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Abstract In wireless communications, both control infor-
mation and payload (user-data) are concurrently transmitted
and required to be successfully recovered. This paper focuses
on block-level detection, which is applicable for detecting
transmitted control information, particularly when this infor-
mation is selected or chosen from a finite set of information
that are known at both transmitting and receiving devices.
Using an orthogonal frequency division multiplexing archi-
tecture, this paper investigates and evaluates the performance
of a time-domain decision criterion in comparison with a
form of Maximum Likelihood (ML) estimation method.
Unlike the ML method, the proposed time-domain detection
technique requires no channel estimation as it uses the corre-
lation (in the time-domain) that exists between the received
and the transmitted selective information as ameans of detec-
tion. In comparison with the ML method, results show that
the proposedmethod offers improved detection performance,
particularly when the control information consists of at least
16. However, the implementation of the proposed method
requires a slightly increased number of mathematical com-
putations.
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1 Introduction

Over the last few years, increased demand for high-speed
downloads and the rapid growth of mobile services have
led to an exponential growth in wireless data traffic. To
meet mobile subscriber and internet user demands for high-
speed data, wireless telecommunication bodies have pro-
posed some high speed wireless communication standards
including the 3rd Generation Partnership Project (3GPP)
Long Term Evolution (LTE) standard for 4G communica-
tion systems, and IEEE 802.11 a/g within wireless local
area networks (WLANs) for Wi-Fi. In these wireless sys-
tems, orthogonal frequency division multiplexing (OFDM)
is the adopted physical layer technology because it is spec-
trally efficient, and offers some immunity tomultipath fading
[1–3].

In wireless communications systems, the transmitted
information usually consists of two components: control
information, which may be chosen from a finite set of known
candidate information; and thepayload (user-data), randomly
generated at the transmitter. However, detection of control-
data requires different decoding procedures compared with
user-data. OFDM decoding schemes, which exist in the
literature can involve either one-tap equalization or block-
level detection. The latter is most useful for the detection
of selective control information while the former is widely
applied for the recovery of payload data information. In a
one-tap equalization (symbol-by-symbol) decoding scheme,
each OFDM subcarrier symbol is independently decoded as
described in [4–7] while in a block-level decoding proce-
dure, a group of subcarriers are collectively considered at
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the receiver [8]. In the case of a block-level detection, it is
usually assumed that a group of subcarriers (at the receiver-
end) is chosen from a fixed number of possible set (known
at both transmitting and receiving terminals), as described in
[8–11]. This paper studies block-level detection of selective
control information in an OFDM system.

A practical application of block-level detection can be
found in the determination of the modulation scheme for
a given transmission scenario [12]. For instance, since the
chosen modulation scheme could be 4-QAM, 16-QAM, 64-
QAMor even 256-QAM, the receivermust first determine the
modulation type before the subsequent user-data data decod-
ing procedure. Hence, the control information that specifies
the modulation scheme is considered as a selective control
information because in this example, it can chosen from
four possible values. Therefore, in practical sense, the con-
trol information for each modulation type can be encoded
and transmitted on a group of subcarriers, which are known
at both transmitting and receiving terminals. Then, during
decoding at the receiver, the received group of subcarriers
that represent the control information is compared with all
the four possible candidate control information that represent
each modulation type, in order to determine the modula-
tion type that nearly correlates with or corresponds to the
received control information. Another practical example of
selective control information is the control format indicator
(CFI),which carries keyLTEsystem information that enables
each user equipment (UE) to correctly decode the main LTE
control information within the LTE physical downlink con-
trol channel. In the LTE standard, the possible CFI value is 1,
2 or 3 [8]. A detailed description of LTE control information
can be found in [13]. At the receiver, an appropriate detec-
tion scheme is required to recover the transmitted selective
control information. In practical systems, successful detec-
tion of the control information is usually required in order to
perform subsequent recovery or detection of the transmitted
payload [14].

In the literature, a Maximum Likelihood (ML) criterion
is considered as the standard block-level detection approach
because it is more practical and computationally efficient (in
terms of hardware implementation ) compared to other meth-
ods such as successive interference cancellation (SIC) and
K-best list sphere detector (K-LSD) [8]. An FPGA imple-
mentation of the ML estimation method for the detection
of a critical LTE control information is described in [15].
Unfortunately, the ML estimation scheme requires channel
estimation to mitigate channel fading effects. Hence, the
detection performance of the ML scheme is largely depen-
dent on the channel estimation. In practical systems, channel
estimation is often achieved through the transmission of addi-
tional system resources in the form of pilot or training signals
[4]. However, transmission of pilots reduces the overall spec-
tral efficiency and a large number of pilots is often required

to improve channel estimation [16]. Several forms of channel
estimation exist and in practical systems, an adaptive chan-
nel estimation is usually implemented at the receiver in order
to select the best channel estimation approach for different
channel fading environments. In addition, channel estimation
methods such as the linear minimum mean square error (L-
MMSE) have very high computational complexity compared
with the least squares (LS) method of channel estimation
[4,17–19]. Moreover, the L-MMSE method requires apriori
knowledge of both the channel correlation and noise statis-
tics, which may either be unavailable or further introduce
practical implementation and design constraints [19,20].

To address these practical issues (associated with the ML
based detection scheme), this paper introduces an alternative
scheme that eliminates the need for channel estimationduring
block-level detection in an OFDM receiver. The proposed
detection technique is based on a time-domain decision rule
that uses the correlation that exists between the transmitted
and received selective information as the basis for detection.
Simulations compare the performance of the conventional
ML estimation approach and the proposed method in terms
of: block error rate (BLER) for different block sizes; and
computational complexity, with regards to the number of real
multiplications (RMs) and real additions (RAs).

The paper is structured as follows. Section 2 outlines a
single antenna uncoded OFDM architecture and describes an
OFDM receiver that uses an ML based block-level detection
approach. Section 3 describes the implementation of the pro-
posed time-domain detection technique. Section 4 presents
the simulation results and related discussions on the BLER
performance of the two considered methods. It also presents
comparison of the level of mathematical computations (RM
and RA) required by each method. Finally, Sect. 5 highlights
the main contributions of the paper.

2 OFDM architecture and ML based detection

This section describes theOFDMbaseband architecture used
for the investigations within this paper. It also gives an
overview of the ML based estimation method for block-level
detection as studied in, for example, [8].

Figure 1 shows a block diagram representation of a base-
band OFDM architecture. It can be noted this architecture
inserts some pilots to enable channel estimation as required
by the ML estimation method. However, as will be shown
later, these pilots are not used and remain passive in the pro-
posed detection method.

2.1 Transmitter

Let X be an OFDM sequence of length Ns , which is the
raw input for the inverse fast Fourier transform (IFFT) stage
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Fig. 1 System model

Fig. 2 An example of subcarrier allocation

before zero padding. Then, for 0 ≤ k ≤ Ns − 1 where k
represent a subcarrier index, X is written as

X =
[
X[0], X[1] . . . X[k] . . . X[Ns − 1]

]
. (1)

For simplicity, it is assumed that X consists of: a pilot
sequence, X p of size Np, a randomly generated data, Xd of
size Nd , and a selective sequence vector, Xc of size Nc, such
that Ns = Np + Nc + Nd . Each element of X is mapped to
a subcarrier symbol X[k]. Figure 2 shows an example of the
considered subcarrier allocation of pilot and non-pilot sub-
carriers achieved through, for example, a subcarrier mapping
scheme described as follows:

1. First, Np pilot subcarrier symbols are inserted at every
L subcarrier indices where L > 0 and defines the pilot
spacing. In this paper, L is set to 6, so that the pilots are
mapped to k = {0, 6, 12, 18, … }.

2. Given that the selective sequence, Xc is chosen from
a finite set S, which consists of U candidate sequence
vectors where S is considered to be deterministic and is

known at both transmitter and the receiver. For 1 ≤ u ≤
U , each sequence vector in S is denoted by Su . Hence,

S =
{
S1, S2, Su . . . SU

}
. (2)

Let the u−index, ū define the index of the selected
sequence vector from the set S, then Xc ∈ S i.e.,

Xc = Sū where Sū ∈ S. (3)

Each element of Xc is then mapped to the next available
Nc subcarriers in X . As an example, S1, S2, and S3 may
represent the control information for 4-QAM, 16-QAM
and 64-QAMrespectively.Hence, a block-level detection
is performed at the receiver in order to determine an esti-
mate of ū. Thus, in this example, the modulation scheme
(decoded at the receiver) will be 4-QAM, 16-QAM and
64-QAM respectively when the value of ū is 1, 2 or 3.

3. Finally, the remaining Nd un-allocated subcarriers in X
are assigned to each element of randomly generatedmod-
ulated data Xd .

For an equi-spaced pilot arrangement (as in Fig. 2), studies
in [4,5,21] showed that for 0 ≤ m ≤ Np − 1 and 0 ≤ l ≤
L − 1 where m and l are arbitrary indices, each subcarrier
symbol X[k] can be represented as

X[k] = X[mL + l], 0 ≤ l ≤ L − 1

=
{
X p[m], l = 0, for pilots

Xd[k], l > 0, otherwise.
(4)

After subcarrier mapping as in the standard OFDM transmit-
ter, theOFDMsequence X is transformed into a time-domain
OFDM signal using an IFFT to produce a time-domain
OFDM signal x of length N where N > Ns . For 0 ≤ n ≤
N−1, each individual sample x[n]within x is represented as

x[n] = 1√
N

Ns−1∑
k=0

X[k] exp( j2πnk/N )

= IFFT
N−point

{
X

}
. (5)

Similarly, as in standard OFDM, the length of OFDM signal
x is further extended by a cyclic prefix (CP) as illustrated
in [22]. The use of CP provides some guard interval (GI)
between consecutive OFDM transmissions, and involves
copying the last NCP samples in x andplacing thembefore the
first sample in x. CP also serves to reduce channel induced
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inter-symbol interference (ISI). In addition, since a multi-
path fading channel has a finite impulse response, the use
of CP also transforms the linear convolution between the
transmitted signal and the channel impulse response into a
circular convolution. However, to completely mitigate chan-
nel induced ISI, the GI duration should be larger than the
maximum delay spread, τmax of the multipath fading chan-
nel.

2.2 Receiver

At the receiver, CP samples are first removed. In the pres-
ence of a fading channel with impulse response h[n] and
additive white Gaussian noise (AWGN) v[n], each received
time-domain OFDM signal sample, y[n], is represented by

y[n] = h[n]�x[n] + v[n] (6)

where � represents a linear convolution. In addition, for a
fading channel that has P taps with complex-valued gains,
the channel impulse response h[n] may be expressed as

h[n] =
{
0, P ≤ n ≤ N − 1

�= 0, otherwise.

This implies all the channel energy is concentrated within
the first P components of h[n]. The next stage involves use
of the fast Fourier transform (FFT), which transforms the
time-domain signal into the frequency domain to produce Y
where

Y = HX + V . (7)

i.e.,

Y [k] = H[k]X[k] + V [k]. (8)

The terms H[k] and V [k] respectively represent the fre-
quency domain representation of the channel and noise.

2.2.1 ML based detection

Let Hc and Vc respectively represent the sub-channel gains
and AWGN components associated with the received selec-
tive sequence Yc of similar size. Similarly, Hp and Vp

respectively represent the sub-channel gain andAWGNcom-
ponents within the received pilot sequence Yp. Then, similar
to (7), Yc and Yp are respectively expressed as

Yc = HcXc + Vc

Yp = HpX p + Vp. (9)

Let û denote an estimate of ū. Then, using theML estimation
criterion, û is obtained from [8]

û = argmin
u

∥∥∥Yc − ĤcSu
∥∥∥
2
. (10)

The term Ĥc represents sub-channel estimates (associated
with the received selective sequence). For a given non-pilot
subcarrier index k, the sub-channel estimate at index k is
determined by linear interpolation between two sub-channel
pilot estimates Ĥp[m] and Ĥp[m + 1], as described in [4–6]
through

Ĥc[k] = Ĥ[mL + l] l > 0

= Ĥp[m] +
(
Ĥp[m + 1] − Ĥp[m]

) l

L
(11)

where

Ĥp[m] = Yp[m]
/
X p[m]

=
(
Hp[m]X p[m] + Vp[m]

)/
X p[m]

= Hp[m] +
(
Vp[m]

/
X p[m]

)
. (12)

In terms of computational complexity and from the expres-
sion in (10), the ML method requires UNc − complex
multiplications (CM), complex additions (CA) and | · |2 oper-
ations. These operations can also be expressed in termsofRM
and RA since each CM and CA operation relates to RM and
RA operations through [21]

1 CM � 4 RM + 2 RA and 1 CA � 2 RA. (13)

Based on the Taylor series expansion of trigonometric func-
tions, each | · |2 will require ≈ 20 RMs plus 8 RAs, as
implied in [23]. In summary, the ML detection approach
requires a total of 24UNc RMs and 12UNc RAs. It can
be noted that similar to studies in [21,24], these evalua-
tions exclude both the computational and implementation
complexities of channel estimation and channel interpola-
tion procedures associated with the ML method.

3 Proposed method

Correlation is one of the most frequently applied signal
processing techniques for detection, as studied in, for exam-
ple, [17,25], for channel estimation. In addition, in terms of
eliminating channel fading, studies have shown that partly
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due to the partial elimination of the channel tap with the
most energy in the time-domain, the use of a time-domain
approach can produce improved performance i.e. is more
robust against severe ISI compared with frequency-domain
approaches [26]. The use of correlation and time-domain
detection form the basis of the proposed detection scheme
as it computes some form of time-domain correlation func-
tion between the received sequence Yc and each candidate
selective control information, Su . The rationale for the use
of a time-domain correlation also follows a general under-
standing that in the presence of limited noise level, there
exists an inherent correlation between Yc and Xc.

This paper produces an appropriate decision rule, which
will facilitate correct detection or reduce the probability of
erroneous detection, particularly in the case of an OFDM
system. The proposed time-domain decision rule is now
described.

Time-domain decision criterion

From the discrete correlation theorem (DCT), the correlation
function (CORR)of twoarbitrary time-domain signals a1 and
a2 (of the same size) is obtained from [27]

CORR
{
a1, a2

}
= IFFT

{
A1 × A∗

2

}
(14)

where ∗ represents the complex conjugation, and A1 and A2

are respectively the frequency domain representations of a1
and a2 i.e.,

A1 = FFT
{
a1

}

A2 = FFT
{
a2

}
. (15)

Using the DCT, the first step in the proposed method com-
putes a term Zu from direct multiplication of Yc with the
complex conjugate of Su i.e.,

Zu = Yc × S∗
u

=
(
HcXc + Vc

)
× S∗

u

=
(
HcXcS∗

u

)
+

(
VcS∗

u

)

=
( HcXc

Su

)
+

(Vc

Su

)

=
( HcXc

Su

)
+ V ′

c ,u . (16)

For 0 ≤ c ≤ Nc − 1, Zu may be represented as

Zu =
[
Zu[0], Zu[1], Zu[c] . . . Zu[Nc − 1]

]
. (17)

Alternatively, from the expression in (16), Zu can also be
written as

Zu =

⎧⎪⎨
⎪⎩

Hc + V ′
c ,u, u = ū (Xc = Su)

HcXcS∗
u + V ′

c ,u, otherwise.

(18)

By omitting the noise terms in (18) for simplicity, the expres-
sion for Zu can be re-written as

Zu =

⎧
⎪⎨
⎪⎩

Hc, u = ū

HcXcS∗
u, otherwise .

(19)

From the expression in (19), the main difference between Zū

(when u = ū) and Zu , (when u �= ū) is described by

Zu[c] =

⎧⎪⎨
⎪⎩

1, u = ū

XcS∗
u, otherwise

(20)

where XcS∗
u is a complex-valued number with unity magni-

tude since each Su is assumed to have the samemagnitude. It
can be noted that the expression in (20) is derived from (19)
by setting Hc to 1 since from (19), the same channel term Hc

is common to both Zū (when u = ū) and Zu , (when u �= ū).
In addition, the condition when Hc = 1 shows the scenario
where there is no channel fading i.e. presence of only additive
noise, as will be shown later in the next section.

From the DCT, a correlation function, Wu can be com-
puted from theW−point IFFT of Zu whereW is a power of
2 andW ≥ Nc i.e.W = Nc if Nc is a power of 2, otherwise,
W > Nc. For 0 ≤ w ≤ W − 1, Wu is given as

Wu =
[
Wu[0], Wu[1], Wu[w] . . . Wu[W − 1]

]
(21)

where

Wu[w] =
Nc−1∑
c=0

Zu[c] exp( j2πcw/W)

= IFFT
W−point

{
Zu

}
. (22)

From the definition of Zu in (20), the magnitude of W ū[w]
(when u = ū) gives

∣∣∣W ū[w]
∣∣∣ =

⎧⎪⎨
⎪⎩

1, w = 0

0, 1 ≤ w ≤ Nc − 1.

(23)
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Table 1 Power-delay profile of
the ETU multipath fading
channel

Parameters Tap 1 Tap 2 Tap 3 Tap 4 Tap 5 Tap 6 Tap 7 Tap 8 Tap 9

Path delay (µs) 0 0.05 0.12 0.20 0.23 0.50 1.60 2.30 5.00

Power (dB) −1.0 −1.0 −1.0 0 0 0 −3.0 −5.0 −7.0

Table 2 Power-delay profile of
the 3GPP-TU multipath fading
channel

Tap 1–10 Tap 11–20

Tap # Path delay (µs) Power (dB) Tap # Path delay (µs) Power (dB)

Tap 1 0 −5.7 Tap 11 1.349 −17.4

Tap 2 0.217 −7.6 Tap 12 1.533 −19.0

Tap 3 0.512 −10.1 Tap 13 1.535 −19.0

Tap 4 0.514 −10.2 Tap 14 1.622 −19.8

Tap 5 0.517 −10.2 Tap 15 1.818 −21.5

Tap 6 0.674 −11.5 Tap 16 1.836 −21.6

Tap 7 0.882 −13.4 Tap 17 1.884 −22.1

Tap 8 1.230 −16.3 Tap 18 1.943 −22.6

Tap 9 1.287 −16.9 Tap 19 2.048 −23.5

Tap 10 1.311 −17.1 Tap 20 2.140 −24.3

Otherwise, 0 <

∣∣∣Wu[w]
∣∣∣ < 1 when u �= ū. Now, using the

statistical mean, the expression in (23) simply implies that

1

W
W−1∑
w=0

∣∣∣W ū[w]
∣∣∣ � 1

W
W−1∑
w=0

∣∣∣Wu �=ū[w]
∣∣∣. (24)

Since
∣∣∣Wu[w]

∣∣∣ is positive-valued, then for a large value of

Nc, themagnitude of the correction function can be described
by Rayleigh distribution, as highlighted in the Appendix.

From the expression in (24), the proposed decision crite-
rion can be defined by

û = argmin
u

W−1∑
w=0

∣∣∣Wu[w]
∣∣∣. (25)

It can be seen that in the proposed method, no channel
estimation is required because the time-domain correlation
inherently facilitates detection even in the presence of a fad-
ing channel. However, as will be shown in the next section,
one of the main limiting factors for the proposed detection
method is the inaccuracy of the related decision metric for
small values of Nc.

4 Simulation results

This section presents comparison of bothBLERperformance
and computational requirements between the two considered
detection methods.

Table 3 Simulation Parameters

Parameters Values

OFDM subcarrier spacing 15 KHz

Sampling frequency 3.84 MHz

Pilot spacing, L 6

IFFT/FFT size, N 256

OFDM sequence size, Nsub 180

Guard interval (GI) 5.21µs

4.1 BLER performance

Simulations consider transmission over two well-known
frequency-selective Rayleigh fading channels, namely: the
extended Typical urban (ETU), with a root mean square
(RMS) delay spread, τrms of 1µs as defined in the LTE stan-
dard [28]; and the 3GPP Typical urban (3GPP-TU) channel,
with τrms of 0.5µs [29]. Tables 1 and 2 respectively show the
power-delay profile of ETU and 3GPP-TU. To further under-
stand the detection performance of each considered detection
schemes, simulations also evaluate the BLER performance
in the absence of a fading channel i.e. the presence of AWGN
only.

Simulations are based on standardLTEparameters defined
in Table 3 and all the transmitted information (payload and
control) is QPSK modulated with U set to 8. The BLER
performance of the two considered methods is investigated
as a function of Nc by considering 50,000 OFDM symbol
blocks for each SNR level where Nc is set to 8, 16, 32 and 64.
Hence, Nc = W . For theMLscheme, simulations implement
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Fig. 3 BLER comparisons between the ML and the proposed estimation methods as a function of Nc. a Nc = 8, b Nc = 16, c Nc = 32 and d
Nc = 64

Table 4 Estimated SNR (dB)
requirements of the ML scheme
and the proposed method at
BLER = 1%

Channel Detection schemes SNR (dB)

Nc = 8 Nc = 16 Nc = 32 Nc = 64

With no fading ML 2.0 1.7 1.3 0.2

Proposed 3.7 0.7 −2.4 −5.1

ETU ML 9.9 9.7 6.8 5.8

Proposed 12.9 8.0 4.0 0.6

3GPP-TU ML 	12 >12 11.2 7.6

Proposed 	12 11.8 6.1 −1.6

the pilot-assisted channel estimation procedures previously
outlined in Sect. 2.

Figure 3a–d shows the BLER comparisons between the
two considered detectionmethodswith Nc set to 8, 16, 32 and
64 respectively. Results in Fig. 3a shows that for a small block
size (Nc = 8), the ML scheme produces improved BLER
performance compared with the proposed method. Results
in Fig. 3 also show that with no fading channel effects, the
BLER performance of the ML scheme is relatively the same
even when Nc is increased. This is because as Nc is further

increased, evaluation of the applied decision metric within
the proposed method becomes more accurate and as a result,
detection performance of the proposed method is improved
comparedwith theMLscheme. In general, as Nc is increased,
the proposed method produces improved detection perfor-
mance in the form of reduced BLER. Results further show
that in the presence of frequency-selective channel fading
effects and due to poor channel estimation in these condi-
tions, the ML scheme only produces minimal improvement
in detection performance as Nc is increased.
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Table 5 Computational requirements of the ML scheme and the pro-
posed method

Complexity ML Proposed

RM 24UNc (4UNc) + (2UW log2 W) + (19UW)

RA 12UNc (2UNc) + (3UW log2 W) + (8UW)

For instance, at a BLER level of 1%, results further show
that with Nc set to 16, 32 and 64, the proposed method
requires relatively smaller SNR levels compared with the
ML scheme. Table 4 shows the approximate SNR level
required by each considered detection method in order to
achieve, for example, a target BLER level of 1%. Results
in Table 4 show that for each of the considered channel
conditions andwhen Nc = 8, theMLapproach requires a rel-
atively smaller SNR level to achieve the target BLER of 1%
compared with the proposed method. However, compared
with the ML method and as Nc is increased, the proposed
method requires significantly smaller SNR level to achieve
the same BLER level of 1%. It can be noted that in the ETU
fading channel, the proposed method has ≈2.8 and 5.2dB
SNR gain (with respect to the ML scheme) for Nc set to
32 and 64 respectively. Similarly, in the 3GPP-TU chan-
nel and with Nc set to 32 and 64 respectively, the proposed
method has ≈5.1 and 9.2dB gain in SNR. For practical pur-
poses, low SNR requirement of the proposed method makes

it a viable and an attractive block-level detection scheme in
OFDM receivers because the need for higher SNR levels
for the case of the ML approach increases power consump-
tion.

4.2 Computational requirements

From the expression in (25), it can be noted that the pro-
posed method requires approximately UNc CMs, UW | · |
computations and U IFFTs (W−point) where each IFFT
requires approximately W/2 log2 W CMs and W log2 W
CAs, as indicated in [30]. As before, each complex-valued
operation (i.e. CAs and CMs) can also be expressed in
terms of real-valued (RM and RA) operations. Table 5 shows
the approximate level of computational requirements of the
ML and the proposed time-domain sequence level decision
methods. However, these evaluations exclude the computa-
tional complexity of channel estimation and added system
resources associated with the ML method.

Results in Table 5 show that due to the use of multiple
IFFTs in the proposed method, it requires higher levels of
computations compared with the ML method, particularly
when the value of Nc or W is large. With U = 8, Fig. 4a–d
shows the graphical comparison of computational complex-
ity (in terms of RAs and RMs) between the ML scheme and
the proposed method with Nc set to 8, 16, 32 and 64 respec-
tively. For instance, using the expressions in Table 5 and

Fig. 4 Comparisons of
computational complexity
(number of RAs and RMs)
between the ML scheme and the
proposed method. a Nc = 8, b
Nc = 16, c Nc = 326 and d
Nc = 64
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Fig. 5 Rayleigh distribution of∣∣∣Wu[w]
∣∣∣. a No fading channel

and b with a fading channel
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in comparison with the ML approach, the proposed method
requires approximately—17, 22, 27 and 31% extra RMs
and 37, 45, 52 and 57% extra RAs for Nc = 8, 16, 32
and 64 respectively. Moreover, with advanced DSP devices,
the computational complexity of IFFTs is no longer a crit-
ical issue. Hence, the proposed method is still an attractive
choice, since it can produce improved detection performance
compared with the ML approach and requires no channel
estimation and no use of pilots.

5 Conclusions

This paper has presented and compared the detection per-
formance of a time-domain decision technique against the
conventionalML approach for block-level detection of selec-
tive control information in OFDM systems. An improved
detection performance can be achieved with the proposed
method compared with the ML approach. Another key bene-
fit of the proposed method is that unlike the ML approach, it
requires no channel estimation, which means no system data
overhead in the form of training signals or preambles are
required to be transmitted or used at the receiver. Hence, the
proposed method reduces several practical implementation
issues associated with channel estimation. However, without
taking into account the added complexity of channel esti-
mation associated with the ML method, the computational
complexity of the proposed method is slightly higher than
the ML estimation method due to the need for multiple IFFT
computations. Results therefore suggest that the proposed
method is a viable and an attractive detection scheme for
OFDM systems.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

Appendix: Rayleigh PDF of
∣
∣
∣Wu[w]

∣
∣
∣

Using the Rayleigh distribution, this section describes the
rationale behind the use of the proposed decision metric.

The magnitude of each correlation function
∣∣∣Wu[w]

∣∣∣ can be
represented by aRayleigh probability density function (PDF)
since it is positive valued and is obtained from themagnitudes
of a Gaussian distributed complex numbers [31]. By letting

x =
∣∣∣Wu[w]

∣∣∣, the PDF of x is represented as [32]

F(x) = x

Θ2 exp(−x2/2Θ2), x > 0

where Θ is the scale parameter of the Rayleigh distribution,
which is ameasure of the spread of the distribution. The value
of Θ also indicates the mode of the distribution i.e. the point
(the value of x) at which the PDF, F(x) is maximum [32].
As a function of Θ , the mean of x , E(x) is defined by [32]

E(x) = Θ

√
π

2
.

From the expression for E(x), it seems there is a linear rela-
tionship between Θ and E(x). Hence, as previously claimed
and with regards to the proposed decision method, the corre-

sponding value of Θ for the PDF of
∣∣∣Wu[w]

∣∣∣ is expected to

be smaller in the case of correct decision compared with the
case of incorrect decision. For instance, with Nc = 32 and
SNR set to 6dB, Fig. 5a, b respectively shows examples of

resulting Rayleigh PDF of
∣∣∣Wu[w]

∣∣∣ in the absence of chan-

nel fading and with ETU fading channel. These PDF curves
clearly indicate that whenever there is a perfect or correct
detection, the value of Θ is smaller than that when there is
an incorrect decision. Therefore, amongst all the U corre-
lation functions, the one that possesses the minimum or the
lowest mean value gives correct decision.
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