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Abstract This paper is devoted to automatic competitive analysis of real-time
scheduling algorithms for firm-deadline tasksets, where only completed tasks con-
tribute some utility to the system. Given such a taskset T , the competitive ratio of
an on-line scheduling algorithm A for T is the worst-case utility ratio of A over the
utility achieved by a clairvoyant algorithm. We leverage the theory of quantitative
graph games to address the competitive analysis and competitive synthesis problems.
For the competitive analysis case, given any taskset T and any finite-memory on-
line scheduling algorithm A, we show that the competitive ratio of A in T can be
computed in polynomial time in the size of the state space of A. Our approach is
flexible as it also provides ways to model meaningful constraints on the released task
sequences that determine the competitive ratio. We provide an experimental study of
manywell-known on-line scheduling algorithms,which demonstrates the feasibility of
our competitive analysis approach that effectively replaces human ingenuity (required
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for finding worst-case scenarios) by computing power. For the competitive synthesis
case, we are just given a taskset T , and the goal is to automatically synthesize an opti-
mal on-line scheduling algorithm A, i.e., one that guarantees the largest competitive
ratio possible for T . We show how the competitive synthesis problem can be reduced
to a two-player graph game with partial information, and establish that the compu-
tational complexity of solving this game is Np-complete. The competitive synthesis
problem is hence in Np in the size of the state space of the non-deterministic labeled
transition system encoding the taskset. Overall, the proposed framework assists in the
selection of suitable scheduling algorithms for a given taskset, which is in fact the
most common situation in real-time systems design.

Keywords Real-time scheduling · Firm-deadline tasks · Competitive analysis ·
Quantitative graph games

1 Introduction

We study the well-known problem of scheduling a sequence of dynamically arriving
real-time task instances with firm deadlines on a single processor, by using automatic
solution techniques based on graphs and games. In firm-deadline scheduling, a task
instance (a job) that is completed by its deadline contributes a positive utility value
to the system; a job that does not meet its deadline does not harm, but does not add
any utility. The goal of the scheduling algorithm is to maximize the cumulated utility.
Firm-deadline tasks arise in various application domains, e.g., machine scheduling
(Gupta and Palis 2001), multimedia and video streaming (Abeni and Buttazzo 1998),
QoS management in bounded-delay data network switches (Englert and Westermann
2007) and even networks-on-chip (Lu and Jantsch 2007), and other systems that may
suffer from overload (Koren and Shasha 1995).

Competitive analysis (Borodin and El-Yaniv 1998) has been the primary tool for
studying the performance of such scheduling algorithms (Baruah et al. 1992). It allows
to compare the performance of an on-line algorithmA, which processes a sequence of
inputs without knowing the future, with what can be achieved by an optimal off-line
algorithm C that does know the future (a clairvoyant algorithm): the competitive factor
gives the worst-case performance ratio of A vs. C over all possible scenarios.

In a seminal paper, Baruah et al. (1992) proved that no on-line scheduling algorithm
for single processors can achieve a competitive factor better than 1/4 over a clairvoyant
algorithm in all possible job sequences of all possible tasksets. The proof is based on
constructing a specific job sequence, which takes into account the on-line algorithm’s
actions and thereby forces any such algorithm to deliver a sub-optimal cumulated
utility. For the special case of zero-laxity tasksets of uniform value-density (where
utilities equal execution times), they also provided the on-line algorithm TD1 with
competitive factor 1/4, concluding that 1/4 is a tight bound for this family of tasksets.
In Baruah et al. (1992), the 1/4 upper bound was also generalized, by showing that
there exist tasksets with importance ratio k, defined as the ratio of the maximum
over the minimum value-density in the taskset, in which no on-line scheduler can
have competitive factor larger than 1

(1+√
k)2

. In subsequent work (Koren and Shasha
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1995), the on-line scheduler Dover was introduced, which provides the performance
guarantee of 1

(1+√
k)2

in any taskset with importance ratio k, showing that this bound

is also tight.

1.1 Problems considered in this paper

Since the taskset arising in a particular application is usually known, the present work
focuses on the competitive analysis problem for given tasksets: rather than from all
possible tasksets as in Baruah et al. (1992), the job sequences used for determining the
competitive ratio are chosen from a taskset given as an input. Note that this is in fact
the most common situation faced by real-time system designers, which would clearly
welcome automatic techniques in the first place. We hence study the two relevant
problems for the automated competitive analysis for given tasksets:

(1) The competitive analysis question asks to compute the competitive ratio of a given
on-line algorithm.

(2) The competitive synthesis question asks to construct an on-line algorithm with
optimal competitive ratio.

Both question are relevant in online-scheduling settings where the taskset is known
in advance. The competitive analysis problem can determine the performance of exist-
ing schedulers, and help with choosing the one that is best in the given setting. The
competitive synthesis problem can even provide a scheduler that is optimal by con-
struction in the given setting.

1.2 Detailed contributions

Our contributions on each problem are as follows.

1.2.1 Competitive analysis

Given a taskset T and an on-line scheduling algorithm A, the competitive analysis
question asks to determine the competitive ratio of A when the arriving jobs are
instances of tasks fromT . Our respective results are provided in the following sections:

– In Sect. 2, we formally define our real-time scheduling problem.
– In Sect. 3, we provide a formalism for on-line and clairvoyant scheduling algo-
rithms as labeled transitions systems.We also showhowautomata on infinitewords
can be used to express natural constraints on the set of released job sequences (such
as sporadicity and workload constraints).

– In Sects. 4.1 and 4.2, we define graph objectives on weighted multi-graphs and
provide algorithms for solving those objectives.

– In Sect. 4.3, we present a formal reduction of the competitive analysis problem to
solving a multi-objective graph problem. Section 4.4 describes both general and
implementation-specific optimizations for the above reduction, which consider-
ably reduce the size of the obtained graph and thus make our approach feasible in
practice.
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– In Sect. 4.5, we present a comparative study of the competitive ratio of several
existing firm-deadline real-time scheduling algorithms. Our results show that the
competitive ratio of any algorithm varies highly when varying tasksets, which
highlights the usefulness of an automated competitive analysis framework: after all,
our framework allows to replace human ingenuity (required for finding worst-case
scenarios) by computing power, as the application designer can analyze different
scheduling algorithms for the specific taskset arising in some application and
compare their competitive ratio.

1.2.2 Competitive synthesis

Given a taskset T , the competitive synthesis question asks to construct an on-line
scheduling algorithmA with optimal competitive ratio for T : the competitive ratio of
A for T is at least as large as the competitive ratio of any other on-line scheduling
algorithm for T . Our respective results are presented in Sect. 5:

– In Sect. 5.1, we consider a game model (a partial-observation game with memory-
less strategies for Player 1 with mean-payoff and ratio objectives) that is suitable
for the competitive synthesis of real-time scheduling algorithms. Themean-payoff
(resp. ratio) objective allows to compute the cumulated utility (resp. competitive
ratio) of the best on-line algorithm under the worst-case task sequence.

– In Sect. 5.2, we establish that the relevant decision problems for the underlying
game are Np-complete in the size of the game graph.

– In Sect. 5.3, we use the game of Sect. 5.1 to tackle two relevant synthesis problems
for a given taskset T : first, we show that constructing an on-line scheduling algo-
rithmwith optimal worst-case average utility for T is inNp∩ coNp in general, and
polynomial in the size of the underlying game graph for reasonable choices of task
utility values. Second, we show that constructing an on-line scheduling algorithm
with optimal competitive ratio for T is in Np. Note that these complexities are
with respect to the size of the constructed algorithm, represented explicitly as a
labeled transition system. As a function of the input taskset T given in binary, all
polynomial upper bounds become exponential upper bounds in the worst case.

1.3 Related work

Algorithmic game theory (Nisan et al. 2007) has been applied to classic scheduling
problems since decades, primarily in economics and operations research, see e.g.
(Koutsoupias 2011) for just one example of some more recent work. In the real-time
systems context, mechanism design (Porter 2004) is an area where game theory is
actually themethod of choice: rather than determining the performance of a scheduling
algorithm resp. finding an optimal one for some given taskset, i.e., for some given set
of rules, which is our goal, the challenge in mechanism design is to define the rules
that allow the system to to achieve certain goals, e.g., performance, in the presence of
rational agents that strive for maximizing some local benefit.

However, game theory has also been applied to problems that are more closely
related to the one studied in this paper. In particular, Sheikh et. al. (2011) considered

123



170 Real-Time Syst (2018) 54:166–207

the problem of non-preemptively scheduling periodic hard real-time tasks (where
all jobs must make their deadlines), and used an optimal strategy in the context
of non-cooperative games to optimally determine the initial offsets of all tasks in
the periodic schedule. Altisen et al. (2002) used games for synthesizing controllers
dedicated to meeting all deadlines in systems with shared resources. Bonifaci and
Marchetti-Spaccamela (2012) employed graph games for automatic feasibility analy-
sis of sporadic real-time tasks in multiprocessor systems: given a set of sporadic tasks
(where consecutive releases of jobs of the same task are separated at least by some
sporadicity interval), the algorithms provided in Bonifaci and Marchetti-Spaccamela
(2012) allow to decide, in polynomial time, whether some given scheduling algorithm
will meet all deadlines. A partial-information game variant of their approach also
allows to synthesize an optimal scheduling algorithm for a given taskset (albeit not in
polynomial time).

A recent work (Lübbecke et al. 2016) studies the synthesis of schedulers where the
task is to minimize the weighted sum of completion times of the released tasks. It is
shown how the competitive ratio can be approximated in various online schemes, e.g.
for parallel, related, and unrelated machines. We note that our online setting differs on
the objective function that needs to be obtained (i.e., maximizing utility vs minimizing
completion times).

Regarding firm-deadline task scheduling in general, starting out from (Baruah et al.
1992), classic real-time systems research has studied the competitive factor of both
simple and extended real-time scheduling algorithms. The competitive analysis of
simple algorithms has been extended in various ways later on: energy consumption
(Aydin et al. 2004; Devadas et al. 2010) (including dynamic voltage scaling), impre-
cise computation tasks (having both a mandatory and an optional part and associated
utilities) (Baruah and Hickey 1998), lower bounds on slack time (Baruah and Haritsa
1997), and fairness (Palis 2004). Note that dealing with these extensions involved con-
siderable ingenuity and efforts w.r.t. identifying and analyzing appropriate worst-case
scenarios, which do not necessarily carry over even to minor variants of the problem.
Maximizing cumulated utility while satisfying multiple resource constraints is also
the purpose of the Q-RAM (QoS-based Resource Allocation Model) (Rajkumar et al.
1997) approach.

Preliminary versions of this work have appeared in Chatterjee et al. (2014) (com-
petitive analysis) and (Chatterjee et al. 2013) (competitive synthesis). The present
paper unifies the two topics in a common framework, which we develop in more
detail. Additionally, we have extended our experiments to also incorporate the well-
known scheduling algorithms TD1 (Baruah et al. 1992) and least laxity first (Leung
1989). Finally, we have extended our competitive synthesis approach to also cover
constrained environments (imposing safety, liveness and limit-average constraints for
the generated job sequences).

2 Problem definition

Weconsider a finite set of tasksT = {τ1, . . . , τN }, to be executed on a single processor.
We assume a discrete notion of real-time t = kε, k � 1, where ε > 0 is both the
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unit time and the smallest unit of preemption (called a slot). Since both task releases
and scheduling activities occur at slot boundaries only, all timing values are specified
as positive integers. Every task τi releases countably many task instances (called
jobs) Ji, j := (τi , j) ∈ T × N+ (where N+ is the set of positive integers) over time
(i.e., Ji, j denotes that a job of task i is released at time j). All jobs, of all tasks,
are independent of each other and can be preempted and resumed during execution
without any overhead. Every task τi , for 1 � i � N , is characterized by a 3-tuple
τi = (Ci , Di , Vi ) consisting of its non-zero worst-case execution time Ci ∈ N+
(slots), its non-zero relative deadline Di ∈ N+ (slots) and its non-zero utility value
Vi ∈ N+ (rational utility values V1, . . . , VN can be mapped to integers by proper
scaling). We denote with Dmax = max1�i�N Di the maximum relative deadline in T .
Every job Ji, j needs the processor forCi (not necessarily consecutive) slots exclusively
to execute to completion. All tasks have firm deadlines: only a job Ji, j that completes
within Di slots, as measured from its release time, provides utility Vi to the system.
A job that misses its deadline does not harm but provides zero utility. The goal of
a real-time scheduling algorithm in this model is to maximize the cumulated utility,
which is the sum of Vi times the number of jobs Ji, j that can be completed by their
deadlines, in a sequence of job releases generated by the adversary.

2.1 Notation on sequences

Let X be a finite set. For an infinite sequence x = (x�)��1 = (x1, x2, . . .) of elements
in X , we denote by x� the element in the �-th position of x , and denote by x(�) =
(x1, x2, . . . , x�) the finite prefix of x up to position �. We denote by X∞ the set of all
infinite sequences of elements from X . Given a function f : X → Z (where Z is the
set of integers) and a sequence x ∈ X∞, we denote with f (x, k) = ∑k

�=1 f (x�) the
sum of the images of the first k sequence elements under f .

2.2 Job sequences

The released jobs form a discrete sequence, where at each time point the adversary
releases at most one new job from every task. Formally, the adversary generates an
infinite job sequence σ = (σ �)��1 ∈ �∞, where � = 2T . The release of one job of
task τi in time �, for some � ∈ N+, is denoted by having τi ∈ σ�. Then, a (single)
new job Ji, j of task τi is released at the beginning of slot �: j = � denotes the release
time of Ji, j , which is also the earliest time that the job Ji, j can be executed, and
di, j = j + Di denotes its absolute deadline.

2.3 Admissible job sequences

We present a flexible framework, where the set of admissible job sequences that the
adversary can generate may be restricted. The set J of admissible job sequences from
�∞ can be obtained by imposing one or more of the following (optional) admissibility
restrictions:
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(S) Safety constraints, which are restrictions that have to hold in every finite prefix
of an admissible job sequence; e.g., they can be used to enforce job release
constraints such as periodicity or sporadicity, and to impose temporal workload
restrictions.

(L) Liveness restrictions, which assert infinite repetition of certain job releases in
a job sequence; e.g., they can be used to force the adversary to release a certain
task infinitely often.

(W) Limit-average constraints, which restrict the long run average behavior of a
job sequence; e.g., they can be used to enforce that the average load in the job
sequences does not exceed a threshold.

These three types of constraints will be made precise in the next section where we
formally state the problem definition.

2.4 Schedule

Given an admissible job sequence σ ∈ J , the schedule π = (π�)��1 ∈ �∞, where
� = ((T × {0, . . . , Dmax − 1}) ∪ ∅), computed by a real-time scheduling algorithm
for σ , is a function that assigns at most one job for execution to every slot � � 1: π� is
either ∅ (i.e., no job is executed) or else (τi , j) (i.e., the job Ji,�− j of task τi released
j slots ago is executed). The latter must satisfy the following constraints:

1. τi ∈ σ�− j (the job has been released),
2. j < Di (the job’s deadline has not passed),
3. |{k : k > 0 and π�−k = (τi , j ′) and k + j ′ = j}| < Ci (the job released in slot

� − j has not been completed).

Note that our definition of schedules uses relative indexing in the scheduling algo-
rithms: at time point �, the scheduling algorithm computing π� uses index j to refer to
slot �− j . Recall that π(k) denotes the prefix of length k � 1 of π . We define γi (π, k)
to be the number of jobs of task τi that are completed by their deadlines in π(k). The
cumulated utility V (π, k) (also called utility for brevity) achieved in π(k) is defined
as V (π, k) = ∑N

i=1 γi (π, k) · Vi .

2.5 Competitive ratio

We are interested in evaluating the performance of deterministic on-line scheduling
algorithms A, which, at time �, do not know any of the σ k for k > � when running
on σ ∈ J . In order to assess the performance of A, we will compare the cumulated
utility achieved in the scheduleπA to the cumulated utility achieved in the scheduleπC
provided by an optimal off-line scheduling algorithm, called a clairvoyant algorithm
C, working on the same job sequence. Formally, given a taskset T , let J ⊆ �∞
be the set of all admissible job sequences of T that satisfy given (optional) safety,
liveness, and limit-average constraints. For every σ ∈ J , we denote with πσ

A resp.
πσ
C ) the schedule produced byA (resp. C) under σ . The competitive ratio of the on-line

algorithm A for the taskset T under the admissible job sequence set J is defined as
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CRJ (A) = inf
σ∈J

lim inf
k→∞

1 + V (πσ
A, k)

1 + V (πσ
C , k)

(1)

that is, the worst-case ratio of the cumulated utility of the on-line algorithm versus
the clairvoyant algorithm, under all admissible job sequences. Note that adding 1 in
numerator and denominator simply avoids division by zero issues.

Remark 1 Since, according to the definition of the competitive ratio CRJ in Eq. (1),
we focus on worst-case analysis, we do not consider randomized algorithms (such as
Locke’s best-effort policy (Locke 1986)). Generally, for worst-case analysis, random-
ization can be handled by additional choices for the adversary. For the same reason,
we do not consider scheduling algorithms that can use the unbounded history of job
releases to predict the future (e.g., to capture correlations).

3 Modeling formalisms in our framework

In this section, we present the definitions of several types of labeled transition systems
(LTSs).We use LTSs as themodeling formalism for on-line and clairvoyant scheduling
algorithms, as well as for modeling optional constraints on the released job sequences.

3.1 Labeled Transition Systems

We will consider both on-line and off-line scheduling algorithms that are formally
modeled as labeled transition systems (LTSs): every deterministic finite-state on-line
scheduling algorithm can be represented as a deterministic LTS, such that every input
job sequence generates a unique run that determines the corresponding schedule. On
the other hand, an off-line algorithm can be represented as a non-deterministic LTS,
which uses the non-determinism to guess the appropriate job to schedule.

3.1.1 Labeled transitions systems (LTSs)

Formally, a labeled transition system (LTS) is a tuple L = (S, s1, �,�,
), where
S is a finite set of states, s1 ∈ S is the initial state, � is a finite set of input actions,
� is a finite set of output actions, and 
 ⊆ S × � × S × � is the transition relation.
Intuitively, (s, x, s′, y) ∈ 
 if, given the current state s and input x , the LTS outputs
y and makes a transition to state s′. If the LTS is deterministic, then there is always a
unique output and next state, i.e., 
 is a function 
 : S×� → S×�. Given an input
sequence σ ∈ �∞, a run of L on σ is a sequence ρA = (p�, σ�, q�, π�)��1 ∈ 
∞
such that p1 = s1 and for all � � 2, we have p� = q�−1. For a deterministic LTS, for
each input sequence, there is a unique run.

3.1.2 Deterministic LTS for an on-line algorithm

For our analysis, on-line scheduling algorithms are represented as deterministic LTSs.
Recall the definition of the sets � = 2T , and � = ((T × {0, . . . , Dmax − 1}) ∪
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Fig. 1 EDF for T = {τ1, τ2} with D1 = 3, D2 = 2 and C1 = C2 = 2, represented as a deterministic LTS

∅). Every deterministic on-line algorithm A that uses finite state space (for all job
sequences) can be represented as a deterministic LTS LA = (SA, sA, �,�,
A),
where the states SA correspond to the state space of A, and 
A corresponds to the
execution of A for one slot. Note that, due to relative indexing, for every current slot
�, the schedule (π�)��1 of A contains elements π� from the set �, and π� = (τi , j)
uniquely determines the job Ji,�− j . Finally, we associate with LA a reward function
rA : 
A → N such that rA(δ) = Vi if the transition δ completes a job of task τi , and
rA(δ) = 0 otherwise. Given the unique run ρσ

A = (δ�)��1 of LA for the job sequence
σ , where δ� denotes the transition taken at the beginning of slot �, the cumulated utility
in the prefix of the first k transitions in ρσ

A is V (ρσ
A, k) = ∑k

�=1 rA(δ�).
Most scheduling algorithms [such as EDF, FIFO, DOVER (Koren and Shasha

1995), TD1 (Baruah et al. 1992)] can be represented as a deterministic LTS. An
illustration for EDF is given in the following example.

Example 1 Consider the taskset T = {τ1, τ2}, with D1 = 3, D2 = 2 and C1 =
C2 = 2. Figure 1 represents the EDF (Earliest Deadline First) scheduling policy as a
deterministic LTS for T . Each state is represented by a matrix M , such that M[i, j],
1 � i � N , 1 � j � Dmax−1, denotes the remaining execution time of the job of task
τi released j slots ago. Every transition is labeled with a set T ∈ � of released tasks
as well as with (τi , j) ∈ �, which denotes the unique job Ji,�− j to be scheduled in the
current slot �. Released jobs with no chance of being scheduled are not included in the
state space. For example, while being in the topmost state, the release of τ1 makes the
LTS take the transition to the leftmost state, where 1 unit of work is scheduled for the
released task, and 1 unit remains, encoded by writing 1 in position (1, 1) of the matrix
M . In the next round, a new release of τ2 will take the LTS to the middle state, with
2 units of workload in position (1, 1). This is because the 2nd workload of the first
job is scheduled (thus the first job is scheduled to completion), and the newly released
job is not scheduled in the current slot. Thus all 2 units of workload of the currently
released job remain.
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All scheduling algorithms considered in this paper have been encoded similarly to
EDF using the matrix M . Some more involved schedulers, such as DOVER, require
some extra bits of information stored in the state.

3.1.3 The non-deterministic LTS

The clairvoyant algorithm C is formally a non-deterministic LTS LC = (SC, sC, �,

�,
C), where each state in SC is a N × (Dmax − 1) matrix M . For each time slot �,
the entry M[i, j], 1 � i � N , 1 � j � Dmax − 1, denotes the remaining execution
time of the job Ji,�− j (i.e., the job of task i released j slots ago). For matrices M , M ′,
subset T ∈ � of newly released tasks, and scheduled job P = (τi , j) ∈ �, we have
(M, T, M ′, P) ∈ 
C iff M[i, j] > 0 and M ′ is obtained from M by

1. inserting all τi ∈ T into column 1 of M ,
2. decrementing the value at position M[i, j], and
3. shifting the contents of M by one column to the right, while initializing column 1

to all 0.

That is, M ′ corresponds to M after inserting all released tasks in the current state,
executing a pending task for one unit of time, and reducing the relative deadlines
of all tasks currently in the system. The initial state sC is represented by the zero
N × (Dmax −1) matrix, and SC is the smallest 
C-closed set of states that contains sC
(i.e., if M ∈ SC and (M, T, M ′, P) ∈ 
C for some T , M ′ and P , we have M ′ ∈ SC).
Finally, we associate with LC a reward function rC : 
C → N such that rC(δ) = Vi
if the transition δ completes a task τi , and rC(δ) = 0 otherwise.

Remark 2 Note that the size of the above LTSs is the size of the state space of the
corresponding scheduling algorithm. If the input consists of a succinct description of
these algorithms [e.g., as a circuit (Galperin andWigderson 1983)], then the size of the
corresponding LTS is, in general, exponential in the size of the input. This state-space
explosion is generally unavoidable (Clarke et al. 1999). In the complexity analysis of
our algorithms, we consider all scheduling algorithms to be given in the explicit form
of LTSs. When appropriate, we will state what the obtained results imply for the case
where the input is succinct.

3.2 Admissible job sequences

Our framework allows to restrict the adversary to generate admissible job sequences
J ⊆ �∞, which can be specified via different constraints. Since a constraint on job
sequences can be interpreted as a language (which is a subset of infinite words �∞
here), we will use automata as acceptors of such languages. Since an automaton is a
deterministic LTS with no output, all our constraints will be described as LTSs with
an empty set of output actions. We allow the following types of constraints:

(S) Safety constraints are defined by a deterministic LTS LS = (SS , sS , �, ∅,


S), with a distinguished absorbing reject state sr ∈ SS . An absorbing state is
a state that has outgoing transitions only to itself. Every job sequence σ defines
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0

1

2

sr

{}

{τ1}, {τ2}

{}, {τ1}, {τ2}, {τ1, τ2}

{τ1}, {τ2}

{τ1, τ2}

{}

{τ1, τ2}

{}
{τ1}, {τ2}, {τ1, τ2}

Fig. 2 Example of a safety LTS LS that restricts the adversary to release at most 2 units of workload in
the last 2 slots. In state 0, no workload has been released in the last 2 slots, and thus all task releases are
allowed for the next time slot. In state 1, there has been 1 unit of workload released in the last 2 slots, and
thus in the next slot only one task can be released. If no task is released in the next slot, then we transition
back to state 0, to indicate that in the next time slot any combination of task releases is allowed. In state
2, there have been 2 units of workload released in the last 2 slots, and thus no task release is allowed in
the next slot. If no tasks are released, then the LTS transitions back to state 0, as in the next time slot any
combination of task releases is allowed. If any of the above rules is violated, the safety LTS transitions to
the absorbing state sr , and remains there forever to indicate that the workload restriction has been violated

a unique run ρσ
S in LS , such that either no transition to sr appears in ρσ

S , or
every such transition is followed solely by self-transitions to sr . A job sequence
σ is admissible to LS , if ρσ

S does not contain a transition to sr . To obtain a
safety LTS that does not restrict J at all, we simply use a trivial deterministic
LS with no transition to sr . Safety constraints restrict the adversary to release
job sequences, where every finite prefix satisfies some property (as they lead to
the absorbing reject state sr of LS otherwise). Some well-known examples of
safety constraints are (i) periodicity and/or sporadicity constraints, where there
are fixed and/or a minimum time between the release of any two consecutive
jobs of a given task, and (ii) absolute workload constraints (Golestani 1991;
Cruz 1991), where the total workload released in the last k slots, for some
fixed k, is not allowed to exceed a threshold λ. For example, in the case of
absolute workload constraints, LS simply encodes the workload in the last k
slots in its state, and makes a transition to sr whenever the workload exceeds
λ. Figure 2 shows an example of a constraint LTS for the taskset T = {τ1, τ2}
with C1 = C2 = 1 that restricts the adversary to release at most 2 units of
workload in the last 2 slots.

(L) Liveness constraints aremodeled as a deterministic LTS LL = (SL, sL, �, ∅,


L)with a distinguished accept state sa ∈ SL. A job sequence σ is admissible
to the liveness LTS LL if ρσ

L contains infinitely many transitions to sa . For the
casewhere there are no liveness constraint inJ , we use a LTS LL consisting of
state sa only. Liveness constraints force the adversary to release job sequences
that satisfy some property infinitely often. For example, they could be used to
guarantee that the release of some particular task τi does not eventually stall;
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sa

{}, {τ1} {τ2}, {τ1, τ2}
{τ2}, {τ1, τ2}

{}, {τ1}

Fig. 3 Example of a liveness LTS LL that forces τ2 to be released infinitely often. Each time the τ2 is
released, the LTS transitions to the accepting state sa to indicate the release of the desired task. Recall that
the accepting condition of LL is that sa needs to be appear infinitely often in an accepting path, meaning
that the task τ2 appears infinitely often

the constraint is specified by a two-state LTS LL that visits sa whenever the
current job set includes τi . A liveness constraint can also be used to prohibit
infinitely long periods of overload (Baruah et al. 1992), by choosing sa as
the idle state. Figure 3 shows an example of a constraint LTS for the taskset
T = {τ1, τ2} that forces the adversary to release τ2 infinitely often.

(W) Limit-average constraints are defined by a deterministic weighted LTS LW =
(SW , sW , �, ∅,
W ) equipped with a weight function w : 
W → Zd

that assigns a vector of weights to every transition δW ∈ 
W . Given a
threshold vector 
λ ∈ Qd , where Q denotes the set of all rational numbers,
a job sequence σ and the corresponding run ρσ

W = (δ�
W )��1 of LW , the

job sequence is admissible to LW if lim infk→∞ 1
k · w(ρσ

W , k) � 
λ with

w(ρσ
W , k) = ∑k

i=1 w(δ�
W ).

Consider a relaxed notion of workload constraints, where the adversary is
restricted to generate job sequences whose averageworkload does not exceed
a threshold λ. Since this constraint still allows “busy” intervals where the
workload temporarily exceeds λ, it cannot be expressed as a safety constraint.
To support such interesting average constraints of admissible job sequences,
where the adversary ismore relaxed thanunder absolute constraints, our frame-
work explicitly supports limit-average constraints. Therefore, it is possible to
express the average workload assumptions commonly used in the analysis
of aperiodic task scheduling in soft-real-time systems (Abeni and Buttazzo
1998; Haritsa et al. 1990). Other interesting cases of limit-average constraints
include restricting the average sporadicity, and, in particular, average energy:
ensuring that the limit-average of the energy consumption is below a cer-
tain threshold is an important concern in modern real-time systems (Aydin
et al. 2004). Figure 4 shows an example of a constraint LTS for the taskset
T = {τ1, τ2} with C1 = C2 = 1, which can be used to restrict the average
workload the adversary is allowed to release in the long run.

Remark 3 While, in general, such constraints are encoded as independent automata, it
is often possible to encode certain constraints directly in the non-deterministic LTS of
the clairvoyant scheduler instead. In particular, this is possible for restricting the limit-
average workload, generating finite intervals of overload, and releasing a particular
job infinitely often.
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{}, w = 0

{τ1, τ2}, w = 2

{τ1}, w = 1{τ2}, w = 1

Fig. 4 Example of a limit-average LTS LW that tracks the average workload of jobs released by the
adversary. This is achieved by having the weight function indicate the total workload released in each time
slot. In this case we have C1 = C2 = 1, and the total workload equals the number of released tasks

3.2.1 Synchronous product of LTSs

The synchronous product of two LTSs L1 = (S1, s1, �,�,
1) and L2 =
(S2, s2, �,�,
2) is an LTS L = (S, s, �,�′,
) such that:

1. S ⊆ S1 × S2,
2. s = (s1, s2),
3. �′ = � × �, and
4. 
 ⊆ S × � × S × �′ such that ((q1, q2), T, (q ′

1, q
′
2), (P1, P2)) ∈ 
 iff

(q1, T, q ′
1, P1) ∈ 
1 and (q2, T, q ′

2, P2) ∈ 
2.

The set of states S is the smallest 
-closed subset of S1 × S2 that contains s (i.e.,
s ∈ S, and for each q ∈ S, if there exist q ′ ∈ S1 × S2, T ∈ � and P ∈ �′ such
that (q, T, q ′, P) ∈ 
, then q ′ ∈ S). That is, the synchronous product of L1 with L2
captures the joint behavior of L1 and L2 in every input sequence σ ∈ �∞ (L1 and
L2 synchronize on input actions). Note that if both L1 and L2 are deterministic, so
is their synchronous product. The synchronous product of k > 2 LTSs L1, . . . , Lk is
defined iteratively as the synchronous product of L1 with the synchronous product of
L2, . . . , Lk .

3.2.2 Overall approach for computing CR

Our goal is to determine the worst-case competitive ratio CRJ (A) for a given on-line
algorithm A. The inputs to the problem are the given taskset T , an on-line algorithm
A specified as a deterministic LTS LA, and the safety, liveness, and limit-average con-
straints specified as deterministic LTSs LS , LL and LW , respectively, which constrain
the admissible job sequences J . Our approach uses a reduction to a multi-objective
graph problem, which consists of the following steps:

1. Construct a non-deterministic LTS LC corresponding to the clairvoyant off-line
algorithm C. Note that since LC is non-deterministic, for every admissible job
sequence σ , there are many possible runs in LC , of course also including the runs
with maximum cumulative utility.

2. Take the synchronous product LTS LA × LC × LS × LL × LW . By doing so,
a path in the product graph corresponds to identically labeled paths in the LTSs,

123



Real-Time Syst (2018) 54:166–207 179

and thus ensures that they agree on the same job sequence σ . This product can be
represented by a multi-objective graph (as introduced in Sect. 4.1).

3. Determine CRJ (A) by reducing the computation of the ratio given in Eq. (1) to
solving a multi-objective problem on the product graph.

4. Employ several optimizations in order to reduce the size of product graph (see
Sects. 4.3 and 4.4).

4 Competitive analysis of on-line scheduling algorithms

In this section, we address the competitive analysis problem: given a taskset, a LTS LA
for the on-line scheduling algorithm, and optional constraint automata LS , LL, LW
for the set of admissible job sequences J , our algorithms compute the competitive
ratio CRJ (A) of A in J . Our presentation is organized as follows: in Sect. 4.1,
we define qualitative and quantitative objectives on multi-graphs. In Sect. 4.2, we
provide algorithms for solving these graph objectives. In Sect. 4.3, we establish a
formal reduction of computing the competitive ratio CRJ (A) of an on-line scheduling
algorithm A to solving for graph objectives on a suitable multi-graph. In Sect. 4.4,
we describe several generic optimizations for this reduction that make the reduction
practical. In Sect. 4.5, we provide the results of an automatic competitive analysis of a
wide range of classic on-line scheduling algorithms, using a prototype implementation
of our framework.

4.1 Graphs with multiple objectives

In this subsection, we define various objectives on graphs and outline the algorithms
for solving them. We later show how the competitive analysis of on-line schedulers
reduces to the solution algorithms of this section.

4.1.1 Multi-graphs

A multi-graph G = (V, E), hereinafter called simply a graph, consists of a finite set
V of n nodes, and a finite set of m directed multiple edges E ⊂ V × V × N+. For
brevity, we will refer to an edge (u, v, i) as (u, v), when i is not relevant. We consider
graphs in which for all u ∈ V , we have (u, v) ∈ E for some v ∈ V , i.e., every node
has at least one outgoing edge. An infinite path ρ of G is an infinite sequence of edges
e1, e2, . . . such that, for all i � 1 with ei = (ui , vi ), we have vi = ui+1. Every such
path ρ induces a sequence of nodes (ui )i�1, which we will also call a path when the
distinction is clear from the context, where ρi refers to ui instead of ei . Finally, we
denote by � the set of all paths of G.

4.1.2 Objectives

Given a graph G, an objective � is a subset of � that defines the desired set of paths.
We will consider safety, liveness, mean-payoff (limit-average), and ratio objectives,
and their conjunction for multiple objectives.
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Safety and liveness objectives We consider safety and liveness objectives, both
defined with respect to some subset of nodes X,Y ⊆ V . Given X ⊆ V , the safety
objective, defined as Safe(X) = {ρ ∈ � : ∀i � 1, ρi /∈ X}, represents the set of
all paths that never visit the set X . The liveness objective defined as Live(Y ) = {ρ ∈
� : ∀ j∃i > j s.t. ρi ∈ Y } represents the set of all paths that visit Y infinitely often.
Mean-payoff and ratio objectives We consider the mean-payoff and ratio objectives,
defined with respect to a weight function and a threshold. A weight function w : E →
Zd assigns to each edge of G a vector of d integers. A weight function naturally
extends to paths, with w(ρ, k) = ∑k

i=1 w(ρi ).
The mean-payoff (or limit-average) of a path ρ is defined as:

MP(w, ρ) = lim inf
k→∞

1

k
· w(ρ, k);

i.e., it is the long-run average of the weights of the path. Given a weight function w

and a threshold vector 
ν ∈ Qd , the corresponding objective is given as:

MP(w, 
ν) = {ρ ∈ � : MP(w, ρ) � 
ν};

that is, the set of all paths such that the mean-payoff of their weights is at most

ν (where we consider pointwise comparison for vectors). For weight functions w1,
w2 : E → Nd , the ratio of a path ρ is defined as:

Ratio(w1, w2, ρ) = lim inf
k→∞


1 + w1(ρ, k)

1 + w2(ρ, k)

,

which denotes the limit infimum of the coordinate-wise ratio of the sum of weights of
the two functions; 
1 denotes the d-dimensional all-1 vector. Given weight functions
w1, w2 and a threshold vector 
ν ∈ Qd , the ratio objective is given as:

Ratio(w1, w2, 
ν) = {ρ ∈ � : Ratio(w1, w2, ρ) � 
ν}

that is, the set of all paths such that the ratio of cumulative rewards w.r.t w1 and w2 is
at most 
ν.
Example 2 Consider themulti-graph shown in Fig. 5, with aweight function of dimen-
sion d = 2. Note that there are two edges from node 3 to node 5 (represented as edges
(3, 5, 1) and (3, 5, 2)). In the graph we have a weight function with dimension 2. Note
that the two edges from node 3 to node 5 have incomparable weight vectors.

4.1.3 Decision problem

The decision problem we consider is as follows: given the graph G, an initial node
s ∈ V , and an objective � (which can be a conjunction of several objectives), deter-
mine whether there exists a path ρ that starts from s and belongs to �, i.e., ρ ∈ �. For
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1 2 3

4

5

−1, 3

−1,−1

7, 7

6, 6

0,−1

−5, 0

1, 0

9, 9 8, 82, 1

Fig. 5 An example of a multi-graph G

simplicity of presentation, we assume that every u ∈ V is reachable from s (unreach-
able nodes can be discarded by preprocessing G in O(m) time). We first present
algorithms for each of safety, liveness, mean-payoff, and ratio objectives separately,
and then for their conjunction.

4.2 Algorithms for solving graphs with multiple objectives

We now describe the algorithms for solving the graph objectives introduced in the last
subsection.

4.2.1 Algorithms for safety and liveness objectives

The algorithm for the objective Safe(X) is straightforward. We first remove the set X
of nodes and then perform an SCC (maximal strongly connected component) decom-
position ofG. Then, we perform a single graph traversal to identify the set of nodes VX

which can reach an SCC that contains at least one edge (i.e., it contains either a single
node with a self-loop, or more than one nodes). Note that since we have removed the
set X , we have that VX ∩ X = ∅. In the end, we obtain a graph G = (VX , EX ) such
that EX = E ∩ (VX × VX ). Thus, the objective Safe(X) is satisfied in the resulting
graph, and the algorithm answers yes iff s ∈ VX . Using the algorithm of Tarjan (1972)
for performing the SCC decomposition, this algorithm requires O(m) time.

To solve for the objective Live(Y ), initially perform an SCC decomposition of G.
We call an SCC VSCC live, if (i) either |VSCC| > 1, or VSCC = {u} and (u, u) ∈ E ;
and (ii) VSCC ∩Y �= ∅. Then Live(Y ) is satisfied in G iff there exists a live SCC VSCC
that is reachable from s. This is because every node u in VSCC can reach every node
in VSCC, and thus there is a path u � u in VSCC. Since VSCC is a live SCC, the same
holds for nodes u ∈ VSCC ∩ Y . Then a witness path can be constructed which first
reaches some node u ∈ VSCC ∩ Y , and then keeps repeating the path u � u. Using
the algorithm of (Tarjan 1972) for performing the SCC decomposition, this algorithm
also requires O(m) time.

4.2.2 Algorithms for mean-payoff objectives

We distinguish between the case when the weight function has a single dimension
(d = 1) versus the case when the weight function has multiple dimensions (d > 1).
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Single dimension In the case of a single-dimensional weight function, a single weight
is assigned to every edge, and the decision problem of the mean-payoff objective
reduces to determining the mean weight of a minimum-weight simple cycle in
G, as the latter also determines the mean-weight by infinite repetition. Using the
algorithms of Karp (1978 and Madani (2002), this process requiresO(n ·m) time.
When the objective is satisfied, the process also returns a simple cycle C , as a
witness to the objective. From C , a path ρ ∈ MP(w, 
ν) is constructed by infinite
repetitions of C .

Multiple dimensionsWhen d > 1, the mean-payoff objective reduces to determining
the feasibility of a linear program (LP). For u ∈ V , let IN(u) be the set of incoming,
and OUT(u) the set of outgoing edges of u. As shown in Velner et al. (2015), G
satisfies MP(w, 
ν) iff the following set of constraints on 
x = (xe)e∈ESCC with
xe ∈ Q is satisfied simultaneously on some SCC VSCC of G with induced edges
ESCC ⊆ E .

xe � 0 e ∈ ESCC
∑

e∈IN(u)

xe =
∑

e∈OUT(u)

xe u ∈ VSCC (2)

∑

e∈ESCC

xe · w(e) � 
ν
∑

e∈ESCC

xe � 1

The quantities xe are intuitively interpreted as “flows”. The first constraint specifies
that the flow of each edge is non-negative. The second constraint is a flow-
conservation constraint. The third constraint specifies that the objective is satisfied
if we consider the relative contribution of the weight of each edge, according to
the flow of the edge. The last constraint asks that the preceding constraints are
satisfied by a non-trivial (positive) flow. Hence, when d > 1, the decision problem
reduces to solving a LP, and the time complexity is polynomial (Khachiyan 1979).

The witness path construction from a feasible solution consists of two steps:

1. Construction of a multi-cycle from the feasible solution; and
2. Construction of an infinite witness path from the multi-cycle.

We describe the two steps in detail. Formally, a multi-cycle is a finite set of cycles
with multiplicity MC = {(C1,m1), (C2,m2), . . . , (Ck,mk)}, such that every Ci is
a simple cycle and mi is its multiplicity. The construction of a multi-cycle from a
feasible solution 
x is as follows. Let E = {e : xe > 0}. By scaling each edge flow
xe by a common factor z, we construct the set X = {(e, z · xe) : e ∈ E}, with
X ⊂ ESCC × N+. Then, we start with MC = ∅ and apply iteratively the following
procedure until X = ∅:

(i) find a pair (ei ,mi ) = argmin(e j ,m j )∈X m j ,
(ii) form a cycle Ci that contains ei and only edges that appear in X (because of

Eq. (2), this is always possible),
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(iii) add the pair (Ci ,mi ) in the multi-cycle MC,
(iv) subtract mi from all elements (e j ,m j ) of X such that the edge e j appears in Ci ,
(v) remove from X all (e j , 0) pairs, and repeat.

Since VSCC is an SCC, there is a path Ci � C j for all Ci ,C j in MC. Given the
multi-cycle MC, the infinite path that achieves the weight at most 
ν is not periodic,
but generated by Algorithm 1. Note that perpetually increasing � in Line 9 ensures
that the contributions of the (finite) intermediate paths C1 � C2, etc. vanish in the
limit.

Algorithm 1: Multi-objective witness
Input: A graph G = (V, E), and a multi-cycle

MC = {(C1,m1), (C2,m2), . . . , (Ck ,mk )}
Output: An infinite path ρ ∈ MP(w, 
ν)

1 � ← 1
2 while True do
3 Repeat C1 for � · m1 times
4 C1 � C2
5 Repeat C2 for � · m2 times
6 . . .

7 Repeat Ck for � · mk times
8 Ck � C1
9 � ← � + 1

10 end

4.2.3 Algorithm for ratio objectives

We now consider ratio objectives, and present a reduction to mean-payoff objec-
tives. Consider the weight functions w1, w2 and the threshold vector 
ν = 
p


q as the

component-wise division of vectors 
p, 
q ∈ Nd . We define a new weight function
w : E → Zd such that, for all e ∈ E , we have w(e) = 
q · w1(e) − 
p · w2(e) (where ·
denotes component-wise multiplication). It is easy to verify that Ratio(w1, w2, 
ν) =
MP(w, 
0), and thus we solve the ratio objective by solving the new mean-payoff
objective, as described above.

4.2.4 Algorithms for conjunctions of objectives

Finally,we consider the conjunction of a safety, a liveness, and amean-payoff objective
(note that we have already described a reduction of ratio objectives to mean-payoff
objectives). More specifically, given a weight function w, a threshold vector 
ν ∈ Q,
and sets X,Y ⊆ V , we consider the decision problem for the objective� = Safe(X)∩
Live(Y ) ∩ MP(w, 
ν). The procedure is as follows:

1. Initially compute GX from G as in the case of a single safety objective.
2. Then, perform an SCC decomposition on GX .
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3. For every live SCC VSCC that is reachable from s, solve for the mean-payoff
objective in VSCC. Return yes, ifMP(w, 
ν) is satisfied in any such VSCC.

If the answer to the decision problem is yes, then the witness consists of a live SCC
VSCC, along with a multi-cycle (resp. a cycle for d = 1). The witness infinite path is
constructed as in Algorithm 1, with the only difference that at the end of each while
loop a live node from Y in the SCC VSCC is additionally visited. The time required
for the conjunction of objectives is dominated by the time required to solve for the
mean-payoff objective. Theorem 1 summarizes the results of this section.

Theorem 1 Let G = (V, E) be a graph, s ∈ V , X,Y ⊆ V , w : E → Zd , w1, w2:
E → Nd weight functions, and 
ν ∈ Qd . Let �1 = Safe(X) ∩ Live(Y ) ∩ MP(w, 
ν)

and �2 = Safe(X) ∩ Live(Y ) ∩ Ratio(w1, w2, 
ν). The decision problem of whether
G satisfies the objective �1 (resp. �2) from s requires

1. O(n · m) time, if d = 1.
2. Polynomial time, if d > 1.

If the objective�1 (resp.�2) is satisfied in G from s, then a finite witness (an SCC and
a cycle for single dimension, and an SCC and a multi-cycle for multiple dimensions)
exists and can be constructed in polynomial time.

Example 3 Consider the graph in Fig. 5. Starting from node 1, the mean-payoff-
objective MP(w, 
0) is satisfied by the multi-cycle MC = {(C1, 1), (C2, 2)}, with
C1 = [(1, 2), (2, 1)] and C2 = [(3, 5), (5, 3)]. A solution to the corresponding LP
is x(1,2) = x(2,1) = 1

3 and x(3,5) = x(5,3) = 2
3 , and xe = 0 for all other e ∈ E .

Procedure 1 then generates a witness path for the objective. The objective is also
satisfied in conjunction with Safe({4}) or Live({4}). In the latter case, a witness path
additionally traverses the edges (3, 4) and (4, 5) before transitioning from C1 to C2.

Example 4 Consider the same graph of Fig. 5, where now instead of a single weight
function of two dimensions, we have two weight functions w1, w2 : E → Z, of a
single dimension each. The first (resp. second) weight of each edge is with respect to
the weight function w1 (resp. w2). The ratio objective Ratio(w1, w2,−4) is satisfied
by traversing the cycle C = [(3, 5), (5, 3)] repeatedly.

4.3 Reduction of competitive analysis to graphs with multiple objectives

We present a formal reduction of the computation of the competitive ratio of an on-
line scheduling algorithm with constraints on job sequences to the multi-objective
graph problem. The input consists of the taskset, a deterministic LTS for the on-
line algorithm, a non-deterministic LTS for the clairvoyant algorithm, and optional
deterministic LTSs for the constraints. We first describe the process of computing the
competitive ratio CRJ (A), where J is a set of job sequences only subject to safety
and liveness constraints. We later show how to handle limit-average constraints.

4.3.1 Reduction for safety and liveness constraints

Given the deterministic and non-deterministic LTS LA and LC with reward functions
rA and rC , respectively, and optionally safety and liveness LTS LS and LL, let L =
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LA × LC × LS × LL be their synchronous product. Hence, L is a non-deterministic
LTS (S, s1, �,�,
), and every job sequence σ yields a set of runs R in L , such that
each ρ ∈ R captures the joint behavior of A and C under σ . Note that for each such
ρ the behavior of A is unchanged, but the behavior of C generally varies due to its
non-determinism. Let G = (V, E) be the multi-graph induced by L , that is, V = S
and (M, M ′, j) ∈ E for all 1 � j � i iff there are i transitions (M, T, M ′, P) ∈ 
.
Let wA and wC be the weight functions that assign to each edge of G the reward that
the respective algorithm obtains from the corresponding transition in L . Let X be the
set of states in G whose LS component is sr , and Y the set of states in G whose LL
component is sa . It follows that for all ν ∈ Q, we have that CRJ (A) � ν iff the
objective �ν = Safe(X) ∩ Live(Y ) ∩ Ratio(wA, wC, ν) is satisfied in G from the
state s1. As the dimension in the ratio objective (that just takes care of the competitive
ratio) is one, Case 1 of Theorem 1 applies, and we obtain the following:

Lemma 1 Given the product graph G = (V, E) of n nodes and m edges, a ratio-
nal ν ∈ Q, and a set of job sequences J admissible for safety and liveness LTSs,
determining whether CRJ (A) � ν requires O(n · m) time.

Since 0 � CRJ (A) � 1, the problem of determining the competitive ratio reduces
to finding v = sup{ν ∈ Q : �ν is satisfied in G}. Because this value corresponds to
the ratio of the corresponding rewards obtained in a simple cycle in G, it follows that
v is the maximum of a finite set, and can be determined exactly by an adaptive binary
search.

4.3.2 Reduction for limit-average constraints

Finally, we turn our attention to additional limit-average constraints and the LTS LW .
We follow a similar approach as above, but this time including LW in the synchronous
product, i.e., L = LA×LC×LS×LL×LW . LetwA andwC beweight functions that
assign to each edge e ∈ E in the corresponding multi-graph a vector of d + 1 weights
as follows. In the first dimension, wA and wC are defined as before, assigning to each
edge of G the corresponding rewards ofA and C. In the remaining d dimensions, wC
is always 1, whereas wA equals the value of the weight function w of LW on the
corresponding transition. Let 
λ be the threshold vector of LW . It follows that for all
ν ∈ Q, we have that CRJ (A) � ν iff the objective �ν = Safe(X) ∩ Live(Y ) ∩
Ratio(wA, wC, (ν, 
λ)) is satisfied in G from the state s that corresponds to the initial
state of eachLTS,where (ν, 
λ) is ad+1-dimension vector,with ν in thefirst dimension,
followed by the d-dimension vector 
λ. As the dimension in the ratio objective is greater
than one, Case 2 of Theorem 1 applies, and we obtain the following:

Lemma 2 Given the product graph G = (V, E) of n nodes and m edges, a rational
ν ∈ Q, and a set of job sequences J admissible for safety, liveness, and limit average
LTSs, determining whether CRJ (A) � ν requires polynomial time.

Again, since 0 � CRJ (A) � 1, the competitive ratio is determined by an adaptive
binary search. However, this time CRJ (A) is not guaranteed to be realized by a simple
cycle (the witness path in G is not necessarily periodic, see Algorithm 1), and is only
approximated within some desired error threshold ε > 0.

123



186 Real-Time Syst (2018) 54:166–207

4.3.3 Adaptive binary search

We employ an adaptive binary search for the competitive ratio in the interval [0, 1],
which works as follows: the algorithm maintains an interval [�, r ] such that � �
CRJ (A) � r at all times, and exploits the nature of the problem for refining the
interval according to the following rules: first, if the current objective ν ∈ [�, r ]
(typically, ν = (� + r)/2) is satisfied in G, i.e., Lemma 1 answers “yes” and provides
the current minimum cycle C as a witness, the value r is updated to the ratio ν′ of the
on-line and off-line rewards in C , which is typically less than ν. This allows to reduce
the current interval for the next iteration from [�, r ] to [�, ν′], with ν′ � ν, rather than
[�, ν] (as a simple binary search would do). Second, since CRJ (A) corresponds to
the ratio of rewards on a simple cycle in G, if the current objective ν ∈ [�, r ] is not
satisfied in G, the algorithm assumes that CRJ (A) = r (i.e, the competitive ratio
equals the right endpoint of the current interval), and tries ν = r in the next iteration.
Hence, as opposed to a naive binary search, the adaptive version has the advantages of
(i) returning the exact value of CRJ (A) (rather than an approximation), and (ii) being
faster in practice.

Remark 4 Lemmas 1 and 2 give polynomial upper bounds for the complexity of
determining the competitive ratio of an online scheduling algorithm A given as a
LTS LA. If, instead, A is given in some succinct form using a description which is
polylogarithmic in the number of states [e.g., as a circuit (Galperin and Wigderson
1983)], then the corresponding upper bounds become exponential in the size of the
description of A.

4.4 Optimized reduction

In Sect. 4.3, we established a formal reduction from determining the competitive ratio
of an on-line scheduling algorithm in a constrained adversarial environment to solving
multiple objectives on graphs. In this section, we present several optimizations for this
reduction that significantly reduce the size of the generated LTSs.

4.4.1 Clairvoyant LTS reduction

Recall the clairvoyant LTS LC with reward function rC from Sect. 3, which non-
deterministically models a scheduler. For our optimization, we encode the off-line
algorithm as a non-deterministic LTS L ′

C = (S′
C, s′

C, �, ∅,
′
C) with reward function

r ′
C that lacks the property of being a scheduler, as information about released and
scheduled jobs is lost. However, it preserves the property that, given a job sequence σ ,
there exists a run ρσ

C in LC iff there exists a run ρ̂σ
C in L ′

C with V (ρσ
A, k) = V (ρ̂σ

A, k)
for all k ∈ N+. That is, there is a bisimulation between LC and L ′

C that preserves
rewards.

Intuitively, the clairvoyant algorithm need not partially schedule a job, i.e., it will
either discard it immediately, or schedule it to completion. Hence, in every release of
a set of tasks T , L ′

C non-deterministically chooses a subset T ′ ⊆ T to be scheduled,
as well as allocates the future slots for their execution. Once these slots are allocated,
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L ′
C is not allowed to preempt those in favor of a subsequent job. For the reward, we

use r ′
C = ∑

τi∈T ′ Vi .
The state space S′

C of L ′
C consists of binary strings of length Dmax. For a binary

string B ∈ S′
C , we have B[i] = 1 iff the i-th slot in the future is allocated to some

released job, and s′
C = 
0. Informally, the transition relation 
′

C is such that, given a
current subset T ⊆ � of newly released jobs, there exists a transition δ from B to B ′
only if B ′ can be obtained from B by non-deterministically choosing a subset T ′ ⊆ T ,
and for each task τi ∈ T ′ allocating non-deterministically Ci free slots in B.

By definition, |S′
C | � 2Dmax . In laxity-restricted tasksets, however, we can obtain

an even tighter bound: let Lmax = maxτi∈T (Di − Ci ) be the maximum laxity in
T , and I : S′

C → {⊥, 1, . . . , Dmax − 1}Lmax+1 denote a function such that I (B) =
(i1, . . . , iLmax+1) are the indexes of the first Lmax + 1 zeros in B. That is, i j = k iff
B[k] is the j-th zero location in B, and i j = ⊥ if there are less than j free slots in B.

Claim The function I is bijective.

Proof Fix a tuple (i1, . . . , iLmax+1) with i j ∈ {⊥, 1, . . . , Dmax − 1}, and let B ∈ S′
C

be any state such that I (B) = (i1, . . . , iLmax+1). We consider two cases.

1. If iLmax+1 = ⊥, there are less than Lmax + 1 empty slots in B, all uniquely
determined by (i1, . . . , ik), for some k � Lmax.

2. If iLmax+1 �= ⊥, then all i j �= ⊥, and thus any job to the right of iLmax+1 would
have been stalled for more than Lmax positions. Hence, all slots to the right of
iLmax+1 are free in B, and B is also unique.

Hence, I (B) always uniquely determines B, as desired. ��
For x, k ∈ N+, denote with Perm(x, k) = x · (x − 1) . . . (x − k + 1) the number

of k-permutations on a set of size x . Claim 4.4.1 immediately implies the following
Lemma 3:

Lemma 3 Let T be a taskset with maximum deadline Dmax, and Lmax =
maxτi∈T (Di − Ci ) be the maximum laxity. Then, |S′

C | � min(2Dmax ,Perm(Dmax,

Lmax + 1)).

Hence, for zero and small laxity environments (Baruah et al. 1992), as they typically
arise in high-speed network switches (Englert andWestermann 2007) and in NoCs (Lu
and Jantsch 2007), S′

C has polynomial size in Dmax. This affects the parameter n in
Lemmas 1 and 2.

4.4.2 Clairvoyant LTS generation

Wenow turn our attention to efficiently generating the clairvoyant LTS L ′
C as described

in the previous paragraph. There is non-determinism in two steps: both in choosing the
subset T ′ ⊆ T of the currently released tasks for execution, and in allocating slots for
executing all tasks in T ′. Given a current state B and T , this non-determinism leads to
several identical transitions δ to a state B ′. We have developed a recursive algorithm
called ClairvoyantSuccessor (Algorithm 2) that generates each such transition δ

exactly once.
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Algorithm 2: ClairvoyantSuccessor
Input: A set T ⊆ T , state B, index 1 � k � Dmax
Output: A set B of successor states of B

1 if T = ∅ then return {B};
2 τ ← argminτi∈T Di , C ← execution time of τ

3 T ′ ← T \ {τ }
// Case 1: τ is not scheduled

4 B ← ClairvoyantSuccessor(T ′, B, k)
// Case 2: τ is scheduled

5 F ← set of free slots in B greater than k
6 foreach F ⊆ F with |F | = C do
7 B′ ← Allocate F in B
8 k′ ← rightmost slot in F
9 B′ ← ClairvoyantSuccessor(T ′, B′, k′)

// Keep only non-redundant states
10 foreach B′′ ∈ B′ do
11 if B′′[1] = 1 and knapsack(B′′,T ) then
12 B ← B ∪ {B′′}
13 end
14 end
15 end
16 return B

The intuition behind ClairvoyantSuccessor is as follows: it is well-known that
the earliest deadline first (EDF) policy is optimal for scheduling job sequences where
every released task can be completed (Dertouzos 1974). By construction, given a job
sequence σ1, L ′

C non-deterministically chooses a job sequence σ2, such that for all �,
we have σ�

2 ⊆ σ�
1 , and all jobs in σ2 are scheduled to completion by L ′

C . Therefore, it
suffices to consider a transition relation
′

C that allows at least all possible choices that
admit a feasible EDF schedule on every possible σ2, for any generated job sequence
σ1.

In more detail, ClairvoyantSuccessor is called with a current state B, a subset of
released tasks T and an index k, and returns the set B of all possible successors of B
that schedule a subset T ′ ⊆ T , where every job of T ′ is executed later than k slots in
the future. This is done by extracting from T the task τ with the earliest deadline, and
proceeding as follows: the set B is obtained by constructing a state B ′ that considers
all the possible ways to schedule τ to the right of k (including the possibility of not
scheduling τ at all), and recursively finding all the ways to schedule T \ {τ } in B ′, to
the right of the rightmost slot allocated for task τ .

Finally, we exploit the following two observations to further reduce the state space
of L ′

C . First, we note that as long as there are some unfinished jobs in the state of L ′
C

(i.e., at least one bit of B is one), the clairvoyant algorithm gains no benefit by not
executing any job in the current slot. Hence, besides the zero state 
0, every state B
must have B[1] = 1. In most cases, this restriction reduces the state space by at least
50%.

Second, observe that for every two scheduled jobs J and J ′, the clairvoyant sched-
uler will never have to preempt J for J ′ and vice versa. Given a state B, we call a
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contiguous segment of zeros in B which is surrounded by ones a gap. We call a gap
between positions [i1, i2] of B admissible if there exists a multiset X of tasks from T
such that

∑
τi∈X Ci = i2 − i1 + 1. Observe that if state B contains a gap which is not

admissible, then the clairvoyant scheduler produces a schedule in which either

1. no job is scheduled in some round, while there is some already released job J
which will be scheduled in the future, or

2. two jobs J and J ′ are such that each one preempts the other.

It is straightforward that in both cases, the clairvoyant scheduler can obtain the same
utility by producing another schedule in which none of the above cases occur. Hence,
a state can be safely discarded if it contains a non-admissible gap. This reduces to
solving a knapsack problem (Karp 1972), where the size of the knapsack is the length
of the gap, and the set of items is the whole taskset T (with multiplicities). We note
that the problem has to be solved on identical inputs a large number of times, and
techniques such as memoization are employed to avoid multiple evaluations of the
same input.

These two improvements were found to reduce the state space by a factor up to 90%
in all examined cases (see Sect. 4.5 and Table 5). In fact, despite the non-determinism,
in all reported cases the generation of LC was done in less than a second.

4.4.3 On-line LTS reduction

Typically, simple on-line scheduling algorithms do “lazy dropping” of unsuccessful
jobs, where such a job is dropped only when its deadline passes. An obvious improve-
ment for reducing the size of the state space of the LTS is to implement some early
dropping: store only those jobs that could be scheduled, at least partially, under some
sequence of future task releases. We do so by first creating the LTS naively, and then
iterating through its states. For each state s and job Ji, j in s with relative deadline Di ,
we perform a depth-limited search originating in s for Di steps, looking for a state s′
reached by a transition that schedules Ji, j . If no such state is found, we merge state s
to s′′, where s′′ is identical to s without job Ji, j .

4.5 Experimental results

We have implemented a prototype of our automated competitive ratio analysis frame-
work, and applied it in a comparative case study.

Our implementationhas beendone inPython2.7 andC, anduses the lp_solve (Berke-
laar et al. 2004) package for linear programming solutions. All experiments were run
on a standard desktop computer with a 3.2GHz CPU and 4GB of RAM running
Debian Linux.

In our case study, five well-known scheduling policies, namely, EDF (earliest dead-
line first), LLF (least laxity first), SRT (shortest remaining time), SP (static priorities),
and FIFO (first-in first-out), as well as some more elaborate algorithms that pro-
vide non-trivial performance guarantees, in particular, DSTAR (Baruah et al. 1991),
TD1 (Baruah et al. 1992), and DOVER (Koren and Shasha 1995), were analyzed
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under a variety of tasksets (with and without additional constraints on the adversary).
In addition, for TD1, we constructed a series of task sets according to the recurrence
relation given in Baruah et al. (1992), which confirms its worst-case competitive ratio
of 1/4. All our on-line scheduler implementations use the same tie-breaking rules,
namely, (i) favor lower-indexed tasks (in T ) over higher-indexed ones, and (ii) favor
smaller deadlines over larger ones [and (i) has higher precedence over (ii)].

Varying tasksets without constraints The algorithm DOVER was proved in Koren
and Shasha (1995) to have optimal competitive factor, i.e., optimal competitive
ratio under the worst-case taskset. However, our experiments reveal that this perfor-
mance guarantee is not universal, in the sense that DOVER is outperformed by other
schedulers for specific tasksets. Interestingly, this observation applies to all on-line
algorithms examined: as shown in Fig. 6, even without constraints on the adversary,
there are tasksets in which every chosen scheduling algorithm outperforms all others,
by achieving the highest competitive ratio for the particular taskset. This sensitivity of
the optimally performing on-line algorithm on the given taskset makes our automated
analysis framework a very interesting tool for the application designer.

Table 1 lists the tasksets A1–A7 used for Fig. 6. The task indices, hence their order
in Table 1, reflect their static priorities (with τ1 having highest priority); they are used
by the SP scheduler, as well as for tie breaking by other schedulers. Along with each

tasket, its importance ratio k = maxτi∈T {Vi /Ci }
minτi∈T {Vi /Ci } is shown (Baruah et al. 1992).

Fixed taskset with varying constraintsWealso analyzed fixed tasksets under various
constraints (such as sporadicity or workload restrictions) for admissible job sequences.
Figure 7 shows some experimental results for workload safety constraints, which
again reveal that, depending on particular workload constraints, we can have different
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Fig. 6 The competitive ratio of the examined algorithms in various tasksets under no constraints. Every
examined algorithm is optimal in some taskset, among all others

Table 1 The tasksets used to generate Fig. 6

A1 (k = 6) A2 (k = 5) A3 (k = 4) A4 (k = 3) A5 (k = 2) A6 (k = 4) A7 (k = 5)
τ1 τ2 τ3 τ4 τ1 τ2 τ1 τ2 τ3 τ1 τ2 τ3 τ1 τ2 τ3 τ1 τ2 τ3 τ1 τ2 τ3

Ci 1 4 1 3 2 2 2 1 1 1 2 1 2 1 1 2 6 1 1 2 1

Di 2 6 3 4 3 2 2 5 5 2 3 6 3 1 3 2 6 1 5 2 1

Vi 3 2 3 3 5 1 1 2 2 3 2 1 9 6 3 1 10 2 5 4 1
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Fig. 7 Restricting the absolute workload generated by the adversary typically increases the competitive
ratio, and can vary the optimal scheduler. On the left, the performance of each scheduler is evaluated without
restrictions: FIFO, SP behave best. When restricting the adversary to at most 2 units of workload in the last
3 rounds, FIFO and SP become suboptimal, and are outperformed by other schedulers

Table 2 Columns show the mean workload restriction. The check-marks indicate that the corresponding
scheduler is optimal for that mean workload restriction, among the six schedulers we examined. We see
that the optimal scheduler can vary as the restrictions are tighter, and in a non-monotonic way. LLF, EDF,
DSTAR and DOVER were not optimal in any case and hence not mentioned

1.5 1 0.8 0.6 0.4 0.3 0.1 0.078 0.05

FIFO � � � � � �
SP � � �
SRT � � � � � �

Table 3 Taskset of Fig. 7 (left)
and Table 2 (right)

τ1 τ2 τ3

Ci 1 1 1

Di 1 2 1

Vi 3 3 1

Ci 2 5 5

Di 7 5 6

Vi 3 2 1

optimal schedulers. The same was observed for limit-average constraints: as Table 2
shows, the optimal scheduler can vary highly and non-monotonically with stronger
limit-average workload restrictions. The tasksets for both experiments are shown in
Table 3.

Competitive ratio of TD1Wealso analyzed the performance of the on-line scheduler
TD1 for zero laxity tasksets with uniform value-density k = 1 (i.e., Ci = Di = Vi
for each task τi ). Following (Baruah et al. 1992), we constructed a series of tasksets
parametrized by some positive real η < 4, which guarantee that the competitive ratio
of every on-line scheduler is upper bounded by 1

η
. Given η, each taskset consists of

tasks τi such that Ci is given by the following recurrence, as long as Ci+1 > Ci .
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Table 4 Competitive ratio of
TD1

Taskset η Taskset Comp. Ratio

C1 2 {1, 1} 1

C2 3 {1, 2, 3} 1/2

C3 3.1 {1, 3, 7, 13, 19} 7/25

C4 3.2 {1, 3, 7, 13, 20, 23} 1/4

C5 3.3 {1, 3, 7, 14, 24, 33} 1/4

C6 3.4 {1, 3, 7, 14, 24, 34} 1/4

Table 5 Scalability of our
approach for tasksets of various
sizes N and Dmax. For each
taskset, the size of the state space
of the clairvoyant scheduler is
shown, along with the mean size
of the product LTS, and the
mean and maximum time to
solve one instance of the
corresponding ratio objective

Taskset N Dmax Size (nodes) Time (s)

Clairv. Product Mean Max

B01 2 7 19 823 0.04 0.05

B02 2 8 26 1997 0.39 0.58

B03 2 9 34 4918 10.02 15.21

B04 3 7 19 1064 0.14 0.40

B05 3 8 26 1653 0.66 2.05

B06 3 9 34 7705 51.04 136.62

B07 4 7 19 1711 2.13 6.34

B08 4 8 26 3707 13.88 34.12

B09 4 9 44 10, 040 131.83 311.94

B10 5 7 19 2195 5.73 16.42

B11 5 8 32 9105 142.55 364.92

B12 5 9 44 16, 817 558.04 1342.59

(i) C0 = 1 (i i) Ci+1 = η · Ci −
i∑

j=0

C j

In Baruah et al. (1992), TD1 was shown to have competitive factor 1
4 , and hence

a competitive ratio that approaches 1
4 from above, as η → 4 in the above series

of tasksets. Table 4 shows the competitive ratio of TD1 in our constructed series of
tasksets. Each taskset is represented as a set {Ci : 1 � i � n}, where each Ci is
given by the above recurrence, rounded up to the next integer. We indeed see that the
competitive ratio drops until it stabilizes to 1

4 . Note that, thanks to our optimizations,
the zero-laxity restriction allowed us to process tasksets where Dmax is much higher
than for the tasksets reported in Table 5: the results of Table 4 were produced in less
than a minute overall.

Running times Table 5 summarizes some key parameters of our various tasksets,
and gives some statistical data on the observed running times in our respective exper-
iments. Even though the considered tasksets are small, the very short running times
of our prototype implementation reveal the principal feasibility of our approach. We
believe that further application-specific optimizations, augmented by abstraction and
symmetry reduction techniques, will allow to scale to larger applications.
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5 Competitive synthesis of on-line scheduling algorithms

In this section, we show how the powerful framework of graph games (Martin 1975;
Shapley 1953) can be utilized for the synthesis of optimal real-time scheduling algo-
rithms. As opposed to the the analysis problem considered in the previous sections
(which can be viewed as a 1-player game of the adversary against a given scheduling
algorithm), we now have to consider a two-player game between the (sought) opti-
mal on-line algorithm (Player 1) and the adversary (Player 2). Our presentation is
organized as follows:

– In Sect. 5.1, we introduce a suitable two-player partial-information game with
mean-payoff and ratio objectives. Player 1 will represent the online algorithm,
whereas Player 2 will represent both the adversary (which chooses the job
sequence) and the clairvoyant algorithm (which knows the job sequence in
advance). We use a partial-information setting to model that Player 1 is obliv-
ious to the scheduling choices of Player 2, but Player 2 knows the scheduling
choices of Player 1 for deciding which future jobs to release. The mean-payoff
and ratio objectives model directly the worst-case utility and competitive ratio
problems, respectively.

– In Sect. 5.2, we establish that the relevant decision problems for our game are
Np-complete in the size of the game graph.

– In Sect. 5.3, we study the decision problems relevant for two particular synthesis
questions: in synthesis for worst-case average utility, the goal is to automatically
construct an on-line scheduling algorithm with the largest possible worst-case
average utility for a given taskset. In competitive synthesis, we construct an on-
line scheduling algorithm with the largest possible competitive ratio for the given
taskset. The complexity results for our graph game reveal that the former problem
is in Np∩coNp, whereas the latter is in Np. These complexities are wrt the size
of the constructed algorithm, represented explicitly as a labeled transition system.
As a function of the input taskset T given in binary, all polynomial upper bounds
become exponential upper bounds in theworst case. The solution to the competitive
synthesis . Hence the algorithm for obtaining the optimal scheduler comes in two
steps. The first step reduces the problem to the relevant partial-information game
and is found in Theorem 5 of Sect. 5.3. The second step is solving the partial-
information game, and is found in Theorem 3 of Sect. 5.2.

5.1 Partial-information mean-payoff and ratio games

We first introduce a two-player partial-information game on graphs with mean-payoff
and ratio objectives.

5.1.1 Notation on graph games

A partial-observation game (or simply a game) is a tupleG = 〈S, �1, �2, δ,OS,O�〉
with the following components:

State space The set S is a finite set of states.
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Actions �i (i = 1, 2) is a finite set of actions for Player i .
Transition function Given the current state s ∈ S, an action α1 ∈ �1 for Player 1,

and an action α2 ∈ �2 for Player 2, the transition function δ :
S × �1 × �2 → S gives the next (or successor) state s′ =
δ(s, α1, α2). A shorter form to denote a transition is to write the
tuple (s, α2, α1, s′); note that α2 is listed before α1 to stress that
fact that Player 2 chooses its action before Player 1.

Observations The set OS ⊆ 2S is a finite set of observations for Player 1 that
partition the state space S. This partition uniquely defines a func-
tion obsS : S → OS , which maps each state to its observation
obsS(s) in a way that ensures s ∈ obsS(s) for all s ∈ S. In other
words, the observation partitions the state space according to
equivalence classes. Similarly,O� is a finite set of observations
for Player 1 that partitions the action set �2, and analogously
defines the function obs� . Intuitively, Player 1 will have partial
observation, and can only obtain the current observation of the
state (not the precise state but only the equivalence class the state
belongs to) and current observation of the action of Player 2 (but
not the precise action of Player 2) to make her choice of action.

5.1.2 Plays

In a game, in each turn, first Player 2 chooses an action, then Player 1 chooses an action,
and given the current state and the joint actions, we obtain the next state according to
the transition function δ.

A play in G is an infinite sequence of states and actionsP = s1, α1
2, α

1
1, s

2, α2
2, α

2
1,

s3, α3
2, α

3
1, s

4 . . . such that, for all j � 1, we have δ(s j , α j
1 , α

j
2 ) = s j+1. The prefix up

to sn of the play P is denoted by P(n) and corresponds to the starting state of the
n-th turn. The set of plays in G is denoted byP∞, and the set of corresponding finite
prefixes is denoted by Prefs(P∞).

5.1.3 Strategies

A strategy for a player is a recipe that specifies how to extend finite prefixes of plays.
We will consider memoryless deterministic strategies for Player 1 (where its next
action depends only on the current state, but not on the entire history) and general
history-dependent deterministic strategies for Player 2. A strategy for Player 1 is a
function π : OS × O� → �1 that, given the current observation of the state and the
current observation on the action of Player 2, selects the next action. A strategy for
Player 2 is a function σ : Prefs(P∞) → �2 that, given the current prefix of the play,
chooses an action. Observe that the strategies for Player 1 are both observation-based
and memoryless; i.e., depend only on the current observations (rather than the whole
history), whereas the strategies for Player 2 depend on the history. Amemoryless strat-
egy for Player 2 only depends on the last state of a prefix. We denote by�M

G ,�G ,�
M
G

the set of all observation-based memoryless Player 1 strategies, the set of all Player 2
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strategies, and the set of all memoryless Player 2 strategies, respectively. In sequel,
when we write “strategy for Player 1”, we consider only observation-based memory-
less strategies. Given a strategy π and a strategy σ for Player 1 and Player 2, and an
initial state s1, we obtain a unique play P(s1, π, σ ) = s1, α1

2, α
1
1, s

2, α2
2, α

2
1, s

3, . . .

such that, for all n � 1, we have σ(P(n)) = αn
2 and π(obsS(sn),obs�(αn

2 )) = αn
1 .

5.1.4 Objectives

Recall that, for the graphs with multiple objectives from Sect. 4.1, an objective is a
set of paths. Here we extend this notion to games: an objective of a game G is a set of
plays that satisfy some desired properties. For the sake of completeness, we present
here the relevant definitions for mean payoff and ratio objectives with 1-dimensional
weight functions.

For mean-payoff objectives, we will consider a reward functionw : S×�1×�2×
S → Z that maps every transition to an integer reward. The reward function naturally
extends to plays: for k � 1, the sum of the rewards in the prefix P(k + 1) is defined
as w(P, k) = ∑k

i=1 w(si , αi
2, α

i
1, s

′i ). The mean-payoff of a play P is then

MP(w,P) = lim inf
k→∞

1

k
· w(P, k).

In the case of ratio objectives, we will consider two reward functions w1 : S ×
�1 × �2 × S → N and w2 : S × �1 × �2 × S → N that map every transition to
a non-negative valued reward. Using the same extension of reward functions to plays
as before, the ratio of a play P is defined as:

Ratio(w1, w2,P) = lim inf
k→∞


1 + w1(P, k)

1 + w2(P, k)

.

5.1.5 Decision problems

Analogous to Sect. 4.1, we define the relevant decision problems on games. Formally,
given a game G , a starting state s1, reward functionsw,w1, w2 and a threshold ν ∈ N,
the decision problem for the mean payoff objective is to decide whether

sup
π∈�M

G

inf
σ∈�G

MP(w,P(s1, π, σ )) � ν.

Similarly, the decision problem for the ratio objective is to decide whether

sup
π∈�M

G

inf
σ∈�G

Ratio(w1, w2,P(s1, π, σ )) � ν.

Remark 5 Note that the decision problems of the graph game problem are defined over
the supπ∈�M

G
, taking all possiblememoryless strategies into account. This corresponds

to all possible on-line scheduling strategies, whereas the multi-graph problem arising
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in the competitive analysis problem considered in the previous sections explicitly used
the fixed deterministic strategy for the on-line scheduler only.

5.1.6 Perfect-information games

Games of complete-observation (or perfect-information games) are a special case of
partial-observation gameswhereOS = {{s} | s ∈ S} andO� = {{α2} | α2 ∈ �2}, i.e.,
every individual state and action is fully visible to Player 1, and thus she has perfect
information. For perfect-information games, for the sake of simplicity, we will omit
the corresponding observation sets from the description of the game. The following
theorem for perfect-information games with mean-payoff objectives follows from the
results of Ehrenfeucht and Mycielski (1979), Zwick and Paterson (1996), Brim et al.
(2011), Karp (1978).

Theorem 2 (Complexity of perfect-information mean-payoff games) (Ehrenfeucht
and Mycielski 1979; Zwick and Paterson 1996; Brim et al. 2011; Karp 1978). The fol-
lowing assertions hold for perfect-information games with initial state s1 and reward
function w : S × �1 × �2 × S → Z:

1. (Determinacy) We have

sup
π∈�M

G

inf
σ∈�G

MP(w,P(s1, π, σ ))

= inf
σ∈�G

sup
π∈�M

G

MP(, w,P(s1, π, σ ))

= inf
σ∈�M

G

sup
π∈�M

G

MP(w,P(s1, π, σ )).

2. Whether supπ∈�M
G
infσ∈�G MP(w,P(s1, π, σ )) � ν can be decided in Np ∩

coNp, for a rational threshold ν.
3. The computation of the optimal value v∗ = supπ∈�M

G
infσ∈�G MP(w,P(s1, π,

σ )) and anoptimalmemoryless strategyπ∗ ∈ �M
G such thatv∗ = infσ∈�G MP(w,

P(s1, π∗, σ )) can be done in time O(n ·m ·W ), where n is the number of states,m
is the number of transitions, and W is the maximum value of all the rewards (i.e.,
the algorithm runs in pseudo-polynomial time, and if the maximum value W of
rewards is polynomial in the size of the game, then the algorithm is polynomial).

5.1.7 Sketch of the algorithm

The complexity of Item 3 of Theorem 2 is obtained in Brim et al. (2011). Here we
outline a simple algorithm for solving the same problem in time O(n4 ·m · log(n/m) ·
W ), as found in Zwick and Paterson (1996). The algorithm operates in two steps. First,
we compute for every node u ∈ S the maximum mean payoff v(u) that Player 1 can
ensure in any play that starts from u. This is achieved by the standard value-iteration
procedure executed for Θ(n2 · W ) iterations. Hence, the time required for this step
is O(n2 · m · W ). Note that at this point v(s1) gives the mean payoff achieved by an
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optimal strategy π∗ ∈ �M
G , but not the strategy itself. Since an optimal memoryless

strategy is guaranteed to exist, this strategy can be computed by a binary search on the
actions of Player 1. Given a node u ∈ S, we denote by�1(u) the set of actions available
to Player 1 on u. In the second step, we iteratively pick a node u ∈ S which has more
than one available actions for Player 1, and a set X ⊂ �1(u)which contains half of the
actions of Player 1 on u. We let G ′ be the modified game where the actions for Player 1
on node u is the set X , and recompute the value v′(u) in G ′. If v′(u) = v(u), we repeat
the process on G ′. Otherwise, we construct a new game G ′′ which is identical to G ,
but such that the available actions for Player 1 on node u is the set �1(u) \ X . We
repeat the process on G ′′.

5.2 Complexity results

In this section, we establish the complexity of the decision problems arising in partial-
observation games with mean-payoff and ratio objectives. In particular, we will show
that for partial-observation games with memoryless strategies for Player 1 all the
decision problems are Np-complete.

5.2.1 Transformation

We start with a simple transformation that will allow us to technically simplify our
proof. In our definition of games, every action was available for the players in every
state for simplicity. We will now consider restricted games where, in certain states,
some actions are not allowed for a player. The transformation of such restricted games
to games where all actions are allowed is as follows: we add two absorbing dummy
states (with only a self-loop), one for Player 1 and the other for Player 2, and assign
rewards in a way such that the objectives are violated for the respective player. For
example, for mean-payoff objectives with threshold ν > 0, we assign reward 0 for
the only out-going (self-loop) transition of the Player 1 dummy state, and a reward
strictly greater than ν for the self-loop of the Player 2 dummy state; in the case of
ratio-objectives we assign the reward pairs similarly. Given a state s, if Player 1 plays
an action that is not allowed at s, we go to the dummy Player 1 state; and if Player 2
plays an action that is not allowed, we go to the Player 2 dummy state. Obviously,
this is a simple linear time transformation. Hence, for technical convenience, we can
assume in the sequel that different states have different sets of available actions for
the players. We first start with the hardness result.

Lemma 4 The decision problems for partial-observation games with mean-payoff
objectives and ratio objectives, i.e., whether supπ∈�M

G
infσ∈�G MP(w,P(s1, π, σ ))

� ν (respectively supπ∈�M
G
infσ∈�G Ratio(w1, w2,P(s1, π, σ )) � ν), are Np-hard

in the strong sense.

Proof We present a reduction from the 3-SAT problem, which isNp-hard in the strong
sense (Papadimitriou 1993). Let� be a 3-SAT formula over n variables x1, x2, . . . , xn
in conjunctive normal form, with m clauses c1, c2, . . . , cm consisting of a disjunction
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of 3 literals (a variable xk or its negation xk) each. We will construct a game graph
G� as follows:

State space S = {sinit} ∪ {si, j | 1 � i � m, 1 � j � 3} ∪ {dead}; i.e., there is
an initial state sinit, a dead state dead, and there is a state si, j for every
clause ci and literal j of ci .

Actions The set of actions applicable for Player 1 is {true, false,⊥}, the possible
actions for Player 2 are {1, 2, . . . ,m} ∪ {⊥}.

Transitions In the initial state sinit, Player 1 has only one action⊥ available, Player 2
has actions {1, 2, . . . ,m} available, and given action 1 � i � m, the next
state is si,1. In all other states, Player 2 has only one action ⊥ available.
In states si, j , Player 1 has two actions available, namely, true and false.
The transitions are as follows:

– If the action of Player 1 is true in si, j , then (i) if the j-th literal in ci is xk , then
we have a transition back to the initial state; and (ii) if the j-th literal in ci is xk
(negation of xk), then we have a transition to si, j+1 if j ∈ {1, 2}, and if j = 3, we
have a transition to dead.

– If the action of Player 1 is false in si, j , then (i) if the j-th literal in ci is xk (negation
of xk), then we have a transition back to the initial state; and (ii) if the j-th literal
in ci is xk , then we have a transition to si, j+1 if j ∈ {1, 2}, and if j = 3, we have
a transition to dead.

In state dead both players have only one available action ⊥, and dead is a state with
only a self-loop (transition only to itself).

Observations: First, Player 1 does not observe the actions of Player 2 (i.e., Player 1
does not know which action is played by Player 2). The observa-
tion mapping for the state space for Player 1 is as follows: the
set of observations is {0, 1, . . . , n} and we have obsS(sinit) =
obsS(dead) = 0 and obsS(si, j ) = k if the j-th variable of ci
is either xk or its negation xk , i.e., the observation for Player 1
corresponds to the variables.

A pictorial description is shown in Fig 8. The intuition for the above construction is
as follows: Player 2 chooses a clause from the initial state sinit, and anobservation-based
memoryless strategy for Player 1 corresponds to a non-conflicting assignment to the
variables. Note that Player 1 strategies are observation-based memoryless; hence, for
every observation (i.e., a variable), it chooses a unique action (i.e., an assignment) and
thus non-conflicting assignments are ensured. We consider G� with reward functions
w,w1, w2 as follows:w2 assigns reward 1 to all transitions;w andw1 assigns reward 1
to all transitions other than the self-loop at state dead, which is assigned reward 0.
We ask the decision questions with ν = 1. Observe that the answer to the decision
problems for both mean-payoff and ratio objectives is “Yes” iff the state dead can be
avoided by Player 1 (because if dead is reached, then the game stays in dead forever,
violating both the mean-payoff as well as the ratio objective). We now present the two
directions of the proof.

Satisfiable implies dead is not reached: we show that if � is satisfiable, then
Player 1 has an observation-based memoryless strategy π∗ to ensure that dead is
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Fig. 8 Illustration of the construction of a game from a 3-SAT formula

never reached. Consider a satisfying assignment A for �, then the strategy π∗ for
Player 1 is as follows: given an observation k, if A assigns true to variable xk , then the
strategy π∗ chooses action true for observation k, otherwise it chooses action false.
Since the assignment A satisfies all clauses, it follows that for every 1 � i � m, there
exists si, j such that the strategy π∗ for Player 1 ensures that the transition to sinit is
chosen. Hence the state dead is never reached, and both the mean-payoff and ratio
objectives are satisfied.

If dead is not reached, then � is satisfiable: consider an observation-based mem-
oryless strategy π∗ for Player 1 that ensures that dead is never reached. From the
strategy π∗ we obtain an assignment A as follows: if for observation k, the strategy π∗
chooses true, then the assignment A chooses true for variable xk , otherwise it chooses
false. Since π∗ ensures that dead is not reached, it means for every 1 � i � m,
that there exists si, j such that the transition to sinit is chosen (which ensures that ci
is satisfied by A). Thus since π∗ ensures dead is not reached, the assignment A is a
satisfying assignment for �.

Thus, it follows that the answers to the decision problems are “Yes” iff � is satis-
fiable, and this establishes the Np-hardness result. ��

5.2.2 The Np upper bounds

We now present theNp upper bounds for our decision problems. Recall that according
to our definitions of strategies, the polynomial witness for the decision problem is a
memoryless strategy (i.e., if the answer to the decision problem is “Yes”, then there
is a witness memoryless strategy π for Player 1). Such a strategy π can be guessed
in polynomial time. Once the memoryless strategy is guessed and fixed, we need to
show that there is a polynomial-time verification procedure:

Mean-payoff objectives Once thememoryless strategy for Player 1 is fixed, the game
problem reduces to a 1-player game where there is only
Player 2. The verification problem hence reduces to the
path problem in directed graphs analyzed and shown to be
solvable in polynomial time by Theorem 1 in Sect. 4.1.

123



200 Real-Time Syst (2018) 54:166–207

Ratio objectives Again, once the memoryless strategy for Player 1 is fixed,
the game problem reduces to a decision problem on directed
graphs. The same reduction from ratio objectives to mean-
payoff objectives introduced in Sect. 4.1 can be applied.
Theorem1 hence gives a polynomial-time verification algo-
rithm for our ratio objectives.

We summarize the result in the following theorem.

Theorem 3 The decision problems for partial-observation games with mean-payoff
objectives and ratio objectives, i.e., whether supπ∈�M

G
infσ∈�G MP(w,P(s1, π, σ ))

� ν respectively supπ∈�M
G
infσ∈�G Ratio(w1, w2,P(s1, π, σ )) � ν, are Np-

complete.

Remark 6 The Np-completeness of Theorem 3 also holds with the following exten-
sions on objectives:

1. The reward functions w,w1,w2 map to d-dimensional vectors of rewards, and the
decision problems are with respect to a threshold vector 
ν.

2. Player 2 must also satisfy a conjunction of Safe(X) and Live(Y ) objectives (see
Sect. 4.1).

The result holds, as the Np-hardness follows from the proof of Theorem 3 by taking
d = 1, X = ∅ and Y = S. The Np-membership follows similarly to that used in the
proof of Theorem 3, by guessing a memoryless strategy for Player 1. The problem
reduces to satisfying a conjunction of objectives in a multi-graph here, and Item 2 of
Theorem 1 provides the required polynomial time bound.

5.3 Reduction of competitive synthesis to a graph game

We now turn our attention to competitive synthesis problems in the real-time schedul-
ing context. More specifically, given a taskset T , we consider two particular synthesis
questions:

1. In synthesis for the worst-case average utility, the goal is to construct an on-line
scheduling algorithm that has the largest worst-case average utility possible. Recall
the notation V (ρσ

A, k) for the cumulative utility in the first k time slots of an on-
line scheduling algorithmA with schedule ρσ

A under the released job sequence σ .
Formally, the task is to construct an on-line scheduling algorithmA such that, for
any online-scheduling algorithm A′,

inf
σ∈J

lim inf
k→∞

1

k
V (ρσ

A, k) � inf
σ∈J

lim inf
k→∞

1

k
V (ρσ

A′ , k),

where J is the set of admissible job sequences.
2. In competitive synthesis, the task is to construct an on-line scheduling algorithm

with the largest possible competitive ratio. That is, we are looking for an on-
line algorithm A such that, for any on-line algorithm A′, we have CRJ (A) �
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CRJ (A′), where CRJ (A) is the competitive ratio of algorithm A under the set
J of admissible job sequences (see Eq. (1) in Sect. 2 for the definition of CRJ ).

As in the competitive analysis case of Sect. 4, it suffices to consider only on-line
scheduling algorithms encoded as LTSs (see Remark 1). In the following, we consider
that J = �ω, that is, there are no restrictions on the released job sequences. In
Remark 7 below, we outline how the results can be extended to additional safety,
liveness, and limit-average automata constraining J (see also Sect. 3.2). Finally, we
conclude with a note on the worst-case utility ratio, namely the worst-case limiting
average utility of the best online algorithm over the worst-case limiting average utility
achievable by a clairvoyant algorithm (for possibly different job sequences).

5.3.1 Synthesis for worst-case average utility

Given a taskset, we can compute the worst-case average utility that can be achieved
by any on-line scheduling algorithm. For this, we construct a non-deterministic finite-
state LTS LG = (SG , sG , �,�,
G ) with an associated reward function rG that can
simulate all possible on-line algorithms. Such an LTS has already been introduced
in Sect. 3 for the clairvoyant algorithm. Note that the latter implements memoryless
strategies, as all required history information is encoded in the state.

We can interpret such a non-deterministic LTS as a perfect-information graph game
G = 〈SG , �1, �2, δ〉, where �1 (the actions of Player 1) correspond to the output
actions � in LG , and �2 (the actions of Player 2) correspond to the input actions �

in LG . That is, Player 2 (the adversary) chooses the released tasks, while Player 1
chooses the actual transitions in δ actually taken.

Thus, we indeed have a perfect-information game, and every memoryless strategy
for Player 1 corresponds to a scheduling algorithm and vice-versa (i.e., every schedul-
ing algorithm is amemoryless strategy of Player 1 in the gameG ). Theweight function
w for the mean-payoff objective of G is identical to the reward function rG , and the
start state s1 is the initial state sG of LG . The worst-case utility of a given on-line
algorithm, corresponding to a memoryless strategy π ∈ �M

G , is hence

inf
σ∈�G

MP(w,P(s1, π, σ ))

and the worst-case utility of the optimal on-line algorithm is given by

sup
π∈�M

G

inf
σ∈�G

MP(w,P(s1, π, σ )). (3)

Using the results of Theorem 2, we obtain the following theorem.

Theorem 4 The following assertions hold:

1. Whether there exists an on-line algorithm with worst-case average utility at least
ν can be decided in Np ∩ coNp in general; and if Vmax is bounded by the size of
the non-deterministic LTS, then the decision problem can be solved in polynomial
time.
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2. An on-line algorithm with optimal worst-case average utility can be constructed
in time O(|SG | · m · Vmax), where |SG | (resp. m) is the number of states (resp.
transitions) of the non-deterministic LTS LG .

5.3.2 Competitive synthesis

Given a taskset and a rational ν ∈ Q, the competitive synthesis problem asks
to determine whether there exists an on-line scheduling algorithm that achieves a
competitive ratio of at least ν, and to determine the optimal competitive ratio ν∗.
Recall the non-deterministic LTS LG = (SG , sG , �,�,
G ) and reward function
rG in the synthesis for the worst-case average utility. For solving the competi-
tive synthesis problem, we construct a partial-observation game GCR as follows:
GCR = 〈SG ×SG , �1, �2×�1, δ,OS,O�〉, where�1 = � and�2 = �. Intuitively,
we construct a product game with two components, where Player 1 only observes the
first component (the on-line algorithm) andmakes the choice of the transition α1 ∈ �1
there; Player 2 is in charge of choosing the input α2 ∈ �2 and also the transition
α′
1 ∈ �1 in the second component (the clairvoyant algorithm). However, due to partial

observation, Player 1 does not observe the choice of the transitions of the clairvoyant
algorithm.

Formally, the appropriate transition and the observation mapping are defined as
follows:

(i) Transition function δ : (SG × SG ) × �1 × (�2 × �1) → (SG × SG ) with

δ((s1, s2), α1, (α2, α
′
1)) = (δ(s1, α1, α2), δ(s2, α

′
1, α2)).

(ii) The observation for states for Player 1 maps every state to the first component,
i.e., obsS((s1, s2)) = s1, and the observation for actions for Player 1 maps every
action (α2, α

′
1) of Player 2 to its first component α2 as well (i.e., the input from

Player 2), i.e., obs�((α2, α
′
1)) = α2.

The two reward functions needed for solving the ratio objective in the game are
defined as follows: the reward function w1 gives reward according to rG applied to
the transitions of the first component. The reward function w2 assigns the reward
according to rG applied to the transitions of the second component. Note that this
construction ensures that we compare the utility of an on-line algorithm (transitions of
the first component chosen by Player 1) and an off-line algorithm (chosen by Player 2
using the second component) that operate on the same input sequence.

It follows that an on-line algorithm with competitive-ratio at least ν exists iff
supπ∈�M

G
infσ∈�G Ratio(w1, w2,P(s1, π, σ )) � ν, where s1 = (sG , sG ) is the start

state derived from the LTS LG . By Theorem 3, the decision problem is in Np in the
size of the game GCR. Since the strategy of Player 1 can directly be translated to an
on-line scheduling algorithm, the solution of the synthesis problem follows from the
witness strategy for Player 1. We hence obtain:

Theorem 5 For the class of scheduling problems defined in Sect. 2, the decision
problem of whether there exists an on-line scheduler with a competitive ratio at least
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a rational number ν is in Np in the size of the LTS constructed from the scheduling
problem.

Finally, finding the optimal competitive ratio ν∗ (and a scheduling algorithm ensur-
ing it) is possible by searching for sup{ν ∈ Q : the answer to the decision problem is
yes}.
Remark 7 Using the reduction of Theorem 5 together with Remark 6, we obtain that
the competitive synthesis problem in the presence of safety, liveness, and limit-average
constraints specified as constrained automata is in Np in the size of the synchronous
product of the corresponding LTSs.

5.3.3 Synthesis for worst-case utility ratio

We conclude our considerations regarding synthesis with the worst-case utility ratio
problem, namely, determining the worst-case limiting average utility of the best online
algorithm over the worst-case limiting average achievable by a clairvoyant algorithm.
In sharp contrast to the competitive ratio, the job sequences used by the on-line and
off-line algorithm for computing this utility ratio may be different. Formally, we are
interested in determining an online scheduling algorithm A that maximizes the fol-
lowing expression:

UR = lim inf
k→∞

infσ∈J V (ρσ
A, k)

infσ∈J V (ρσ
C , k)

. (4)

The numerator of UR corresponds to the synthesis for the worst case average
utility problem, whose solution is given by Eq. (3) in the respective game. Similarly,
the denominator is given by the following objective in the same game:

inf
σ∈�G

sup
π∈�G

MP(w,P(s1, π, σ )).

Herein, the input sequence is fixed (by choosing a strategy for Player 1) before the
job sequence is fixed (by choosing a strategy for Player 2, possibly non-memoryless).
According to the determinacy guaranteed by Theorem 2, Eqs. (3) and (5.3.3) are
equal, hence UR = 1: the worst case average utility of the optimal online and the
clairvoyant algorithm coincide.

Remark 8 (Complexitywith respect to the taskset) Theorem4andTheorem5establish
complexity upper bounds for the synthesis for worst-case utility, and competitive
synthesis problems as a function of the size of the non-deterministic LTS LG . In
general, the size of LG is exponential in the bit representation of the tasksetT . Hence, if
the input to our algorithms is the taskset T , the polynomial upper bounds of Theorem 4
and Theorem 5 translate to exponential upper bounds in the size of T .

Remark 9 (Memory of the synthesized scheduler) The memory-space requirement
of the synthesized scheduler is upper-bounded by O(CN ·(Dmax−1)

max ), where N is the
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number of tasks, Dmax themaximum task deadline andCmax is themaximumexecution
time. This holds since the state of the online scheduler is an N × (Dmax − 1) matrix,
where each entry of the matrix denotes the remaining execution time of a job.

6 Conclusions

We presented a flexible framework for the automated competitive analysis and com-
petitive synthesis of real-time scheduling algorithms for firm-deadline tasksets using
graph games. For competitive analysis, scheduling algorithms are specified as (deter-
ministic) labeled transition systems. The rich formalism of automata on infinite words
is used to express optional safety, liveness and limit-average constraints in the gener-
ation of admissible job sequences. Our prototype implementation uses an optimized
reduction of the competitive analysis problem to the problem of solving certain multi-
objectives in multi-graphs. Our comparative experimental case study demonstrates
that it allows to solve small-sized tasksets efficiently. Moreover, our results clearly
highlight the importance of a fully automated approach, as there is neither a “univer-
sally” optimal algorithm for all tasksets (even in the absence of additional constraints)
nor an optimal algorithm for different constraints in the same taskset. For competi-
tive synthesis, we introduced a partial observation game with mean-payoff and ratio
objectives. We determined the complexity of this game, and showed that it can be used
to solve the competitive synthesis problem.

Future work will be devoted to adding additional constraints to the scheduling
algorithms, like energy constraints. In order to scale-up to larger tasksets, we will also
investigate advanced techniques for further reducing the size of the underlying (game)
graphs. Finally, the core computational step in our framework is that of computing
mean-payoff objectives in the underlying graphs. Developing faster algorithms for
mean-payoff objectives for special graphs is an active area of research (Chatterjee et
al. 2015; Chatterjee et al. 2014). Whether the structure of our graphs can be exploited
to yield faster algorithms for our framework is an interesting future direction.
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