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Abstract Motivated by rock–fluid interactions occurring in a geothermal reservoir, we
present a two-dimensional pore scale model of a periodic porous medium consisting of
void space and grains, with fluid flow through the void space. The ions in the fluid are
allowed to precipitate onto the grains, while minerals in the grains are allowed to dissolve
into the fluid, and we take into account the possible change in pore geometry that these two
processes cause, resulting in a problem with a free boundary at the pore scale. We include
temperature dependence and possible effects of the temperature both in fluid properties and
in the mineral precipitation and dissolution reactions. For the pore scale model equations,
we perform a formal homogenization procedure to obtain upscaled equations. A pore scale
model consisting of circular grains is presented as a special case of the porous medium.
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1 Introduction

Geochemical reactions can affect the permeability in a geothermal reservoir. As the injected
water and the in situ brine have different temperatures and chemical composition, reservoir
rock properties can develop dynamically with time as the fluids flow through the reservoir.
Mineral dissolving and precipitating onto the reservoir matrix can change the porosity and
hence the permeability of the system. As mineral solubility is affected by the cooling of the
rock and by the different ion content in the saturating fluids, large changes in permeability can
occur. The interaction between altering temperature, solute transport withmineral dissolution
and precipitation and fluid flow is highly coupled and challenging to model appropriately as
the relevant physical processes jointly affect each other (Bringedal et al. 2014). The effect
of changing porosity and hence permeability through the production period may have severe
impact on operating conditions.

The ion content of the injected coldwater is normally different than the original groundwa-
ter, affecting the equilibrium state of the system. Also, as the solubility of minerals generally
depends on temperature, the cooling itself will affect the equilibrium state. As reported from
field studies and simulations, porosity and permeability changes due to precipitation and dis-
solution of minerals as silica, quartz, anhydrite, gypsum and calcite can be observed (McLin
et al. 2006; Mroczek et al. 2000; Pape et al. 2005; Sonnenthal et al. 2005; Wagner et al.
2005; White and Mroczek 1998). Modeling of the mineral precipitation and dissolution is
important in order to understand the processes and to better estimate to which extent the
chemical reactions can affect the permeability of the porous medium.

When investigating porosity and permeability changes, it is important to understand the
underlying processes at the pore scale. The pore geometry affects the reaction rates as the
reactive surface is changed, and the permeability is depending on how the geometry changes.
To achieve equations that quantify how the reaction rates and permeability depend on the pore
scale effects, we start with a pore scale model and derive the Darcy scale model by homog-
enization. Pore scale models incorporating mineral precipitation and dissolution have been
studied earlier in (van Duijn and Pop 2004; van Noorden et al. 2007), and the corresponding
Darcy scale models have been investigated further in (van Duijn and Knabner 1997; Knabner
et al. 1995). These papers assume that the pore geometry is not changed by the chemical
reactions, which is a valid assumption when the deposited or dissolved mineral layer is thin
compared to the pore aperture. Investigations honoring the porosity changes may be found in
(Kumar et al. 2011; van Noorden 2009a, b), where mineral precipitation and dissolution have
been considered on either circular grains or in a thin strip. In these papers, the position of the
interface between grain and void space is tracked, giving a problem with a free boundary.
Similar models can also be obtained for biofilm growth (van Noorden et al. 2010), for drug
release from collagen matrices (Ray et al. 2013), and on an evolving microstructure (Peter
2009). These models do not include any temperature dependence.

The present work builds on (Bringedal et al. 2015), where mineral precipitation and
dissolution are considered in a thin strip. There, the freely moving interface between the
mineral layer and the void space is modeled as an unknown function depending on time and
the location along the pore axis. Here we extend the results to a more general geometry with
many solid grains periodically distributed in the medium. The geometry is as considered
by van Noorden (2009a), but as we include temperature effects in fluid flow and chemical
reactions, the resulting model is much more complex. Including temperature effects requires
two newmodel equations at the pore scale: energy conservation in void space and in the grain
space. The coupling between these two equations raises several issues in the upscaling process
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that are to be elaborated on. For geothermal systems, the temperature dependence is essential.
We assume there is no phase change, but mention that Duval et al. (2004) upscale two-phase
flow with phase change using volume averaging. Recently, Radu et al. (2013) proposed a
mass conservativemixedfinite element scheme for reactive transportwith varying porosity for
saturated/unsaturated porous media. Other applications of non-isothermal reactive transport
models can be combustion models, and we refer to Lu and Yortsos (2005) who consider a
pore-network model including filtration combustion.

The structure of this paper is as follows. In Sect. 2, we describe the pore scale model,
while in Sect. 3, we perform formal homogenization on the model equations and obtain
upscaled equations. The paper ends with a summary with some comments on applications
and a presentation of a special case of the model equations in Sect. 4, together with some
concluding remarks.

2 Pore Scale Model

We consider a two-dimensional domain Ω with boundary Γ . The domain is inside a square
x = (x1, x2) ∈ (0, L)2 for some positive number L . The domain is perforated, consisting
of a connected pore space Ωε(t) and grain space Gε(t), and the boundary between them
Γ ε(t). As we have two length scales, the domain size L and the typical pore size l, we use
the superscript ε = l/L to emphasize dependency on both length scales. The grain space
consists of some non-reactive solid surrounded by minerals. These minerals are the result of
a precipitation process and may dissolve. The pore and grain space are given in a periodic
manner, where the grains are assumed not to touch each other, see Fig. 1. The grains are
assumed not to touch each other to simplify the upscaling as less precautionary steps are then
needed, but also to avoid clogging.

Figure 2 shows the zoomed-in pore structure.Weconsider a squareY having local variables
y = (y1, y2) ∈ (0, l)2, where l is much smaller than L . The region Y consists of grain space
Gi j (t), void spaceΩi j (t) and the moving boundary between them Γi j (t), where the outward
unit normal of the void space is denoted nε . The indices i, j denote which subdomain in
the total domain Ω we consider, and the set of indices {i, j} is such that the whole domain
is covered. As the subdomains Y are given in a periodic manner, we have periodicity in
the variable y. The microscopic variable y and macroscopic variable x are related through
x = (εi, ε j) + εy.

Fig. 1 Model of perforated porous medium. Typical length sizes L and l are indicated
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Fig. 2 Local model of pore

This way, Ωε(t) = ∪Ωi j (t), Gε(t) = ∪Gi j (t) and Γ ε(t) = ∪Γi j (t). Note that Γ ∩
Γ ε(t) = ∅. Further, the total domain is Ω = Ωε(t) ∪ Γ ε(t) ∪ Gε(t). We use the level set
function Sε(x, t) to describe the position of the interface Γi j (t) and is given as

Sε(x, t) =

⎧
⎪⎨

⎪⎩

< 0 if x ∈ Ωε(t),

0 if x ∈ Γ ε(t),

> 0 if x ∈ Gε(t).

This choice of Sε(x, t) assures that the gradient of Sε points into the grain space and is
parallel to nε , hence

nε = ∇Sε

|∇Sε | ,

where the notation | · | means the length when applied to a vector and the size when applied
to a set. The level set function tracks the position of the interface, hence also the size and
geometry of void and grain space as time evolves. As will result from below, the evolution
of Sε depends on unknowns of the model, leading to a porous medium where the size and
geometry of the void space are in evolution. In particular, this evolution leads to a non-periodic
structure, although the grains are assumed periodically distributed.

The boundary Γi j (t) moves with some normal velocity vn due to the mineral precipita-
tion and dissolution. The Rankine–Hugoniot condition guarantees conservation of quantities
across a moving boundary (Fasano 2005):

nε · [j] = vn[u], (1)

where u is the preserved quantity (e.g., mass or energy) and j is the flux of this quantity. The
use of square brackets means the jump of the quantities and is the difference between the
quantities at each side of the interface. The condition states that the net loss (or gain) rate
of the preserved quantity u equals the difference in fluxes transporting u across the interface
(Fasano 2005).
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We apply the level set equation together with conservation of ions, mass, momentum
and energy to form a complete set of equations at the pore scale and refer readers to, e.g.,
Patankar (1980) for justification of the conservation equations and to (Osher and Fedkiw
2003) for a detailed treatment of the level set equation. We prescribe boundary conditions
at the internal boundary Γ ε(t). For a complete model to be used for computer simulations,
boundary conditions at the external boundary Γ are required, as well as initial conditions,
but as these are not necessary for the upscaling process, they will not be specified. The model
equations are briefly presented in this paper, and we refer to (Bringedal et al. 2015) for more
details on the model.

2.1 Interface Evolution and the Level Set Equation

As discussed, the medium is covered by translations of a square as presented in Fig. 2, with
periodicity across the external boundary ∂Y . The solid part Gi j (t) consists of a non-reactive
part denoted Bi j located in the center of the square and is surrounded by a mineral part that
can dissolve and precipitate. A mineral molecule consists of two ions u1 and u2. We assume
for simplicity that u1 and u2 have the same initial and boundary conditions and will hence
be equal. We denote their concentration with u in the following. The interface Γi j (t) moves
as mineral molecules dissolve or precipitate, and the normal velocity is proportional to the
difference between the reaction rates (Knabner et al. 1995; van Noorden 2009b):

ρCvn = −( f p − fd) on Γ ε(t), (2)

where ρC is the molar density of the mineral and is assumed constant, and f p and fd are
the precipitation and dissolution rates of the chemical reaction, respectively. The rates are
(Chang and Goldsby 2014; van Noorden 2009a)

f p(T f , u) = k0e
− E

RT f
u2

Km(T f )
and fd(T f , u, x) = k0e

− E
RT f w(dist(x, Bε), T f , u),

where k0 is a positive rate constant, E is the activation energy, R is the gas constant, T f is
the fluid temperature, and Km(T f ) is the equilibrium constant for the mineral. Dissolution
takes place as long as there are minerals present: The union of the non-reactive solid parts
is denoted Bε = ∪Bi j . Hence, dist(x, Bε) is the distance from the present point to the
non-reactive solid and can be thought of as the thickness of the mineral part. The function
w(dist(x, Bε), T f , u) ensures that the dissolution rate cannot exceed the precipitation rate
when there are no minerals left, and is given by

w(dist(x, Bε), T f , u) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if dist(x, Bε) < 0,

min
(

u2
Km (T f )

, 1
)

if dist(x, Bε) = 0,

1 if dist(x, Bε) > 0.

(3)

We will denote f = f p − fd as the net rate for increasing mineral width. This particular
choice of reaction rates is inspired from (van Duijn and Pop 2004; Knabner et al. 1995;
van Noorden 2009a, b), where the isothermal case is considered. Other rates can be adapted
straightforwardly. Note that the reaction kinetics are assumed to be slow, as fast kinetics will
require other considerations in the upscaling process; see, e.g., Kechagia et al. (2002) which
shows a case where upscaling brakes down. We refer to (Mikelic et al. 2006) for upscaling
of reactive flow through a thin strip for dominant Damköhler number.
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The evolution of the pore structure is described by the level set equation:

D

Dt
Sε(x, t) = ∂t S

ε + vnnε · ∇Sε = ∂t S
ε + vn |∇Sε | = 0.

Combining the above equation with (2), we get

∂t S
ε = f

ρC
|∇Sε | for x ∈ Ω. (4)

Note that the level set equation and the level set function are defined in the entire domain Ω .
This is handled by defining a continuous extension of the reaction rates to Ω .

2.2 Conservation of Ions

There are two active ions in the fluid, both having molar concentration u. They satisfy the
convection–diffusion in the void space:

∂t u = ∇ · (D∇u − qu) for x ∈ Ωε(t). (5)

In the above equation, D is the diffusion coefficient which we assume to be constant, and
q is the fluid velocity. The Rankine–Hugoniot condition (1) for conserving ions across the
moving interface is

nε · (D∇u − qu) = vn(ρC − u) on Γ ε(t). (6)

As the minerals have zero flux, only the ion flux appears on the left-hand side. The difference
on the right-hand side is the jump of the conserved quantity u. A mineral molecule consists
of one of each type of the two ions; hence, the difference (ρC −u) represents the jump across
the interface for each of the ions.

2.3 Conservation of Mass

As the fluid consists mainly of water, the fluid molar density ρ f is assumed to not be affected
by the chemical reactions, but depends on temperature.Hence, themass conservation equation
is

∂tρ f + ∇ · (ρ f q) = 0 for x ∈ Ωε(t). (7)

As we include the temperature effects on fluid density, density differences are accounted
for and we cannot use the incompressible mass conservation equation as in van Noorden
(2009a). At the boundary, ions can leave the fluid and become part of the grain space instead.
The Rankine–Hugoniot boundary condition applied to mass is

nε · (−ρ f q) = vn(2ρC − ρ f ) on Γ ε(t). (8)

The difference on the right-hand side is the jump of the mass across the moving boundary.
As a mineral molecule consists of the mass from two ions, the molar density ρC is multiplied
with the factor 2.

2.4 Conservation of Momentum

We assume the fluid is Newtonian, that the stress tensor is a linear function of the strain
rates, that the fluid is isotropic, and that the body forces are such that the fluid is at rest at
hydrostatic pressure. Hence,
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∂t (ρ f q) + ∇ · (ρ f qq) = − ∇ p + ∇ ·
(
μ(∇q + (∇q)T )

)

− 2

3
∇(μ∇ · q) for x ∈ Ωε(t), (9)

where p is pressure and μ is viscosity of the fluid. No-penetration conditions are assumed at
the boundary, meaning that q has no tangential component at the interface, but is parallel to
the normal vector nε . Combining with Eq. (8), the new boundary condition becomes

q = ρ f − 2ρC
ρ f

vnnε on Γ ε(t). (10)

2.5 Conservation of Energy

We distinguish between two temperatures, the fluid temperature T f and grain temperature
Tg . We assume no viscous dissipation; hence, energy transfer in the fluid phase can happen
through diffusion and convection:

∂t (ρ f c f T f ) = ∇ · (k f ∇T f − ρ f c f qT f ) in Ωε(t). (11)

In the grain space, flow is not possible, hence

∂t (ρCcgTg) = ∇ · (kg∇Tg) in Gε(t). (12)

In the above equations, c f and cg are specific heats, and k f and kg are heat conductivities,
of fluid and mineral, respectively, and are all assumed constant. The Rankine–Hugoniot
condition for conservation of energy across the moving interface is

nε · (k f ∇T f − ρ f c f qT f − kg∇Tg) = vn(ρCcgTg − ρ f c f T f ) on Γ ε(t), (13)

and we also assume temperature continuity at the interface:

Tg = T f on Γ ε(t). (14)

The temperature continuity condition comes from the assumption of local thermodynamic
equilibrium, and this second boundary condition at Γ ε(t) is needed to link the two energy
conservation equations properly.

2.6 Non-dimensional Model Equations

To achieve non-dimensional quantities, we introduce tref , xref = L , uref , qref = L/tref ,
pref = L4uref/t2ref l

2, μref = l2 pref tref/L2, Tref and let ε = l/L . Non-dimensional variables
and quantities are denoted with a hat and are defined as

t̂ = t/tref , x̂ = x/L , ŷ = y/ l, ûε = u/uref ,

q̂ε = q/qref , p̂ε = p/pref , ρ̂ f = ρ f /uref , ρ̂ = ρC/uref ,

k̂ = k0tref/uref l, D̂ = Dtref/L
2, μ̂ = μ/μref , T̂ ε = T/Tref .

We emphasize dependence on the small variable ε by denoting our main variables with ε

as a superscript. Observe that the dimensionless viscosity scales with ε2, which is a natural
assumption leading to non-trivial upscaled flows. Since we will only use non-dimensional
variables in the following, we skip the hat. Due to the scaling of y, the local square Y is now
a unit square.
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The non-dimensional level set Eq. (4) becomes

∂t S
ε = ε

f

ρ
|∇Sε | for x ∈ Ω, (15)

The non-dimensional reaction rates are

f (T ε
f , u

ε, x) = ke−α/T ε
f

(
(uε)2

Km(T ε
f )

− wε(dist(x, Bε), T ε
f , u

ε)

)

, (16)

where α = E/RTref and where Km(T ε
f ) is non-dimensional as it has been scaled with

u2ref . The Damköhler number k is assumed to be independent of ε, which means that the
reaction rates are at the same timescale as the convective timescale. This assumption is
applicable for most rock–fluid interactions as this branch of chemical reactions is known to
be slow (Bundschuh and Zilberbrand 2011). Including fast kinetics would require extra care,
as discussed by Kechagia et al. (2002), Mikelic et al. (2006).

The convection–diffusion Eq. (5) becomes

∂t u
ε = ∇ · (D∇uε − qεuε) in Ωε(t), (17)

with the boundary condition (6) now written as

nε · (D∇uε − qεuε) = −ε
ρ − uε

ρ
f on Γ ε(t), (18)

when (2) is inserted. Note that an underlying assumption is that the dimensionless diffusion
coefficient D is not depending on ε; hence, diffusion and convection occur at the same
timescale, which is a valid assumption in the context of geothermal energy production when
the injection rate is not too large.

The mass conservation Eq. (7) transforms into

∂tρ f + ∇ · (ρ f qε) = 0 in Ωε(t). (19)

The corresponding Rankine–Hugoniot boundary Eq. (8) has the dimensionless form

ρ f qε · nε = −ε
ρ f − 2ρ

ρ
f on Γ ε(t). (20)

The momentum balance Eq. (9) becomes

ε2
(

∂t (ρ f qε) + ∇ · (ρ f qεqε)

)

= −∇ pε + ε2
(

∇ ·
(
μ(∇qε + (∇qε)T )

)
− 2

3
∇(μ∇ · qε)

)

in Ωε(t), (21)

while the boundary condition (10) is

ρ f qε = −ε
ρ f − 2ρ

ρ
f nε on Γ ε(t). (22)

The non-dimensional form of the energy conservation Eqs. (11) and (12) is

∂t (ρ f T
ε
f ) + ∇ · (ρ f qεT ε

f ) = κ f ∇2T ε
f in Ωε(t) (23)

and
∂t (ςρT ε

g ) = κg∇2T ε
g in Gε(t), (24)
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where κ f = k f tref/L2urefc f , κg = kgtref/L2urefc f and ς = cg/c f . These three constants
are all assumed to not depend on ε, but are of order 1. Hence, heat diffusion in grain and
fluid space is at the same timescale as the convective timescale, which is a valid assumption
when the injection rate is not too large. The boundary condition (13) is written

nε · (κ f ∇T ε
f − ρ f qεT ε

f − κg∇T ε
g ) = −ε

ςρT ε
g − ρ f T ε

f

ρ
f on Γ ε(t), (25)

and the continuity condition (14) is

T ε
g = T ε

f on Γ ε(t). (26)

The fluid density and viscosity are assumed to depend linearly on the fluid temperature T ε
f ,

hence
ρ f (T

ε
f ) = ρ0 − βρ f T

ε
f (27)

and
μ(T ε

f ) = μ0 − βμT
ε
f , (28)

for some positive constants βρ f and βμ. The assumption of linear relationship is a com-
mon simplification, but using other continuous relationships between density/viscosity and
temperature is straightforward.

3 Asymptotic Expansions

We incorporate explicit dependence of the microscopic variable y = (y1, y2) into the main
variables by introducing the asymptotic expansions

Sε(x, t) = S0(x, y, t) + εS1(x, y, t) + ε2S2(x, y, t) + · · ·
and similarly for the other unknowns. Due to periodicity, all the functions Si are periodic
in y. The separation between x and y enables to capture both slow, macroscopic variations
(variations in x) and fast, microscopic variations (variations in y).

3.1 Preliminaries

Due to the relation between x and y, the gradient of a function f (x, x
ε
) is

∇ f = ∇x f + 1

ε
∇y f.

Since nε = ∇Sε/|∇Sε |, we assume nε = n0 + εn1 + O(ε2) and find the expressions for
n0 and n1 by inserting the expansion for Sε :

nε = (∇x + 1
ε
∇y)(S0 + εS1) + O(ε)

|(∇x + 1
ε
∇y)(S0 + εS1) + O(ε)|

=
1
ε
∇y S0 + (∇x S0 + ∇y S1) + O(ε)

1
ε
|∇y S0|

√

1 + 2ε∇y S0 · (∇x S0 + ∇y S1)/|∇y S0|2 + O(ε2)
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=
1
ε
∇y S0 + (∇x S0 + ∇y S1) + O(ε)

1
ε
|∇y S0|

(

1 − ε
∇y S0 · (∇x S0 + ∇y S1)

|∇y S0|2 + O(ε2)

)

= ∇y S0
|∇y S0| + ε

(∇x S0 + ∇y S1
|∇y S0| − ∇y S0

|∇y S0|
∇y S0 · (∇x S0 + ∇y S1)

|∇y S0|2
)

+ O(ε2).

Above we used the Taylor expansion for the expression in the square root. This means,

n0 = ∇y S0
|∇y S0| and n1 = ∇x S0 + ∇y S1

|∇y S0| − ∇y S0
|∇y S0|

∇y S0 · (∇x S0 + ∇y S1)

|∇y S0|2 .

By introducing τ0, the unit vector that is orthogonal to n0, we can write n1 as

n1 = τ0
τ0 · (∇x S0 + ∇y S1)

|∇y S0| .

In the upscaling process, we need to be able to formulate boundary conditions at the
zero level of the moving boundary; that is, for those values of y such that S0(x, y, t) = 0.
The boundary conditions in the previous section are formulated at Γ ε(t), i.e., at every x
where Sε(x, t) = 0. To overcome this challenge, we need to assume the existence of a
parameterization of Γ ε

i j (t) and that S0(x, y, t) and S1(x, y, t) have Taylor expansions, which
also means assuming the boundary to have some regularity. These assumptions are necessary
to perform the upscaling procedure, but excludes some pore geometries. At the boundary
Γ ε
i j (t), the level set function Sε is zero, so we assume there exists a parameterization kε(s, t)

such that
Sε(kε(s, t), t) = 0.

We further assume that kε(s, t) has the asymptotic expansion

kε(s, t) = x + εk0(s, t) + ε2k1(s, t) + O(ε3),

where x = (εi, ε j). Using the asymptotic expansion for Sε , the periodicity of Si in y, and
the Taylor expansions for S0 and S1 around (x, y) = (x, k0), we obtain

0 = Sε(kε(s, t), y)

= S0(x, k0, t) + ∇x S0 · (εk0 + ε2k1) + ∇y S0 · (εk1 + ε2k2)

+ 1

2
(εk0, εk1) · D2

ξ S0 · (εk0, εk1)

+ ε
(
S1(x, k0, t) + ∇x S1 · εk0 + ∇y S1 · εk1

) + ε2S2(x, k0, t) + O(ε3),

where D2
ξ is the second-order differentiationmatrix with respect to x and y and all derivatives

are evaluated in (x, k0). Collecting lowest order terms yields

S0(x, k0, t) = 0,

meaning that k0 parameterizes locally the zero level set of S0. Second lowest order terms are

S1(x, k0, t) + k0 · ∇x S0 + k1 · ∇y S0 = 0.

We search for a k1 that is aligned with n0; hence, k1 = λ1n0, where λ1 = − 1
|∇y S0| (S1 + k0 ·

∇x S0). Third lowest order terms are

S2(x, k0, t) + k0 · ∇x S1 + k1 · ∇y S1

+ 1

2
(k0, k1) · D2

ξ S0 · (k0, k1) + k1 · ∇x S0 + k2 · ∇y S0 = 0,
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resulting in k2 being k2 = λ2n0, where λ2 = − 1
|∇y S0| (S2+k0 ·∇x S1+k1 ·∇y S1+ 1

2 (k0, k1) ·
D2

ξ S0 · (k0, k1) + k1 · ∇x S0).
We convert the boundary conditions given for x ∈ Γ ε(t) such that these are given at y ∈

Γ0(x, t) where Γ0(x, t) = {y | S0(x, y, t) = 0}, and which is parameterized by y = k0(s, t).
Assuming the boundary condition is given as

K (x, x/ε, t) = 0 for x ∈ Γ ε(t),

we use that x = kε(s, t) at Γ ε(t) and then expand K (x, y, t) around (x, k0):

0 = K (x, k0, t) + ε(k0 · ∇x K + λ1n0 · ∇y K )

+ ε2(λ1n0 · ∇x K + λ2n0 · ∇y K + 1

2
(k0, λ1n0) · D2

ξ K · (k0, λ1n0))

+ O(ε3) for y ∈ Γ0(x, t), (29)

where we have inserted k1 and k2 when applicable.
We use the two following results proved in (van Noorden 2009a).

Lemma 1 (Lemma 3.1 van Noorden 2009a) Let g(x, y, t) be a scalar function such that
g(x, y, t) = 0 for y ∈ Γ0(x, t), then it holds that

∇x g = n0 · ∇yg

|∇y S0| ∇x S0 for y ∈ Γ0(x, t).

Lemma 2 (Lemma 3.2 van Noorden 2009a) Let F(x, y, t) be a vector-valued function such
that ∇y · F = 0 in Y0(x, t) = {y | S0(x, y, t) < 0} and n0 · F = 0 on Γ0(x, t). Then

∫

Γ0(x,t)

(
τ0 · ∇y S1
|∇y S0| τ0 · F − S1

|∇y S0|n0 · ∇y(n0 · F)

)

dσ = 0.

A result similar to Lemma 2 will be used for the energy equations. As only model equations
in the void space are included in (van Noorden 2009a), the following result, considering
coupled model equations in the void space and grain space, is developed and proved:

Lemma 3 Let FY (x, y, t) and FG(x, y, t) be vector-valued functions such that ∇y · FY =
0 in Y0(x, t) and ∇y · FG = 0 in G0(x, t) = {y | S0(x, y, t) > 0}, and suppose that
n0 · (FY − FG) = 0 on Γ0(x, t). Then

∫

Γ0(x,t)

(
τ0 · ∇y S1
|∇y S0| τ0 · (FY − FG) − S1

|∇y S0|n0 · ∇y(n0 · (FY − FG))

)

dσ = 0.

Proof The proof is quite similar to the proof of Lemma 3.2 in (van Noorden 2009a), but
requires some extra care on how the grain space is treated. We split S1 into its positive
and negative parts and focus on the positive part denoted [S1]+. We define Y δ+(x, t) =
{y | S0 + δ[S1]+ < 0} and Gδ+(x, t) = {y | S0 − δ[S1]+ > 0} for some nonnegative
number δ. We use opposite sign for the S1 term to assure that Gδ+(x, t) is included in
G0(x .t). Note that the boundaries of Y δ+(x, t) and Gδ+(x, t), denoted by Γ δ+

Y (x, t) and
Γ δ+
G (x, t), are not the same. These boundaries are, however, equal for δ = 0 as they both

reduce to Γ0(x, t). We parameterize the two boundaries with k+
Y (s, δ) and k+

G (s, δ) such that
S0(x, k

+
Y , t) + δ[S1]+(x, k+

Y , t) = 0 and S0(x, k
+
G , t) − δ[S1]+(x, k+

G , t) = 0 for 0 ≤ s ≤ 1.
By differentiating these two equations with respect to δ using the chain rule and product rule,
and then evaluating the resulting equations at δ = 0, we obtain
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∇y S0 · ∂δk
+
Y |δ=0 = −[S1]+|δ=0, for y ∈ Γ0(x, t),

∇y S0 · ∂δk
+
G |δ=0 = [S1]+|δ=0 for y ∈ Γ0(x, t).

The unit normal vectors of Γ δ+
Y (x, t) and Γ δ+

G (x, t) are denoted nδ+
Y and nδ+

G . For conve-
nience, both are oriented to be pointing into the grain space; hence, both are equal to n0 when
δ = 0. The integrals of ∇y · FY and ∇y · FG over Y δ+(x, t) and Gδ+(x, t), respectively, are
zero, and the derivatives of the integrals with respect to δ are also zero. Hence,

0 = ∂δ

∫

Y δ+(x,t)
∇y · Fydy|δ=0 + ∂δ

∫

Gδ+(x,t)
∇y · FGdy|δ=0

= ∂δ

∫

Γ δ+
Y (x,t)

nδ+
Y · FY dσ |δ=0 + ∂δ

∫

Γ δ+
G (x,t)

nδ+
G · FGdy|δ=0

= ∂δ

∫ 1

0
nδ+
Y · FY (x, k+

Y (s, δ), t)|∂sk+
Y (s, δ)|ds|δ=0

+ ∂δ

∫ 1

0
nδ+
G · FG(x, k+

G (s, δ), t)|∂sk+
G (s, δ)|ds|δ=0

=
∫ 1

0

(
∂δn

δ+
Y · FY |∂sk+

Y | + ∇y(n
δ+
Y · FY ) · ∂δk

+
Y |∂sk+

Y |

+ nδ+
Y · FY ∂δ(|∂sk+

Y |)
)
|δ=0ds +

∫ 1

0

(
∂δn

δ+
G · FG |∂sk+

G |

+ ∇y(n
δ+
G · FG) · ∂δk

+
G |∂sk+

G | + nδ+
G · FG∂δ(|∂sk+

G |)
)
|δ=0ds.

Wenow evaluate each of the terms in both integrals at δ = 0. For the last terms in the integrals,
we use that ∂δ(|∂sk+

Y |)|δ=0 = −∂δ(|∂sk+
G |)|δ=0 since the variations in δ were made with

opposite sign. Since nδ+
Y |δ=0 = nδ+

G |δ=0 = n0, we get that the last terms in the two integrals
cancel out as n0 ·(FY −FG) = 0 at Γ0(x, t). For the middle terms in the two integrals, we use
that n0 · ∂δk

+
Y |δ=0 = −[S1]+/|∇y S0| and n0 · ∂δk

+
G |δ=0 = [S1]+/|∇y S0|. Finally, calculating

the derivatives of the unit normals with respect to δ, gives that ∂δn
δ+
Y |δ=0 = τ0·∇y [S1]+

|∇y S0| τ0 and

∂δn
δ+
G |δ=0 = − τ0·∇y [S1]+

|∇y S0| τ0. Inserting this into the above equation results in

∫

Γ0(x,t)

(
τ0 · ∇y[S1]+

|∇y S0| τ0 · (FY − FG) − [S1]+
|∇y S0|n0 · (n0 · (FY − FG))

)

dy = 0.

Repeating the same steps for [S1]− and subtracting the two parts complete the proof. �	

Note that even though we consider a two-dimensional pore scale model, the model equa-
tions defined in Sect. 2 could easily be defined in a three-dimensional setting. However, the
previous lemmas depend on the tangent vector of the interface Γ0(x, t), which would need
to reformulated into a tangent plane. Also, the unit tangent vector τ0 would not be uniquely
defined in a three-dimensional setting.

3.2 The Level Set Equation

For the asymptotic expansion, we need Lipschitz continuous reaction rates. Therefore, we
replace (3) by its Lipschitz approximation:
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wδ(dist(εy, B
ε)) =

⎧
⎪⎨

⎪⎩

0 if dist(εy, Bε) < 0,

dist(εy, Bε)/δ if 0 ≤ dist(εy, Bε) < δ,

1 if dist(εy, Bε) ≥ δ,

for some small δ > 0. As proved in (Kumar et al. 2013), in the limit as δ approaches zero,
one ends up with the original (3). Thus, by fδ(T ε

f , u
ε, y), we mean the reaction rate f where

wε(dist(x, Bε), T ε
f , u

ε) is replaced with wδ(dist(εy, Bε)). The level set Eq. (15) becomes

∂t (S0 + O(ε)) = ε
1

ρ
fδ(T f 0 + O(ε), u0 + O(ε), y)|(∇x + 1

ε
∇y)(S0 + O(ε))|

= 1

ρ
fδ(T f 0, u0, y)|∇y S0| + O(ε).

We collect the lowest order terms and then let δ approach zero, giving back the original
w(dist(εy, Bε), T ε

f , u
ε); leading to

∂t S0 = 1

ρ
f (T f 0, u0, y)|∇y S0|. (30)

3.3 Conservation of Ions

We insert the asymptotic expansions for uε and qε into (17) and into the boundary condition
(18) and apply Eq. (29) to obtain a boundary condition valid on Γ0(t). The lowest order terms
are

D∇2
yu0 = 0 in Y0(x, t),

n0 · D∇yu0 = 0 at Γ0(x, t).

Recall that u0 is periodic in y. This means u0 cannot depend on y; hence, u0 = u0(x, t). The
second lowest order terms are

∇y · Fu = 0 in Y0(x, t), (31)

n0 · Fu = 0 at Γ0(x, t), (32)

where we have introduced the notation Fu = D∇xu0 + D∇yu1 − q0u0. Finally, the third
lowest order terms are

∂t u0 = ∇x · Fu + ∇y · (D∇xu1 + D∇yu2 − q0u1 − q1u0) in Y0(x, t), (33)

n0 · (D∇xu1 + D∇yu2 − q0u1 − q1u0) + n1 · Fu + 1

ρ
f (T f 0, u0, y)(ρ − u0)

+ y · ∇x (n0 · Fu) + λ1n0 · ∇y(n0 · Fu) = 0 at Γ0(x, t). (34)

We integrate (33) over Y0(x, t) and apply the boundary condition (34):

|Y0(x, t)|∂t u0 = ∇x ·
∫

Y0(x,t)
Fudy +

∫

Γ0(x,t)

( ∇x S0
|∇y S0| · Fudσ − (

n1 · Fu

+ 1

ρ
f (T f 0, u0)(ρ − u0) + y · ∇x (n0 · Fu) + λ1n0 · ∇y(n0 · Fu)

))
dσ.

The reactive term f (T f 0, u0) can be rewritten using the level set Eq. (30) and its relation
to the normal velocity. Since G0(x, t) has volume (1 − |Y0(x, t)|), we can rewrite the reac-
tive term using Reynolds transport theorem such that − ∫

Γ0(x,t)
1
ρ
f (T f 0, u0)(ρ − u0)dσ =

−ρ∂t |G0(x, t)| − u0∂t |Y0(x, t)|. Hence,
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∂t (|Y0(x, t)|u0 + |G0(x, t)|ρ) = ∇x ·
∫

Γ0(x,t)
Fudy +

∫

Γ0(x,t)

∇x S0
|∇y S0| · Fudσ

−
∫

Γ0(x,t)

τ0 · ∇x S0
|∇y S0| τ0 · Fudσ −

∫

Γ0(x,t)

τ0 · ∇y S1
|∇y S0| τ0 · Fudσ

−
∫

Γ0(x,t)
y · ∇x (n0 · Fu)dσ +

∫

Γ0(x,t)

S1
|∇y S0|n0 · ∇y(n0 · Fu)dσ

+
∫

Γ0(x,t)

y · ∇x S0
|∇y S0| n0 · ∇y(n0 · Fu)dσ.

The last six integrals add up to zero;

• ∫

Γ0(x,t)
∇x S0|∇y S0| · Fudσ − ∫

Γ0(x,t)
τ0·∇x S0|∇y S0| τ0 · Fudσ = 0 because Fu = (τ0 · Fu)τ0, as Fu

has zero normal component at Γ0(x, t).
• ∫

Γ0(x,t)
y·∇x S0
|∇y S0| n0 · ∇y(n0 · Fu)dσ − ∫

Γ0(x,t)
y · ∇x (n0 · Fu)dσ = 0 by Lemma 1 when

applied to g = n0 · Fu .
• ∫

Γ0(x,t)
S1|∇y S0|n0 · ∇y(n0 · Fu)dσ − ∫

Γ0(x,t)
τ0·∇y S1
|∇y S0| τ0 · Fudσ = 0 by Lemma 2.

We are therefore left with

∂t (|Y0(x, t)|u0 + |G0(x, t)|ρ) = ∇x ·
∫

Γ0(x,t)
(D∇xu0 + D∇yu1 − q0u0)dy. (35)

3.4 Conservation of Energy

Upscaling the two energy conservations (23) and (24) follows similar steps as in the previous
section, but requires some extra care as the grain space plays an explicit role. Following (27),
the leading order term in the fluid density reads

ρ f 0 = ρ f (T f 0). (36)

Inserting the relevant asymptotic expansions into (23) and (24) and into the internal boundary
conditions (25) and (26) while applying (29), the lowest order terms will be

∇2
y T f 0 = 0 in Y0(x, t),

∇2
y Tg0 = 0 in G0(x, t),

n0 · ∇y(T f 0 − Tg0) = 0 at Γ0(x, t),

T f 0 − Tg0 = 0 at Γ0(x, t).

As T f 0 and Tg0 are periodic in y, the only solution to this problem is that T f 0 and Tg0 do not
depend on y, which together with the continuity condition implies T f 0 = Tg0 = T0(x, t).
The second lowest order terms are

∇y · (κ f ∇yT f 1 − ρ f 0q0T f 0) = 0 in Y0(x, t), (37)

∇2
y Tg1 = 0 in G0(x, t), (38)

n0 · FT = 0 at Γ0(x, t), (39)

T f 1 − Tg1 = 0 at Γ0(x, t), (40)

where FT = κ f ∇x T f 0 + κ f ∇yT f 1 − ρ f 0q0T f 0 − κg∇x Tg0 − κg∇yTg1. Finally, the third
lowest order terms are
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∂t (ρ f 0T f 0) + ∇x · (ρ f 0q0T f 0) + ∇y · (ρ f 0q0T f 1 + ρ f 0q1T f 0 − βρ f T f 1q0T f 0)

= κ f ∇x · (∇x T f 0 + ∇yT f 1) + κ f ∇y · (∇x T f 1 + ∇yT f 2) in Y0(x, t), (41)

∂t (ςρTg0) = κg∇x · (∇x Tg0 + ∇yTg1)

+ κg∇y · (∇x Tg1 + ∇yTg2) in G0(x, t), (42)

n1 · FT + n0 ·
(
κ f ∇x T f 1 + κ f ∇yT f 2 − (ρ f 0q0T f 1 + ρ f 0q1T f 0

− βρ f T f 1q0T f 0) − κg∇x Tg1 − κg∇yTg2
)

+ 1

ρ
f (T f 0, u0)(ςρTg0 − ρ f 0T f 0)

+ y · ∇x (n0 · FT ) + λ1n0 · ∇y(n0 · FT ) = 0 at Γ0(x, t), (43)

T f 2 − Tg2 + y · ∇x (T f 1 − Tg1) + λ1n0 · ∇y(T f 1 − Tg1) = 0 at Γ0(x, t). (44)

We integrate (41) over Y0(x, t) and (42) over G0(x, t) and sum the integrals. In the
integrals involving a divergence with respect to x , we interchange the order of integration
and differentiation. In the integrals involving a divergence with respect to y, we apply Gauss’
theorem. We rewrite boundary terms using (43) and insert the expressions for n1 and λ1
where applicable. We then get

|Y0(x, t)|∂t (ρ f 0T f 0) + |G0(x, t)|∂t (ςρTg0) + ∇x ·
∫

Y0(x,t)
ρ f 0q0T f 0dy

= ∇x ·
∫

Y0(x,t)
κ f (∇x T f 0 + ∇yT f 1)dy + ∇x ·

∫

G0(x,t)
κg(∇x Tg0 + ∇yTg1)dy

−
∫

Γ0(x,t)

1

ρ
f (T f 0, u0)(ςρTg0 − ρ f 0T f 0)dσ +

∫

Γ0(x,t)

∇x S0
|∇y S0| · FT dσ

−
∫

Γ0(x,t)

τ0 · ∇x S0
|∇y S0| τ0 · FT dσ −

∫

Γ0(x,t)

τ0 · ∇y S1
|∇y S0| τ0 · FT dσ

−
∫

Γ0(x,t)
y · ∇x (n0 · FT )dσ +

∫

Γ0(x,t)

S1
|∇y S0|n0 · ∇y(n0 · FT )dσ

+
∫

Γ0(x,t)

y · ∇x S0
|∇y S0| n0 · ∇y(n0 · FT )dσ.

As before, the last six integrals add up to zero;

• ∫

Γ0(x,t)
∇x S0|∇y S0| · FT dσ − ∫

Γ0(x,t)
τ0·∇x S0|∇y S0| τ0 · FT dσ = 0 as FT has zero normal component

at Γ0(x, t).
• ∫

Γ0(x,t)
y·∇x S0
|∇y S0| n0 · ∇y(n0 · FT )dσ − ∫

Γ0(x,t)
y · ∇x (n0 · FT )dσ = 0 by Lemma 1 when

applied to g = n0 · FT .
• ∫

Γ0(x,t)
S1|∇y S0|n0 · ∇y(n0 · FT )dσ − ∫

Γ0(x,t)
τ0·∇y S1
|∇y S0| τ0 · FT dσ = 0 by Lemma 3 with

FY = κ f ∇x T f 0 + κ f ∇x T f 1 − ρ f 0q0T f 0 and FG = κg∇x Tg0 + κg∇x Tg1.

The reactive term can be rewritten using the level set equation as earlier. We therefore end
up with

∂t (|Y0(x, t)|ρ f 0T f 0 + |G0(x, t)|ςρTg0) + ∇x ·
∫

Y0(x,t)
ρ f 0q0T f 0dy

= ∇x ·
∫

Y0(x,t)
κ f (∇x T f 0 + ∇yT f 1)dy + ∇x ·

∫

G0(x,t)
κg(∇x Tg0 + ∇yTg1)dy, (45)

where ρ f 0 is given by (36).
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3.5 Conservation of Mass

While vanNoorden (2009a) could incorporate the incompressiblemass conservation equation
into the upscaling of the momentum equation, the compressible mass conservation Eq. (19)
must be explicitly accounted for in the upscaling process due to the varying density. We
insert the asymptotic expansions into (19) and (20) and apply (29) as before. To show the
similarities with conservation of ions and energy, we introduce the notation Fm = −ρ f 0q0.
The lowest order terms are

∇y · Fm = 0 in Y0(x, t), (46)

n0 · Fm = 0 at Γ0(x, t). (47)

Since ρ f 0 does not depend on y, the first equation can also be read as∇y ·q0 = 0 in Y0(x, t).
The second lowest order terms are

∂tρ f 0 = ∇x · Fm + ∇y · (−ρ f 0q1 + βρ f T f 1q0) in Y0(x, t), (48)

n1 · Fm + n0 · (−ρ f 0q1 + βρ f T f 1q0) + 1

ρ
f (T f 0, u0)(2ρ − ρ f 0)

+ y · ∇x (n0 · Fm) + λ1n0 · ∇y(n0 · Fm) = 0 at Γ0(x, t). (49)

We integrate (48) overY0(x, t), replacing the order of integration and differentiationwhere
the integrand involves ∇x and apply Gauss’ theorem when the integrand involves ∇y . We
apply (49) and insert expressions for n1 and λ1 at the same time, obtaining

|Y0(x, t)|∂tρ f 0 = ∇x ·
∫

Y0(x,t)
Fmdy +

∫

Γ0(x,t)

∇x S0
|∇y S0| · Fmdσ

−
∫

Γ0(x,t)

τ0 · ∇x S0
|∇y S0| τ0 · Fmdσ −

∫

Γ0(x,t)

τ0 · ∇y S1
|∇y S0| τ0 · Fmdσ

−
∫

Γ0(x,t)

1

ρ
f (T f 0, u0)(2ρ − ρ f 0)dσ −

∫

Γ0(x,t)
y · ∇x (n0 · Fm)dσ

+
∫

Γ0(x,t)

S1
|∇y S0|n0 · ∇y(n0 · Fm)dσ +

∫

Γ0(x,t)

y · ∇x S0
|∇y S0| n0 · ∇y(n0 · Fm)dσ.

As earlier, we rewrite the reactive term using the level set equation and Reynolds transport
theorem. The six remaining boundary integrals add up to zero;

• ∫

Γ0(x,t)
∇x S0|∇y S0| · Fmdσ − ∫

Γ0(x,t)
τ0·∇x S0|∇y S0| τ0 · Fmdσ = 0 as Fm has zero normal component

at Γ0(x, t).
• ∫

Γ0(x,t)
y·∇x S0
|∇y S0| n0 · ∇y(n0 · Fm)dσ − ∫

Γ0(x,t)
y · ∇x (n0 · Fm)dσ = 0 by Lemma 1 when

applied to g = n0 · Fm .
• ∫

Γ0(x,t)
S1|∇y S0|n0 · ∇y(n0 · Fm)dσ − ∫

Γ0(x,t)
τ0·∇y S1
|∇y S0| τ0 · Fmdσ = 0 by Lemma 2.

We are therefore left with

∂t (|Y0(x, t)|ρ f 0 + |G0(x, t)|2ρ) + ∇x ·
∫

Γ0(x,t)
ρ f 0q0dy = 0.

3.6 Conservation of Momentum

We insert the necessary asymptotic expansions into (21) and (22) and apply (29). Following
(28), the leading order term in the fluid viscosity is

μ f 0 = μ(T f 0). (50)
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We collect the lowest order terms from the model equation and the boundary condition,
obtaining

∇y p0 = 0 in Y0(x, t),

q0 = 0 at Γ0(x, t). (51)

As ∇y p0 = 0 in Y0(x, t), we conclude that p0 = p0(x, t). The second lowest order terms
from the model equation are

0 = −∇x p0 − ∇y p1 + ∇y ·
(
μ f 0(∇yq0 + (∇yq0)T )

)
− 2

3
∇y(μ f 0∇y · q0).

It is known from (46) that ∇y ·q0 = 0 in Y0(x, t); hence, the last term disappears. Since μ f 0

is independent of y and ∇y · (∇yq0)T = ∇y(∇y ·q0), we can rewrite the above equation into
0 = −∇x p0 − ∇y p1 + μ f 0∇2

yq0, (52)

with the fluid viscosity given by (50).

3.7 Cell Problems

Here we eliminate u1 from (35). We make use of the second lowest order Eq. (31) and
boundary condition (32). Since this problem is linear,u1 can bewritten as a linear combination
of the derivatives of u0 with respect to x ,

u1(x, y, t) =
∑

j=1,2

v j (y)∂x j u0(x, t)

for unknown functions v1(y) and v2(y). Rewriting (31), using ∇y · q0 = 0 and inserting the
above expansion for u1 yield

0 = ∇2
y

⎛

⎝
∑

j=1,2

v j (y)∂x j u0(x, t)

⎞

⎠ =
∑

j=1,2

∇2
yv

j (y)∂x j u0(x, t),

which means that
∇2
yv

j (y) = 0 in Y0(x, t) for j = 1, 2. (53)

Doing the same for the boundary condition (32), recalling that n0 · q0 = 0 from (47), we get

n0 ·
⎛

⎝
∑

j=1,2

∂x j u0(x, t)e j + ∇yv
j (y)∂x j u0(x, t)

⎞

⎠ = 0.

From this equation, we obtain

n0 · (e j + ∇yv
j (y)) = 0 at Γ0(x, t) for j = 1, 2. (54)

The two functions v1(y) and v2(y) are determined by Eqs. (53) and (54) together with
requiring periodicity in y. This model problem is called the cell problem for u. Inserting the
series expression for u1 into the model problem (35) results in

∂t (|Y0(x, t)|u0 + |G0(x, t)|ρ) + ∇x · (q̄0u0) = D∇x · (Au∇xu0)

where Au = {aui j } is a matrix with components

aui j =
∫

Y0(x,t)
(δi j + ∂yi v

j (y))dy.
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We follow similar steps to eliminate T f 1 and Tg1 from (45). We assume T f 1 and Tg1 can
be written as a sum of the derivatives with respect to x of T f 0 and Tg0, respectively,

T f 1 =
∑

j=1,2

θ
j
f (y)∂x j T f 0(x, t) y ∈ Y0(x, t),

Tg1 =
∑

j=1,2

θ
j
g (y)∂x j Tg0(x, t) y ∈ G0(x, t),

for unknown functions θ
j
f (y) and θ

j
g (y). We insert the expression for T f 1 into (37) and the

expansion for Tg1 into (38) and obtain

∇2
yθ

j
f (y) = 0 y ∈ Y0(x, t) for j = 1, 2;

∇2
yθ

j
g (y) = 0 y ∈ G0(x, t) for j = 1, 2.

Inserting the two expressions for T f 1 and Tg1 into the boundary conditions (39) and (40)
yields

κ f n0 · (e j + ∇yθ
j
f (y)) = κgn0 · (e j + ∇yθ

j
g (y)) y ∈ Γ0(x, t) for j = 1, 2,

θ
j
f (y) = θ

j
g (y) y ∈ Γ0(x, t) for j = 1, 2.

Due to the continuity condition, we define θ j (y) to be equal to either θ
j
f or θ

j
g ;

θ j (y) =
{

θ
j
f (y) if y ∈ Y0(x, t),

θ
j
g (y) if y ∈ G0(x, t).

We then have that θ j (y) is the solution of the cell problem

∇2
yθ

j (y) = 0 y ∈ Y0(x, t) ∪ G0(x, t)

n0 · (e j + ∇yθ
j (y)) = 0 at Γ0(x, t),

where we also demand periodicity in y. Inserting the series expressions into (45) results in

∂t (|Y0(x, t)|ρ f 0T0 + |G0(x, t)|ςρT0) + ∇x · (ρ f 0q̄0T0) = ∇x ·
(
(κ fA f + κgAg)∇x T0

)
,

where A f = {a f
i f } and Ag = {agi j } are matrices given by

a f
i j =

∫

Y0(x,t)
(δi j + ∂yi θ

j (y))dy,

agi j =
∫

G0(x,t)
(δi j + ∂yi θ

j (y))dy.

We combine (46) and (52) with boundary condition (51) into one cell problem to obtain
an equation including only q0 and p0. We assume that p1 and q0 can be written as linear
combinations of the derivatives of p0 with respect to x , namely

p1(x, y, t) =
∑

j=1,2

Π j (y)∂x j p0(x, t);

q0(x, y, t) = − 1

μ f 0

∑

j=1,2

ω j (y)∂x j p0(x, t),
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for unknown functions Π j (y) and vector functions ω j (y). Inserting the expressions for p1
and q0 into (52) yields

e j + ∇yΠ
j (y) = −∇2

yω
j (y) y ∈ Y0(x, t) for j = 1, 2,

while (46) results in
∇y · ω j (y) = 0 y ∈ Y0(x, t) for j = 1, 2.

The boundary condition (51) gives us that

ω j (y) = 0 y ∈ Γ0(x, t) for j = 1, 2.

Through ω j (y), we get that the integral of the lowest order velocity can be written as

q̄0(x, t) =
∫

Y0(x,t)
q0(x, y, t)dy = − 1

μ f 0
K∇x p0,

where K = {ki j } is the matrix given by

ki j =
∫

Y0(x,t)
ω

j
i (y)dy,

where ω
j
i (y) is the i’th component of the vector function ω j (y).

4 Summary and Discussion

We summarize the derived effective equations, without making any assumptions on the grain
geometry and hence the shape of the level set function. Since we only use the lowest order
expansions, we skip the subscript 0 from the variables. We have five unknowns: S(x, y, t),
u(x, t), T (x, t), q̄(x, t) and p(x, t). All but the first depend only on spatial variable x and are
defined for all x ∈ Ω , while the level set function S(x, y, t) also depends on the microscopic
variable y ∈ [0, 1]2. The five upscaled equations are (x ∈ Ω, t > 0)

∂t

(
ρS(x, y, t)

)
= f (T, u, y)|∇y S(x, y, t)|,

∂t

(
|Y0(x, t)|u(x, t) + |G0(x, t)|ρ

)
+ ∇x ·

(
q̄(x, t)u(x, t)

)

= ∇x ·
(
DAu(x, t)∇xu(x, t)

)
,

∂t

(
|Y0(x, t)|ρ f (T )T (x, t) + |G0(x, t)|ςρT (x, t)

)
+ ∇x ·

(
ρ f (T )q̄(x, t)T (x, t)

)

= ∇x ·
(
κ fA f (x, t)∇x T (x, t) + κgAg(x, t)∇x T (x, t)

)
,

∂t

(
|Y0(x, t)|ρ f (T ) + |G0(x, t)|2ρ

)
+ ∇x ·

(
ρ f (T )q̄(x, t)

)
= 0,

q̄(x, t) = − 1

μ f (T )
K(x, t)∇x p(x, t).

The matrices Au , A f , Ag and K have components given by

aui j (x, t) =
∫

Y0(x,t)
(δi j + ∂yi v

j (y))dy,

a f
i j (x, t) =

∫

Y0(x,t)
(δi j + ∂yi θ

j (y))dy,
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agi j (x, t) =
∫

G0(x,t)
(δi j + ∂yi θ

j (y))dy,

ki j (x, t) =
∫

Y0(x,t)
ω

j
i (y)dy,

while the functions v j (y), θ j (y) andω j (y) are solutions to the cell problems (x ∈ Ω, t > 0)

∇yv
j (y) = 0 in Y0(x, t) and n · (e j + ∇yv

j (y)) = 0 at Γ0(x, t),

∇2
yθ

j (y) = 0 in Y0(x, t) ∪ G0(x, t) and n · (e j + ∇yθ
j (y)) = 0 at Γ0(x, t),

e j + ∇yΠ
j (y) = −∇2

yω
j (y) and ∇y · ω j (y) = 0 in Y0(x, t)

and ω j (y) = 0 at Γ0(x, t),

together with the periodicity in y for v j (y), θ j (y), Π j (y) and ω j (y), j = 1, 2.
We observe that the three upscaled conservation equations for ions, mass and energy show

similarities in the first term; the time derivative consists of a volume-weighted sum of the
preserved quantity in void and grain space. Hence, we take the time derivative of the total
quantity occurring in the unit square. The upscaled diffusive terms include a matrix with
components arising from cell problems, instead of a volume factor as in the case of a thin
strip (Bringedal et al. 2015). This way we take into account the geometry of the pore space
and not only the size. Same happens for Darcy’s lawwhere the permeability tensorK depends
on pore geometry through the cell problems. While the thin strip case in (Bringedal et al.
2015) reduced to a one-dimensional model, the present model remains two-dimensional also
in the upscaled version, which is honored through the diffusion and permeability tensors.

Compared to the reactive transport model TOUGHREACT (Xu et al. 2012), which is
well used for geothermal reservoirs, the upscaled model equations found here are similar
to the model equations that are applied in TOUGHREACT. The conservation equations for
mass, ions and energy have the same structure with porosity-weighted averages in the time
derivative, convective term with an average volume flux, and a porosity-weighted diffusive
term that includes heat transfer in the grains. Hence, the upscaled model we have found
behaves as expected compared to well-known models, but introduces also the pore scale
effects: While TOUGHREACT (Xu et al. 2012) uses a simple equation for the porosity
evolution due tomineral precipitation and dissolution,we include an explicit equation through
the level set equation. Further, TOUGHREACT (Xu et al. 2012) uses only scalar diffusion
and permeability, while we find that the permeability and diffusion will in general be tensors.
TOUGHREACT (Xu et al. 2012) uses similar reaction rates for kinetic mineral precipitation
and dissolution as considered here, but relies on estimates on the reactive surface, which in our
upscaled model is handled explicitly through the level set formulation. The upscaled model
contains a discontinuous reaction rate, and Agosti et al. (2015a, b) show well posedness for a
similar model and suggest a numerical strategy for the implementation of such a reaction rate.

The porosity is not explicitly used in the upscaled system of equations, but the void and
grain space volumes are present and are defined through the level set function. The derivatives
of the void and grain space volumes are handled through the level set equationwhich connects
these derivatives with the reaction rates. The upscaled equations are computationally cheaper
than the original model problem as the two scales x and y are separated, and the microscopic
variable y only appears through the cell problems and the level set equation. Redeker and Eck
(2013) proposed an adaptive solution strategy for amodel with two-scale dependence through
a similar separation of the micro- and macroscale as considered here, and they showed that
the scheme was convergent. Note that the upscaled model is not capable of describing cases

123



Upscaling of Non-isothermal Reactive Porous Media Flow with. . . 391

with clogging as we assumed the presence of a connected pore space in Sect. 2. Hence, in
numerical simulations, caution must be made to avoid situations where clogging could occur
and abort the simulation if clogging were to take place.

Compared to the work of van Noorden (2009a) who considers the isothermal case, the
present model includes compressible flow due to temperature-dependent fluid density and
honors heat transfer in both fluid and grain space, which is expressed through a single energy
conservation equation in the upscaled model due to the assumption of local thermal equilib-
rium at the pore scale. Temperature effects are also found in the varying fluid viscosity in
Darcy’s law. We can note that at isothermal conditions, the present model reduces to the one
by van Noorden (2009a).

The upscaled system of equations introduces some useful results in how the permeability
and diffusion tensors of the coupled system evolve due to the chemical reactions that can be
incorporated into simulator codes. TOUGHREACT (Xu et al. 2012) incorporates permeabil-
ity changes based on the work by Verma and Pruess (1988) by utilizing a simple power law
relationship between the scalar permeability and the porosity. Only scalar solute diffusion and
heat conduction are considered in TOUGHREACT, but as shown by the present upscaling
process, these will in general be tensors. The upscaled system of equations formulated here
includes permeability and diffusion tensors based on cell problems, giving a more detailed
and accurate description of the transport processes.

Using mass conservative mixed finite element methods (MFEM), Frank (2013) imple-
mented a Stokes–Nernst–Planck–Poisson system based on upscaled pore scale equations,
taking into account the permeability and diffusion tensors depending on pore scale effects
through cell problems. Frank (2013) considered several grain shapes in the fixed geom-
etry case and applied circular grains for varying porosity. Numerical computations using
MFEM on circular grains with varying radii were also considered by Ray et al. (2013) for
drug release from collagen matrices. Ray et al. (2013) derived approximate solutions of
the corresponding cell problems and found good correspondence with experimental results.
van Noorden (2009a) implemented his upscaled pore scale equations for reactive transport on
circular grains with altering grain radius, fitting the effective diffusion and permeability with
a rational polynomial function. Both Frank (2013) and van Noorden (2009a) consider incom-
pressible flow, but extending to compressible flow should be straightforward by replacing
the mass conservation equation. As the upscaled temperature equation has the same struc-
ture as the upscaled solute transport equation, it can be implemented using similar steps as
performed by Frank (2013), Ray et al. (2013) or van Noorden (2009a).

If wemake assumptions on the pore geometry and hence the shape of the level set function,
our model equations can be further simplified. For special choices of the level set function,
e.g., circular geometry, we obtain a system of equations only depending on the macroscopic
variable (vanNoorden 2009a). Specifically, assuming that the grains are circular and centered
in the middle of the unit square, we can use the level set function S(x, y, t) = R2(x, t) −
(y1 − 1/2)2 − (y2 − 1/2)2, where R(x, t) is the radius of the grain. Using this level set
function and pore geometry, we reformulate the above equations in terms of R(x, t). All the
five unknowns R(x, t), u(x, t), T (x, t), q̄(x, t) and p(x, t) are now defined for x ∈ Ω and
do not depend on the microscopic variable y. The equations read now (x ∈ Ω, t > 0):

∂t

(
ρR(x, t)

)
= f (T, u, R),

∂t

(
(1 − πR2)u(x, t) + πR2ρ

)
+ ∇x ·

(
q̄(x, t)u(x, t)

)

= ∇x ·
(
DAu(R)∇xu(x, t)

)
,
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∂t

(
(1 − πR2)ρ f (T )T (x, t) + πR2ςρT (x, t)

)
+ ∇x ·

(
ρ f (T )q̄(x, t)T (x, t)

)

= ∇x ·
(
κ fA f (R)∇x T (x, t) + κgAg(R)∇x T (x, t)

)
,

∂t

(
(1 − πR2)ρ f (T ) + πR22ρ) + ∇x ·

(
ρ f (T )q̄(x, t)

)
= 0,

q̄(x, t) = − 1

μ f (T )
K(R)∇x p(x, t).

The reaction rate f uses the distance between R and Rmin, where Rmin is the radius of the
non-reactive part, to calculate the width of the mineral layer. The matrices Au , A f , Ag and
K depend only on R(x, t) as the integration area is determined by the radius alone. The cell
problems are defined as before, but where Y0(x, t) = {y ∈ [0, 1]2 | (y1 − 1/2)2 + (y2 −
1/2)2 > R2(x, t)}, G0(x, t) = {y ∈ [0, 1]2 | (y1 − 1/2)2 + (y2 − 1/2)2 < R2(x, t)} and
Γ0(x, t) = {y ∈ [0, 1]2 | (y1 − 1/2)2 + (y2 − 1/2)2 = R2(x, t)}. Note that assuming radial
symmetry simplifies the level set equation, no y dependence is needed. The model equations
are also simplified through the tensors Au , A f , Ag and K being cheaper to compute.

To summarize, we have considered a model for fluid flow combined with mineral pre-
cipitation and dissolution in a perforated domain. The model is non-isothermal and includes
changes in the geometry of the pores, arising due to dissolution and precipitation. This leads
to a model involving free boundaries at the pore scale, which are described by a level set
formulation. We have applied a formal homogenization procedure and obtained upscaled
effective equations for an idealized porous medium. The upscaled model describes the aver-
age behavior of the coupled system at the Darcy scale, but still honors the pore scale effects
through effective parameters and cell problems. For a general pore geometry, the upscaled
equations still depend on the microscopic variable through the level set equation. Assuming
particular pore geometries may simplify the problem, but may result in less realistic models.
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