5 and 6 up to 7 years after injection for multiwavelet gPC approximation of piecewise
linear basis functions on three levels, resulting in a total of 8 basis functions.

The solutions are qualitatively similar to the ones of the previous case. Initially, the standard
deviation for this case is larger compared to the case of stochastic K , but for larger times
the maximum standard deviations are similar. The peak in standard deviation is resolved but
increased accuracy would likely require a combination of higher-order gPC representation
and a finer spatial mesh. In order to answer questions about leakage scenarios and migration
probabilities through post-processing of the gPC solution—which is the ultimate goal of the
quantification of the uncertainty—it is essential that peaks of variance are captured in order
not to underestimate risk.

7.3 Stochastic M and K

Now assume that both K andM are stochastic and consider two-dimensional piecewise linear
functions on two levels of localization, resulting in a total of 12 basis functions. For early
times, the numerical solution is accurate as in the cases of a single source of uncertainty. For
later times, the accuracy deteriorates, as can be seen for the standard deviation after 6 and 7
years in Fig. 7. Joint effects from the two sources of uncertainty may result in stronger need
for more accurate stochastic representation or a more robust stochastic basis.

8 Summary and Conclusions

In stochastic models, the combination of different parameter ranges leads to nonzero prob-
ability of different types of solutions. We have derived analytical solutions for cases of
one-dimensional tilted aquifers where we may encounter both imbibition and drainage along
the same CO2 interfaces.
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Fig. 4 Expected values and standard deviations for the normalized plume height at various times after the end
of injection. Spatial grid with 200 points, uncertain K ∼ lnN (2.65, 0.7), P = 6 order of multiwavelet gPC.
a Expected value after T = 2. b Standard deviation after T = 2. c Expected value after T = 4. d Standard
deviation after T = 4. e Expected value after T = 5. f Standard deviation after T = 5. g Expected value after
T = 7. h Standard deviation after T = 7
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Fig. 5 Expected values and standard deviations for the normalized plume height at various times after the
end of injection. Spatial grid with 200 points, uncertain M ∼ U (2.3, 6.5), P = 8 order of multiwavelet gPC.
a Expected value after T = 1. b Standard deviation after T = 1. c Expected value after T = 3. d Standard
deviation after T = 3

A stochastic Galerkin formulation of the one-dimensional tilted aquifer model has been
presented,with uncertain permeability and uncertain end point relative permeability (mobility
ratio). The formulation is proven to be hyperbolic, a fact that is subsequently used in the choice
of numerical method.

A central-upwind flux with flux limiters has been used for the spatial discretization to
capture solution discontinuities. For increased resolution near the injection well, a stretched
grid was used with the highest density of cells around the injection point x0. Explicit Euler
in combination with adaptive tree-based numerical integration for the reconstruction of the
discontinuous accumulation coefficient was employed to update the plume height in time.

The numerical solution accurately represents the exact statistics at times before disconti-
nuities start to form. After the emergence of discontinuities, the effect of the truncation of the
gPC series to a low-order expansion is clearly visible. The additional discontinuities of the
truncated problem are results of the nonlinear hyperbolic system of order P approximation.
Still, despite this relatively crude approximation of the infinite-dimensional original prob-
lem, the modified problem reproduces sharp solution features (variance peaks) that are well
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Fig. 6 Expected values and standard deviations for the normalized plume height at various times after the
end of injection. Spatial grid with 200 points, uncertain M ∼ U (2.3, 6.5), P = 8 order of multiwavelet gPC.
a Expected value after T = 4. b Standard deviation after T = 4. c Expected value after T = 5. d Standard
deviation after T = 5. e Expected value after T = 6. f Standard deviation after T = 6. g Expected value after
T = 7. h Standard deviation after T = 7
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Fig. 7 Expected values and standard deviations for the normalized plume height at various times after the
end of injection. M ∼ U (2.3, 6.5), K ∼ lnN (2.65, 0.7), P = 12 order of multiwavelet gPC. a Expected
value after T = 5. b Standard deviation after T = 5. c Expected value after T = 6. d Standard deviation after
T = 6. e Expected value after T = 7. f Standard deviation after T = 7

123



480 P. Pettersson

captured by the numerical solver. The low-order numerical gPC approximation is therefore
of interest for construction of stochastic surrogate models for more complex problems where
analytical solutions are not known. This is the subject of a future study.
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Appendix: Analytical Solutions

We reproduce the solution for the case of pure imbibition along the left interface and pure
imbibition along the right interface. This is essentially Case 1 of flow with weak slope
in MacMinn et al. (2010). The initial function is given by (6). For t > τ , the end points of
the two interfaces are given by

xLL = x0 − QinjMτ

φ(1 − Sbr)
+ M(K + Q)

(1 − Sbr − Scr)φ
(t − τ),

xLR = x0 − Qinjτ

Mφ(1 − Sbr)
+ Q − MK

Mφ(1 − Sbr − Scr)
(t − τ),

xRL = x0 + Qinjτ

Mφ(1 − Sbr)
+ Q − MK

Mφ(1 − Sbr)
(t − τ),

xRR = x0 + QinjMτ

φ(1 − Sbr)
+ M(K + Q)

(1 − Sbr)φ
(t − τ).

As long as the solution remains smooth, the normalized plume height is given by

h =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 x < xLL
1

1−M +
√

1
(M−1)2

− (x−x0)φ(1−Sbr)−MG(K+Q)(t−τ)+QinjMτ)

(M−1)[(M−1)(x−x0)φ(1−Sbr)+GKM(t−τ)] xLL ≤ x < xLR
1 xLR ≤ x < xRL

1
1−M +

√
1

(M−1)2
− (x−x0)φ(1−Sbr)−M(K+Q)(t−τ)−QinjMτ

(M−1)[(M−1)(x−x0)φ(1−Sbr)+KM(t−τ)] xRL ≤ x < xRR
0 x ≥ xRR

where G = 1−Sbr
1−Sbr−Scr

. The left interface will become steeper and develop a shock when
xLL = xLR. This happens at time

tLL→LR = τ

(
1 + 1 − Sbr − Scr

1 − Sbr

(M − 1/M)Qinj

M(K + Q) − Q/M + K

)
,

and at the spatial location

xLL→LR = x0 − QinjMτ

φ(1 − Sbr)

(
K (1 + 1/M)

M(K + Q) − Q/M + K

)
.

Then, the shock propagates to the right with speed σS = Q
φ(1−Sbr−Scr)

, and the solution can
be expressed

h =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 x < xS
1 xS ≤ x < xRL

1
1−M +

√
1

(M−1)2
− (x−x0)φ(1−Sbr)−M(K+Q)(t−τ)−QinjMτ

(M−1)[(M−1)(x−x0)φ(1−Sbr)+KM(t−τ)] xRL ≤ x < xRR
0 x ≥ xRR

,
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where the shock location xS = xLL→LR +σS(t − tLL→LR). This solution is valid until the shock
reaches the left end point of the right interface at time tS→RL, given by

tS→RL = τ

[
1 + Qinj

(
1 + M

QM 1−Sbr
1−Sbr−Scr

− Q + KM

)]
,

and spatial location

xS→RL = xLL→LR + σS(tS→RL − tLL→LR)

= x0 − Qinjτ

φ(1 − Sbr)
+ QinjτQ(1 + M)

φ(1 − Sbr)QM + φ(1 − Sbr − Scr)(KM − Q)
. (31)

The shock decreases in height as it continuously collides with the right interface. At time
t , the plume height is implicitly given by (16) with RR = 1 − Sbr since we have drainage
everywhere along the right interface. As in Sect. 3, differentiating (16) leads to the ODE (17).
Rearranging and integrating (17) with respect to the current parameter values and integration
limits,
∫ hS

1

dh

GM(Q+K (1−h))[1+(M−1)h]2−M[Q+K (1−2h−(M−1)h2)][1+(M−1)h]
=

∫ t

tS→RL

dt

QinjM(M − 1)τ + [2QM(M − 1) − 2M2K ](t − τ)
. (32)

With the variable substitution h′ = 1+ (M − 1)h and setting a, b, c as in (13), the left-hand
side of (32) becomes

∫ 1+(M−1)hS

M

(1 − M)dh′

h′(a(h′)2 + bh′ + c)

= M − 1

2c

[
ln

∣∣∣∣ (h′)2

a(h′)2 + bh′ + c

∣∣∣∣ + 2b√
b2 − 4ac

atanh−1

(
2ah′ + b√
b2 − 4ac

)]1+(M−1)hS

M
,

provided that b2 − 4ac > 0. The right-hand side of (32) is equal to
[
ln

∣∣QinjM(M − 1)τ + 2M[Q(M − 1) − MK ](t − τ)
∣∣

2M[Q(M − 1) − MK ]

]t

tS→RL

.

We solve for hS and use that the spatial shock location xS is the location on the right plume
where h(xS) = hS. For t > tS→RL, we obtain the solution

h =

⎧⎪⎨
⎪⎩
0 x < xS

1
1−M +

√
1

(M−1)2
− (x−x0)φ(1−Sbr)−M(K+Q)(t−τ)−QinjMτ

(M−1)((M−1)(x−x0)φ(1−Sbr)+KM(t−τ))
xS ≤ x < xRR

0 xRR ≤ x

.
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