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Abstract

Methods of machine learning (ML) are gradually complementing and sometimes even
replacing methods of classical statistics in science. This raises the question whether
ML faces the same methodological problems as classical statistics. This paper sheds
light on this question by investigating a long-standing challenge to classical statistics:
the reference class problem (RCP). It arises whenever statistical evidence is applied
to an individual object, since the individual belongs to several reference classes and
evidence might vary across them. Thus, the problem consists in choosing a suitable
reference class for the individual. I argue that deep neural networks (DNNs) are able
to overcome specific instantiations of the RCP. Whereas the criteria of narrowness,
reliability, and homogeneity, that have been proposed to determine a suitable reference
class, pose an inextricable tradeoff to classical statistics, DNNs are able to satisfy them
in some situations. On the one hand, they can exploit the high dimensionality in big-
data settings. I argue that this corresponds to the criteria of narrowness and reliability.
On the other hand, ML research indicates that DNNs are generally not susceptible to
overfitting. I argue that this property is related to a particular form of homogeneity.
Taking both aspects together reveals that there are specific settings in which DNNs
can overcome the RCP.

Keywords Reference class problem - Prediction - Overfitting - Machine learning -
Deep neural networks - Big data

1 Introduction

Classical statistics can be considered the traditional workhorse of many disciplines,
that, as a consequence, has been studied by philosophers for a long time. Yet methods
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of machine learning (ML) are gaining relevance in science. In particular, they are
successfully employed in predictive tasks.! This raises the question whether ML faces
the same methodological problems as classical statistics. This paper sheds light on
this question by investigating a long-standing challenge to classical statistics: the
reference class problem (RCP). Focusing on deep neural networks (DNNs), one of
the most popular methods in ML, I try to carefully carve out how they cope with the
RCP. I will conclude that although it remains a serious methodological challenge for
them in many situations, some DNNs are able to overcome specific instantiations of
the RCP.

In general, the RCP arises whenever the objective probability of possessing a certain
property should be assigned to an individual. According to the frequentist account,
this probability should be based on an observed relative frequency.? Yet an individual
belongs to different reference classes and relative frequencies may vary across these
classes. Consequently, itis unclear which reference class should be chosen to determine
said single-case probability. Apart from this probabilistic version of the problem, there
is a version thatis structurally similar, yet not concerned with the rational determination
of single-case probabilities, but rather with the rational construction of predictions.
The present paper focuses on this predictive version of the RCP.?

For instance, consider William Smith who wants to predict whether he will be
alive 15 years from now (Salmon, 1989, p. 69).* He belongs to different reference
classes: the class of 40-year-old American males, the class of heavy cigarette-smoking
individuals, and several other classes. Clearly, the evidence for 15-year survival varies
considerably between them. It is therefore not straightforward to choose the class that
should serve as a basis for making the prediction. The example illustrates that the RCP
is central to situations in which statistical evidence is used to make a prediction for an
individual case, even when the prediction is not a probability, but rather a real number
or a discrete classification.> Consequently, it arises regularly within the framework
of classical statistics, encompassing a variety of fields such as evolutionary biology
(Strevens, 2016) or law (Colyvan et al., 2001; Colyvan and Regan, 2016).

An influential suggestion to solve the RCP is due to Reichenbach (1949). He pro-
poses to base one’s inferences on the reference class that is as narrow as possible
while also allowing compiling reliable statistics. The narrowness of a class increases
with the number of predicates that determine the class. Additionally, Salmon (1971)
proposes to counterbalance a strict preference for narrower reference classes with the
requirement of homogeneity. Briefly put, this means that the reference class should
only be determined by those predicates that are relevant for a particular prediction.

Several authors have thus interpreted the predictive RCP as a problem of statistical
model selection (Cheng, 2009; Franklin, 2010): the predicates that determine a
reference class can be expressed by the variables in a statistical model. Solving the

! For one of the most recent breakthroughs, see Jumper et al. (2021).
2 Hijek (2007) even argues that all common interpretations of probability face the RCP.
3 In the following, I will therefore use the formulations ‘predictive RCP’ and ‘RCP’ interchangeably.

4 This setting is distinct from the general RCP, since the prediction is not a probability, but a binary
classification.

5 Ifollow Romeijn (2022) in taking statistical evidence to be observed instances sampled from an underlying
population, commonly organized into a dataset. For aformalized treatment in the context of ML, see Sect. 3.1.
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RCP then reduces to identifying the model with the ‘right’ set of variables. Clearly
then, any strategy that identifies one set of variables as the ‘right’ one ultimately needs
to take into account the criteria of narrowness, reliability, and homogeneity that make
for a suitable reference class.

However, in the context of classical statistics, existing strategies to approach the
RCP with model selection techniques pose an additional challenge instead of offering
a remedy: from a statistical point of view, there is a tradeoff between the narrowness
of the class considered and the reliability of the information that this class contains.®
A narrower reference class will contain fewer observations. Thus, by an argument
along the lines of the law of large numbers, it will also have an inferior statistical
reliability. Furthermore, the combination of fewer observations and a higher number
of predicates defining a narrow reference class is problematic for another reason:
expressing a narrow reference class by a model with a high number of variables and
fitting it to a low number of observations leads to a situation in which the model can
memorize the given data, but might predict new observations rather poorly. Thus,
inferences derived from information in that reference class are likely susceptible to
overfitting (Shalev-Shwartz and Ben-David, 2016). For the same reason, it is difficult
to determine a homogeneous reference class using methods of classical statistics: using
a model with a high number of variables, thereby considering all predictively relevant
predicates, might lead to a homogeneous reference class, but also to a low number of
observations in that class and thus, ultimately, to the risk of overfitting.

With the rise of big data, rapidly growing computational resources and datasets,
methods of ML are gradually complementing, sometimes even replacing methods
of classical statistics in science (Mjolsness and DeCoste, 2001; Wheeler, 2016)
. In this paper, I focus on DNNs, one of the most popular ML methods. They are
employed frequently and with astonishing success in predictive tasks (LeCun et al.,
2015; Goodfellow et al., 2016). DNNs perform particularly well in settings involving
so-called high-dimensional data, where the number of features associated with each
observation is very high, usually much higher than the overall sample size (Belkin
et al., 2019). This particular field of application serves as the starting point for my
argumentation that proceeds in two steps.

First, I argue that the notion of ‘big data’ can be conceived along two perspectives.
A dataset might be large simply because of the number of observations it contains.
But the high dimensionality of many contemporary datasets adds a second perspective
to the understanding of big data. I show that the combination of both perspectives can
be connected to the notions of narrowness and reliability in the debate surrounding
the RCP. On the one hand, high dimensionality of a dataset and thus a high number
of features associated with each observation can be linked with the idea of a narrow
reference class that is defined by a high number of predicates. On the other hand, a
high number of observations can be interpreted as being related to the reliability of
the information in a dataset.

Second, I argue that the particular functionality of some DNNs predestines them to
exploit settings involving big data. For methods of classical statistics and many ML
approaches, high-dimensional data involves the risk of overfitting. However, recent

6 This observation is also highlighted by Salmon (1971, p. 41).
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ML research reveals that there are DNNs for which this risk is much less prevalent:
in many settings, they perfectly fit the training data, but also exhibit high predictive
accuracy on new inputs (Belkin et al., 2019; Berner et al.,2021, p. 17).7

I argue that this gives rise to a situation in which DNNs remedy particular instantia-
tions of the RCP, namely those involving high-dimensional or ‘big’ data. Their specific
functionality enables them to exploit high-dimensional data without incurring the risk
of overfitting which allows them to make predictions with high accuracy. I argue that
this is akin to an accurate inference from relevant and reliable information in a very
narrow reference class to previously unseen individuals.

The remainder of the paper is organized as follows: Sect. 2 introduces the RCP and
reviews criteria for the suitability of a reference class. Section 3 provides the necessary
background on ML and DNNSs. Section 4 outlines existing strategies to solve the RCP
that rely on the framework of classical statistics and shows that they fail in some
situations. Section 5 argues that DNNs offer a remedy to specific cases of the RCP.

2 The reference class problem

This section discusses the RCP. It carves out important distinctions that have been
introduced in the literature and their relevance for the present paper. Additionally, this
section outlines criteria for the suitability of a reference class.

2.1 The problem

The RCP originates in the assignment of an objective probability to an individual
object, that s, a single-case probability. According to the frequentist account, this prob-
ability should be based on an observed relative frequency. Yet an individual belongs
to different classes, so-called reference classes, and relative frequencies may vary
across these classes. Consequently, it is unclear which reference class should be cho-
sen to determine the single-case probability (Reichenbach, 1949, p. 374, Venn, 1876,
p. 194). I will refer to this original version of the problem as the probabilistic RCP.
However, the treatment of the problem has gradually become more fine-grained.’
The present paper focuses on the epistemological RCP as it arises in the context of
prediction.

The context of prediction was introduced as a specific instantiation of the RCP by
Fetzer (1977) and Salmon (1989). In this context, an individual should be assigned
to a suitable reference class so as to allow for an accurate prediction. To do so, all
available evidence relevant to the prediction at hand should be used.’

7 Note, that a very close fit to the training data alone does not necessarily lead to overfitting. The key
determinant is the gap between accuracy on training data and accuracy on new data (Goodfellow et al.,
2016, p. 109). For details, see Sect. 3.1.

8 See, e.g., Fetzer (1977), Kyburg (1977, 1983), Salmon (1977), Thorn (2012, 2017, 2019), and Wallmann
and Williamson (2017).

9 Both Fetzer (1977) and Salmon (1989) distinguish the predictive RCP from the explanatory RCP. In the
latter, a known fact should be explained, for instance “John Jones’s rapid recovery from his strep infection”
(Salmon, 1989, p. 69). In this context, the RCP is about determining a reference class that is suitable to
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The epistemological RCP concerns situations in which a rational agent is dealing
with the question on which part of given statistical evidence they should base their
inductive inferences and decision-making (Hajek, 2007) . As illustrated using the
case of William Smith who tries to predict his 15-year survival, statistical evidence
is relative to a particular reference class, the problem being that it is unclear which
reference class is the correct one.

To illustrate the specific instantiation of the RCP examined in this paper, consider
the widely discussed legal case United States v. Shonubi.'® The case is about Charles
Shonubi, a Nigerian citizen, who was apprehended on December 10, 1991 at New
York’s John F. Kennedy Airport (JFK), carrying 427.7 grams of heroin. The evidence
gathered during the subsequent trial revealed that Shonubi had made at least seven
smuggling trips between Nigeria and the United States prior to his detention. As a
consequence, sentencing guidelines required an estimate of the overall amount of
heroin that Shonubi imported during all eight of his trips (Tillers, 2005, p. 34). It was
also required that this estimate be based on ‘specific evidence’. In response to both
requirements, data of 117 Nigerian drug smugglers that were apprehended at JFK
in the period between Shonubi’s first and last known smuggling trip was analyzed.
In particular, the amounts of heroin found on these smugglers served as a basis for
estimating the amount Shonubi carried during his first seven trips. This estimated
amount was subsequently added to the known amount of 427.7 grams that resulted in
the eighth trip (Colyvan et al., 2001, p. 169).

The case clearly involves a prediction problem, since the overall amount of heroin
that Shonubi carried during his first seven trips was unknown at the time of the trial. Fur-
thermore, the case is about predicting a quantity rather than a probability. So although
the case does not involve the probabilistic RCP, it certainly involves a structurally
similar problem: in order to predict the overall amount of heroin based on statistical
evidence, Shonubi had to be assigned to some reference class. Yet it also had to be
determined what constitutes ‘specific evidence’, that is, a suitable reference class in
this particular situation. As several authors rightly point out, it is unclear why “Nige-
rian drug smugglers apprehended at JFK during the given time period” was chosen as
Shonubi’s reference class rather than “all drug smugglers at JFK, all Nigerian smug-
glers regardless of airport, or smugglers in general” (Cheng, 2009, p. 2082). In fact,
there is an indefinite number of classes to which Shonubi could have been assigned.
This includes apparently unsuspicious classes such as the class of all airline passengers
or the class of toll collectors at New York’s George Washington Bridge which was
Shonubi’s day job (Colyvan et al., 2001, p. 172).!! Each of them would have resulted
in very different predictions for the overall amount of heroin. Thus, when trying to
make an individual prediction based on statistical evidence, it is unclear which part

Footnote 9 continued
explain why the recovery happened, yet without using the recovery as part of the total evidence to determine
the reference class.

10 gee Cheng (2009), Colyvan et al. (2001), Colyvan and Regan (2016), Franklin (2010), and Tillers (2005).
T Given the fact that Shonubi had smuggled drugs on a fixed number of occasions, some of the candidate
reference classes might appear not very meaningful. Yet this is precisely the point: there are many classes
to which an individual belongs in principle and the RCP consists in assigning it to the most suitable one.
For criteria determining a suitable reference class, see Sect. 2.2.
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of the evidence should have a bearing on the prediction. Put differently, it is unclear
which reference class to use to make the prediction. This is the epistemological RCP
as it arises in the context of prediction.

2.2 Criteria for a suitable reference class

The previous section revealed that the RCP is about choosing a suitable reference class
when applying statistical evidence to an individual object. Consequently, a solution to
the RCP needs to spell out two things: first, a criterion for what constitutes a suitable
reference class and second, a method for actually finding that class. This section
discusses criteria for a suitable reference class. Strategies for actually finding it are
outlined in Sect. 4.

One influential proposal of a solution to the RCP is due to Reichenbach (1949).
For him, there are two criteria determining a suitable reference class: it should be as
narrow as possible while also allowing compiling reliable statistics (Reichenbach,
1949, p. 374). What is meant by narrow and reliable?

On the predominant view, the concept of narrowness can be linked to the number
of predicates by which a class is determined. For instance, given data about the entire
population (no predicate) and data about males in that population (one predicate) when
predicting the amount of heroin in the case of Shonubi, one should opt for the more
specific data, thereby assigning Shonubi to the narrowest reference class possible that
is refined by the highest number of predicates. This seems intuitive. Additionally,
Thorn (2017) and Wallmann (2017) show that the preference for narrow reference
classes can be formally justified: choosing the narrowest reference class maximizes
accuracy in the sense that the difference between prediction and actual value will be
minimal.

However, there are at least two problems with the criterion of narrowness. First,
reference classes cannot “be fotally ordered according to their narrowness” (Hajek,
2007, p. 568). For instance, given data about the entire population and data about
males, it is straightforward to identify the narrowest reference class. Yet in a situation
in which there is only reliable data regarding males that weigh more than 80 kilograms
and regarding males with dark hair, this is not as straightforward. Obviously, each of
the classes is narrower than the class of all males, but there is no reliable information
as to which of them should be considered the narrowest reference class. Furthermore,
it would be a mistake to judge them as equally narrow simply because both classes
are determined by one further predicate (Héjek, 2007, p. 569).

Second, solely focusing on the criterion of narrowness implies that one should
always prefer evidence for singleton reference classes (Thorn, 2012, p. 303).!3 Thus,
in the Shonubi case, the overall amount of heroin should have been determined based on
the reference class containing only Charles Shunobi.'* This clearly misguided strategy

12 See Thorn (2019) for a discussion of the problem of partially overlapping reference classes.
13 This is discussed as the “Problem of Uninformative Statistics” (Bacchus, 1990; Pollock, 1990).

14 1n fact, this approach was employed in an initial trial, predicting the overall amount by multiplying the
amount that Shonubi carried on his last trip by eight. Yet the judgment based on this prediction was vacated
due to a lack of “specific evidence” (Colyvan et al., 2001, p. 169).
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illustrates what might have been obvious from the outset: that a strict preference for
narrow and hence ultimately singleton reference classes is untenable.

Reichenbach (1949) seems to attenuate the strict preference for narrower reference
classes by additionally requiring reliable information: one should choose the narrowest
reference class that also contains reliable information. However, Reichenbach does not
further specify the concept of reliability. Hajek (2007, p. 568) even argues that it is a
vague concept per se that cannot be pinned down employing ideas of classical statistics
such as a sufficiently large sample size. I partially disagree with this observation.
Although there might be more to reliability than purely statistical aspects like a large
sample, the latter aspects are certainly an important part of it. This is due to the fact that
theoretical results that guarantee the reliability of statistical methods rely on precisely
these aspects.'> Héjek (2007, p. 568) also notes that the meaning of reliability might
in fact be context-dependent and sensitive to pragmatic considerations. I agree with
this observation. However, it seems unproblematic as soon as the specific context is
made explicit. Here, the focus is on the RCP as it arises in the context of prediction.
Thus it is reasonable to argue that information is reliable to the extent that it leads to
accurate predictions.'®

Apart from reliability, Salmon (1971, 1989) proposes homogeneity as another crite-
rion to counterbalance a strict preference for narrower reference classes. As mentioned
above, he argues that when concerned with prediction, one should exploit all available
evidence. Yet what is crucial to achieve homogeneity is the statistical relevance of the
evidence, which Salmon (1971, p. 42) defines as follows: when trying to predict the
probability that an individual has some property B based on an overall set of evidence
A, another property C is statistically relevant to B justin case P(B|A, C) # P(B|A),
that is, just in case conditioning on A and C leads to another probability for the indi-
vidual to have property B than conditioning only on A.!7 Thus, to determine a suitable
reference class for a prediction concerning property B, one should start by considering
the broadest class A and partition it in terms of all predicates Cy, C», ... that are sta-
tistically relevant to the question at hand; yet one should avoid partitioning the class
in terms of statistically irrelevant predicates, since this would reduce the available
evidence with no good reason. According to Salmon (1971, p. 43, 1989, p. 69), one
should ultimately choose the broadest homogeneous reference class. This is the class
that is subdivided by a homogeneous partition, that is, by a partition that includes all
predicates that are known to be statistically relevant and that does not include any
statistically irrelevant predicates. '

15 For instance, the law of large numbers or the central limit theorem hold ‘in the limit’, that is, for large
samples.

16 One might object that given this definition, it is impossible to assess the reliability of information before
making a prediction. One might also object that it is pointless to assess the reliability afterwards. I will
address both objections in Sect. 3.1 and show that they are unfounded in the context of ML.

17 Woodward (2021) provides a concise overview of this and related definitions.

18 Since the partition is in terms of all predicates that are known to be relevant, Salmon (1989, p. 69) refers
to ‘epistemic homogeneity” which he distinguishes from ‘objective homogeneity’. This means that it is in
principle possible to refine a partition by adding further predicates, yet the relevant predicates to do so are
not epistemically accessible.
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While Salmon focuses on the prediction of probabilities and hence formulates the
notion of statistical relevance in terms of probabilities as well, Colyvan et al. (2001)
emphasize the importance of homogeneity even in settings like the case of Shonubi,
where the prediction to be made is not a probability, but rather a real number. They
argue that choosing the right reference class “is not just a question of specifying enough
predicates to be jointly satisfied so that the reference class in question contains very
few (but non-zero) members” (Colyvan et al., 2001, p. 172). Instead, the reference
class should be homogeneous in the sense that refining the partition by adding another
predicate does not (significantly) change the predicted value. I will refer to this idea
as predictive homogeneity. This highlights that the formulation resembles Salmon’s
definition of a homogeneous partition in terms of statistical relevance. Yet it also
highlights that the formulation is different because it replaces the focus on changes in
probabilities that is central to the definition of statistical relevance by the more general
focus on changes in predicted values.

Overall, the criterion of homogeneity complements the criterion of narrowness and
can be considered as a lower bound to it: while the criterion of narrowness requires
choosing a class that is determined by as many predicates as possible, the criterion
of homogeneity requires choosing a class that is determined only by those predicates
that are relevant to the question at hand.

In sum, the discussion reveals that Reichenbach’s proposal to solve the RCP is still
an important point of reference. The criterion of narrowness is intuitively plausible, yet
it requires a counterpart to avoid shortcomings like singleton reference classes. In the
context of prediction, both the criterion of reliability and the criterion of homogeneity
serve as such a counterpart.

3 Machine learning and deep neural networks

This section provides an overview of central aspects of ML and DNNs. Readers famil-
iar with the material may safely skip to Sect. 4.

3.1 Machine learning

The main focus of ML is on the problem of generalization: how to make accurate
predictions for new instances based on empirical observations?'® In the following, I
will focus on the case of supervised learning. In this setting, there is an input space, X,
an output space, Y, and it is assumed that they are governed by an unknown functional
relationship f: X — Y. I will focus on a regression task in which X = R? and
Yy =R

A set of training data, (x1, y1), ..., (Xn, Yn) € RY x R, is essential to most ML
tasks. A concise way of capturing the data sampled from the input space is by means
of a design matrix X € Rxd, Here, n is the number of observations and d is the

19 Fora book-length treatment of the field see Shalev-Shwartz and Ben-David (2016), for a concise overview
see Jordan and Mitchell (2015).

20 One might similarly consider a classification task, in which Y would be discrete.
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number of features associated with each observation. Often, d is referred to as the
dimension of the data. In many applications involving texts, speech or images, the
number of features d in a dataset is high, in some cases even considerably higher than
the number of observations, such thatd >> n. This issue is discussed under the headline
of high-dimensional data. It is commonly encountered in fields such as astronomy,
climate science, economics or genomics (Biihlmann and van de Geer, 2011; Johnstone
and Titterington, 2009). The increasing prevalence of high-dimensional data is mainly
driven by two factors: a dataset can be inherently high-dimensional because a high
number of features is available for each observation. Yet a dataset can also become
high-dimensional because researchers are unsure about the functional relationship
between available features. In this case, they might construct a wide range of new
features by interacting and transforming the available ones (Belloni et al., 2014) .
The issue of high-dimensional data will come up again in the discussion below. For the
moment, note that the features included in a dataset are somehow related to properties
associated with the objects that constitute the observations in the dataset. They might
consequently provide a link to the analysis of the RCP.

Based on the set of training data, the goal in ML is to find a function #: RY — R
that takes a new and previously unseen point x as input and predicts the corresponding
label y as accurately as possible. This is why it is also called a prediction rule. The
function 4 is usually chosen from a so-called hypothesis class H. This is a class of
functions that is predetermined by the developers or operators of an ML system. In
most cases, empirical risk minimization (ERM) or some variant guides the choice of
the final prediction rule 2 € H. This means that the function 4 is chosen such that it
minimizes the training risk, that is, the average deviation between predicted labels,
h(x;),i = 1,...,n, and true labels, y;, in the training data. It is in this sense that the
final prediction rule / should be as accurate as possible: the goal is to get as close as
possible to the labels generated by the true but unknown underlying function f.

However, as mentioned above, the focus of ML is on generalization, that is, on
predictions for new observations. So there needs to be a link between ERM on training
data and generalization to unseen data. This link is established by the so-called i.i.d.-
assumption that all input-output pairs, (x, y), are independent from each other and
drawn from the identical but unknown probability distribution P over R¢ x R (von
Luxburg and Schélkopf, 2011, p. 653). This allows to assess the performance of # on
new input-output pairs sampled independently from P, giving rise to the fest risk. The
goal of successful generalization is then operationalized by the requirement that in
addition to minimizing the training risk (the goal of ERM), the gap between training
and test risk should be minimized as well (Goodfellow et al., 2016, p. 109). It is
within this setting that the reliability of the data, that is, whether it leads to accurate
predictions, can be assessed to some extent before making predictions for unseen
observations: given the i.i.d.-assumption, the training data is structurally similar to the
test data which is why accurate predictions on the latter are more likely given accurate
predictions on the former.?!

21 Froma practical point of view, the i.i.d.-assumption may seem overly restrictive. However, it establishes
the rationale for considering separate sets of training and test data and it allows to mathematically study the
relationship between training and test risk.
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Fig. 1 Curves for training risk 4 !
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The relation between training and test risk and hence the ability to generalize is
closely linked to two central challenges in ML: underfitting and overfitting. Underfit-
ting occurs when a prediction rule is overly simplistic, lacks the capacity to capture the
complexity in the data and hence achieves poor accuracy on the training data. Overfit-
ting occurs when a prediction rule fits the training data very closely and achieves high
accuracy on the training data, thereby also fitting idiosyncrasies of the sample at hand
that are not relevant for future observations. This usually leads to poor generalization
and hence to a large gap between low training and high test risk. Just in case there is
such a large gap, a prediction rule is said to be subject to overfitting (Goodfellow et al.,
2016, p. 110). Consequently, a very close fit to the training data is not equivalent to
overfitting, but usually makes it more likely to occur.

Whether a prediction rule tends to underfit or overfit is closely tied to the capacity
of the underlying hypothesis class. This is illustrated in Figure 1. A hypothesis class
with low capacity contains rather simplistic prediction rules that may struggle to fit the
training data and will be prone to underfitting. A hypothesis class with high capacity
contains highly complex prediction rules that may even fit random patterns in the
training data and will be prone to overfitting. Consequently, to balance over- and
underfitting, it is usually necessary to impose certain restrictions on the hypothesis
class.

For instance, given that the structure of input and output data points towards a linear
relationship, one might restrict the hypothesis class such that it only contains linear
prediction rules.?? In this case, the hypothesis class would be given by all prediction
rules of the form 4 (x) = x1¢1+- - - +x4¢4. Determining the final prediction rule would
amount to determining the coefficients cy, ..., ¢g. On the one hand, this restriction
would lead to at least an approximate fit between the final prediction rule and the
training data, thereby avoiding underfitting. On the other hand, the restriction would
ensure that the final prediction cannot fit the training data too closely, thereby avoiding
overfitting.

22 This type of restriction is discussed as inductive bias in the literature, but there are many other techniques
for restricting hypothesis classes (Goodfellow, 2016, Ch. 7, Shalev-Shwartz and Ben-David, 2016, Ch. 2.3).
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3.2 Deep neural networks

DNNs are usually depicted as graphs consisting of nodes, the neurons, and edges
transmitting information between neurons.> For simplicity, I focus on fully connected
feedforward networks in which the graph contains no cycles.?*

More formally, a DNN can be described as a (directed and acyclic) graph, G =
(V, E). The set of neurons is denoted by V, the set of edges is denoted by E. Typically,
a DNN is structured in layers. If the DNN is fully connected, each node from one layer
is connected to each node from the next layer by one edge. A network’s number of
layers is commonly referred to as the depth of the network. DNNs contain a high
number of layers which is why they are called ‘deep’.

Data is processed through the network as follows: first, it enters the network at the
input layer. This layer contains one node per dimension of the input data. Then, the
data is transmitted to the next layer. An activation function that is associated with the
nodes in the network determines whether and in what form the data is processed from
one neuron to another. A weight function determines, for each edge, the importance
of the data passed on along that edge. Consequently, the input of a neuron consists of
the weighted sum of the transformed outputs of all nodes connected to it.> Finally,
for each input x, the network produces an output y at the output layer.

In practical applications, developers or operators of a DNN usually predefine the
architecture of the network. It consists of a graph and an activation function. Thus,
the output labels that a network produces depend on the predefined architecture and
on the weights, w. Consequently, the learning process of a DNN amounts to finding
the best among all possible configurations of weights for a given architecture. In this
context, ‘best” means most accurate according to ERM. The most common method
to minimize the empirical risk of DNNss is the so-called stochastic gradient-descent
(SGD) algorithm. Its underlying rationale is to initialize the weights with random
values, to update them stepwise and to converge to that configuration of weights that
leads to the lowest empirical risk. This configuration is then used to compute new
predictions y for previously unseen observations x.>

4 Statistical strategies to solve the reference class problem

Section 2.2 discussed three important criteria for a suitable reference class: narrowness,
reliability, and homogeneity. However, little has been said about strategies to find the
reference class for which these criteria are fulfilled. In particular, while it might be
straightforward to determine a narrowest reference class, it is unclear how to discern
relevant from irrelevant evidence and hence how to establish predictive homogeneity

23 For an in-depth treatment of DNNs, see Goodfellow et al. (2016), for a philosophically motivated
introduction, see Buckner (2019).

2 Although there is a large variety of DNNs, many authors focus on fully connected feedforward networks,
because their mathematical treatment is more convenient (Berner et al., 2021).

25 Often a bias, which can be conceived as the intercept of a linear equation, is added to the weighted sum.

26 For a non-technical yet detailed discussion of the learning process of DNNs and its philosophical
ramifications, see Buchholz and Raidl (forthcoming).
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of a reference class. As mentioned above, several authors have interpreted the RCP as
a problem of statistical model selection, which is why they try to address this issue
within the framework of classical statistics.

For instance, Cheng (2009) argues that the predicates that determine a reference
class can be expressed by the variables in a statistical model. So in a linear model of the
form h(x) = x1c1+- - -+ x4cq, the variables xq, . . ., x4 are taken to be predicates that
determine a reference class, while 4 (x) would be a prediction based on these variables.
Thus, in the case of Shonubi, x| might encode ‘age’, xo might encode ‘citizenship’
and & (x) might encode the overall quantity of heroin predicted based on the variables
included in the model.?’

Given this setup, choosing the right reference class for making a prediction reduces
to identifying the model with the right set of variables. With respect to the reference
class, the criteria of narrowness, reliability, and homogeneity are constitutive for what
is ‘right’. With respect to the set of variables, the model should be selected such that it
avoids under- and overfitting (Cheng, 2009, p. 2095). As mentioned above, the latter
is closely related to a model’s complexity and thus, given the model’s overall structure
(i.e., a linear function, a specific architecture, etc.), to the number of variables it
contains: the model should include enough variables to avoid underfitting; yet it should
also contain only relevant variables to avoid overfitting. Consequently, when framing
the RCP as a problem of statistical model selection, there is a close connection between
the goal of avoiding under- and overfitting and the goal of choosing a reference class
that is as narrow as possible while also being homogeneous.

When interpreting the RCP as a problem of statistical model selection, it seems
straightforward to solve it using model selection methods.”® Accordingly, Cheng
(2009) argues that statistical measures like the Akaike Information Criterion (AIC)
should be employed to determine the right reference class. The AIC evaluates a sta-
tistical model by measuring the model’s fit to the evidence as well as its complexity.>”
Thus, it evaluates how well the model balances over- and underfitting. Both poor fit
to the evidence and high complexity of the model lead to higher values of the AIC.
If, instead, a model achieves a considerably close fit to the evidence while being rela-
tively simple, the AIC has a small value. Consequently, the best model is the one that
minimizes the AIC. According to Cheng (2009, p. 2094), this also solves the RCP, for
the variables of the best model in terms of the AIC determine the best reference class
in a given situation.

A related approach is proposed by Franklin (2010). He also frames the RCP as a
problem of statistical model selection. Yet contrary to Cheng, he suggests using feature
selection methods to solve the problem. These methods are commonly used as follows:
first, a complex model is specified that contains as many variables as possible given

27 Tam using the terms ‘variable’ and ‘feature’ interchangeably. The former is commonly used in classical
statistics, the latter in ML, but their meaning is the same.

28 Clearly, in that case, ‘solving the RCP’ does not amount to determining the provably correct reference
class, but rather to finding a well-justified and potentially correct solution. The same holds for the DNN
case below.

29 The fit to the evidence is usually measured by the maximum of the model’s likelihood function, L, and
complexity by the model’s number of parameters, p, such that AIC = —In(L) + 2p (Akaike, 1974). For a
thorough philosophical discussion of the AIC, see Forster and Sober (1994).
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the available data. Next, the model is fitted to the data using a feature selection method
that retains relevant variables in the model, while weighting irrelevant variables less
or even discarding them altogether.?” This leads to a fitted model that contains the
relevant variables and in which the weights for irrelevant variables are small or even
zero. According to Franklin, the variables that are identified as relevant by the feature
selection method determine the right reference class in a given situation.

There are certainly many aspects about both approaches that require further discus-
sion. Yet there is one general issue that affects both of them. In fact, it even invalidates
them as a remedy to the RCP in many situations. Both Cheng (2009) and Franklin
(2010) develop their proposals using the case of Shonubi as their point of departure.
The discussion above revealed that all reference classes considered in this case were
determined by a rather low number of predicates. This means that statistical models
applied to the case will have a rather low number of predictively relevant variables,
thereby avoiding over- and presumably also underfitting.

However, suppose the proposed strategies were applied to a setting involving high-
dimensional data. In this case, a wide range of variables would be predictively relevant.
Additionally, due to the high-dimensional setting, the sample size would be relatively
low compared to the number of features associated with each observation. Thus, this
situation embraces two scenarios, both of which would be problematic from the per-
spective of classical statistics: on the one hand, a statistical model could exploit all
predictively relevant variables. This would correspond to a reference class that is both
narrow and predictively homogeneous. However, it would also lead to overfitting,
since a model including a large number of variables would be flexible enough to fit
idiosyncrasies of the relatively small sample. Consequently, the information in the
reference class would not be reliable in the sense that it gives rise to accurate predic-
tions. On the other hand, employing the AIC or feature selection methods would lead
to a model that is sufficiently simple to avoid overfitting. Yet this would prevent many
predictively relevant variables from entering the model, thereby leading to a reference
class that is neither narrow nor predictively homogeneous.3!

Overall, the example reveals that there are situations in which it is not possible to
simultaneously achieve all desiderata for a suitable reference class within the frame-
work of classical statistics. Consequently, proposals to solve the RCP using methods
of classical statistics often fall short of doing so, because they cannot escape the fun-
damental tradeoff between overfitting and underfitting that is particularly challenging
in the context of high-dimensional data.

5 The argument

The previous sections examined the RCP and central ideas of ML separately. To answer
the guiding question of this text, both subjects have to be taken together: how, if at all,
are DNNs suited to deal with the RCP? In this section, I argue that there are situations

30 For a detailed survey of feature selection methods, see Hastie et al. (2009, Ch. 3.3 and 3.4).

31 One might object that selecting variables to determine a reference class does not make sense in the case
of high-dimensional data, where variables encode, e.g., the color of singular pixels in images. I will address
this objection in Sect. 5.1.
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in which DNNs remedy specific instantiations of the RCP. By clearly demarcating
these situations, my argumentation also allows to distinguish the latter from situations
in which the RCP remains the intricate methodological problem as which it is known.

5.1 ‘Big Data'’ is related to narrowness and reliability

DNNs gained their relevance mainly from what Wheeler (2016) refers to as “the era
of big data”. Thus, as a first step, it is worth analyzing what ‘big data’ actually means.

First, the sheer number of observations in many contemporary datasets is vast. While
classical statistics is often concerned with assessing the significance and precision of
inferences made from a restricted sample, “we are now routinely handling population
datasets directly or sample sizes so immense [...] that they behave like population
data” (Wheeler, 2016, p. 330). Given this observation and the common assumption
that “[t]he larger the sample gets, the more likely it is to reflect more accurately the
distribution and labeling used to generate it” (Shalev-Shwartz and Ben-David, 2016,
p- 38), considerations regarding the reliability of inferences in classical statistics do
not, or at least to a far lesser extent, carry over to applications of ML.3? Here, the
representativeness of a given sample for the entire population is much more likely
based on the size of the sample.

Second, many datasets nowadays belong to the high-dimensional setting outlined
above. Thus, in addition to a large number of observations, each observation is associ-
ated with a—possibly much higher—number of features (Bithlmann and van de Geer,
2011). This is interesting from the perspective of the RCP, where a reference class
gets narrower with any further predicate that is added to its definition. Consequently,
when framing the RCP as a problem of statistical model selection, high-dimensional
datasets give rise to very narrow reference classes.>?

Before proceeding, let me address two potential objections to this interpretation of
features in a dataset as predicates that determine a reference class. First, consider the
example of a dataset consisting of images. Images are usually stored in a dataset such
that for each pixel in the image, there is one feature in the dataset giving the color of
the pixel as a numeric value. Suppose further that the goal is image classification, that
is, to determine a suitable reference class or, equivalently, to find a statistical model
based on the given data that allows to correctly classify future images. Clearly then,
selecting features that give the color of singular pixels seems to be something entirely
different from selecting a feature such as ‘age’ in the case of Shonubi: one might
object that features giving the color of pixels do not have an immediately obvious

32 In this context, reliability is to be understood solely in its relation to the data and to the sample size in
particular. This is not to say that ML methods are per se more reliable than methods of classical statistics.
Additionally, reliability needs to be distinguished from mathematically proven properties, e.g., statistical
guarantees for the performance of a method. While the latter do not (yet) exist for some ML methods, said
methods nevertheless work reliably in many situations—what is missing is a definite explanation for why
this is the case (Berner et al., 2021, p. 17).

33 One might question whether this leads to reference classes that do not contain enough observations to
draw reliable inferences. However, in high-dimensional datasets, the number of observations is only low
relative to the number of dimensions, but usually not in absolute terms (Belloni et al., 2014, p. 29). While
this is nevertheless problematic from the perspective of classical statistics, I will argue in Sect. 5.2 that it is
less problematic for DNNs.
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meaning and that, as a consequence, such features give rise to reference classes that
do not have an immediately obvious meaning either.>* This would call into question
the strategy of approaching the RCP as a problem of statistical model selection in
such settings. However, in the context of prediction, it is not the goal to investigate
reference classes themselves or the predicates by which they are determined. Instead,
the goal is to identify those features that determine a reference class for making accurate
predictions. Thus, the criterion of predictive relevance alone is discerning suitable from
unsuitable features in this context. Whether or not the features and the reference class
they determine have an immediately obvious meaning is less important.?

Second, one might object that when interested in the predicates that determine a
reference class, what is relevant are not features in the dataset, but rather the values
taken on by the features. For instance, in a demographic dataset, the predicate ‘age’
will be satisfied for each observation and hence irrelevant to determine a reference
class. What is relevant is the value of ‘age’ for each individual in the dataset. This
objection can be addressed by constructing a binary variable for each value taken on
by a feature like ‘age’, leading to a dataset that contains features like ‘age30’ that
equal one if an individual is 30 years old and zero otherwise. These can be interpreted
as useful predicates to determine reference classes.

To summarize: in this section I argued that ‘big data’ can be conceived along
two perspectives. They provide a promising basis to approach the RCP employing
DNNs because they address both components of Reichenbach’s proposal: to choose
a reference class that is narrow and for which reliable statistics are available. What
remains is the problem of over- and underfitting when trying to determine predictively
relevant features.

5.2 Deep neural networks can exploit high-dimensional data

We have seen above that strategies to solve the RCP with classical model selection
techniques fail in applications involving high-dimensional data. On the one hand, sta-
tistical models could include a high number of variables in such situations. In this
way they would fulfill the requirement of narrowness, but they would also overfit the
information in the reference class which would prevent them from predicting accu-
rately. On the other hand, statistical models could include a low number of variables.
This would prevent them from overfitting, yet it would also prevent the choice of a
predictively homogeneous reference class, since not all predictively relevant variables
would be part of the model.

Contrary to this observation, recent results reveal that some DNNs possess a remark-
able feature: they perform particularly well on high-dimensional data (Berner et al.,
2021, p. 19, Neyshabur et al., 2017, p. 5947). In this setting, they are able to interpolate,
that is, to exactly fit the training data, thereby achieving zero training error (Belkin
et al., 2019, p. 15849). Given the preceding discussion of central ideas in ML, one

34 One could perhaps go so far as to say that they have no human-graspable meaning at all.

35 This is why it is crucial to distinguish the goal of prediction treated in this paper from the goal of
explanation. The latter clearly requires the predicates determining a reference class to have a human-
graspable meaning.
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Fig. 2 Curves for training risk (dashed line) and test risk (solid line) depicting the double-descent risk
curve, which incorporates the U-shaped risk curve (i.e., the ‘classical’ regime) together with the observed
behavior from the ‘modern’ interpolating regime, separated by the interpolation threshold (adapted from
Belkin et al., 2019, p. 15850)

might take this behavior as an indication for overfitting and a poor ability to generalize.
However, as several authors show, DNNs possess a high ability to generalize to pre-
viously unseen data (Belkin et al., 2019; Zhang et al., 2017) . This seems peculiar as
it is at odds with the standard framework of ML, especially regarding its treatment of
the under- versus overfitting problem. It is also at odds with the conventional wisdom
presented in standard textbooks that “a model with zero training error is overfit to the
training data and will typically generalize poorly” (Hastie et al., 2009, p. 221).

Thus, apparently, the case of DNNS is not appropriately captured by the depiction
in Figure 1 where an algorithm’s predictive ability diminishes with increasing capacity
of the underlying hypothesis class. As a consequence, Belkin et al. (2019) propose
and empirically confirm an alternative framework that combines the traditional con-
text of under- and overfitting—the ‘classical’ regime as they call it—with the specific
behavior of some DNNs—the ‘modern’ interpolating regime. The main feature of
their framework is what the authors refer to as the double-descent risk curve depicted
in Figure 2. It corresponds to the classical U-shaped curve depicted in Figure 1 above,
as long as an algorithm’s capacity is below the so-called interpolation threshold. This
threshold marks the point beyond which an algorithm interpolates the training data.
While prediction rules obtained directly at the threshold generally exhibit a high test
risk indicating a low predictive accuracy, Belkin et al. (2019, p. 15850) “show that
increasing the function class capacity beyond this point leads to decreasing risk, typ-
ically going below the risk achieved at the sweet spot in the ‘classical’ regime.” This
means that large DNNs with a complex architecture involving many layers and incor-
porating a high number of features as inputs are suited particularly well for any kind
of prediction task.

Many insights about the generalization ability of DNNs rely on empirical studies
conducted with specific network architectures, but there is theoretical progress for
some aspects of the problem (Zhang et al., 2021) .3® Perhaps most importantly,

36 For instance, Arora et al. (2019) focus on two-layer networks and Soudry et al. (2018) focus on networks
with linear activation functions to derive theoretical results. Recent theoretical progress with significantly
weakened assumptions is also made by Holzmiiller (2021).

@ Springer



Synthese (2023) 201:111 Page170of24 111

recent analyses of the SGD algorithm revealed that the algorithm exhibits a behav-
ior of implicit regularization (Neyshabur et al., 2015, Poggio et al., 2020, Theorem
4). Mathematically, this means that the final configuration of weights to which the
algorithm converges has a small norm.>” With respect to the structure of a DNN, a
small norm corresponds to a final configuration of weights or, equivalently, to a final
prediction rule that is relatively simple. In particular, this means that many weights
within the network will have a small value and that some of them will even be assigned
a value of zero. So after the learning process, a DNN might locally ‘look’ considerably
simpler than its initial architecture, since several input features might not be processed
to the next layer and the flow of information along edges might be muted at various
points in the network.

The observation of implicit regularization can be considered as one possible expla-
nation for the astonishing generalization ability of DNNs.?® In a way, it also allows to
reconcile the behavior of DNNs with conventional statistical wisdom: just as in other
methods of classical statistics and ML, accuracy and simplicity need to be balanced
in DNNs as well. What remains surprising, however, is that this balance is struck
automatically by the SGD algorithm and without being enforced at some point during
the learning process. While statistical measures like the AIC explicitly incorporate the
tradeoff between accuracy and simplicity as the objective of model selection, the SGD
algorithm operates solely with the objective of maximizing accuracy—yet implicitly
restricts the complexity of the final network as well.

In sum, recent ML research reveals that highly complex DNNs are often not sus-
ceptible to overfitting, because they achieve both a low training and a low test error.>”
Consequently, when framing the RCP as a problem of statistical model selection, they
seem superior to methods of classical statistics in determining reference classes that
are both narrow and predictively homogeneous. I will carve out this last step of my
argument in the next section.

5.3 The deep neural network approach to the reference class problem

According to the discussion above, a solution to the predictive RCP needs to propose
a method that identifies relevant predicates so as to achieve accurate predictions.
Framing the RCP as a model selection problem, this means that the method should
find the predictively relevant features to be included in the final model.

When approaching the RCP using DNNs, everything starts with input data in a
design matrix, X € R"*“. The dimension d indicates the number of features associated
with each observation, x;,i = 1,...,n, so each observation might be interpreted

37 A norm is a function that takes the elements of a vector as inputs and outputs a non-negative number. It
can be interpreted as the ‘size’ of the vector (Goodfellow et al., 2016, p. 37).

38 Other explanations focusing on some kind of simplicity bias of the SGD algorithm are put forward, e.g.,
by Huh et al. (2021), Razin and Cohen (2020) or Valle Pérez et al. (2019). Shwartz-Ziv and Tishby (2017)
try to provide an information-theoretic explanation. For a philosophical discussion of the latter, see Riz
(2022).

39 This is even the case for noisy training data (Berner et al., 2021, p. 18). The generalization performance
only disappears for data that is entirely random and hence contains no learnable structure at all (Zhang et
al., 2017, 2021).
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as possessing d different properties or characteristics. We have seen that there are
DNNs which perform best in high-dimensional settings and that the “era of big data”
regularly brings about datasets that belong to precisely this setting. Consequently, it
is reasonable to focus on cases where d > n. The task of image classification is an
excellent example for such cases, since storing images in a dataset often gives rise to
a setting in which the number of pixels in each image, corresponding to the number
of features, is larger than the number of stored images, corresponding to the number
of observations. Additionally, DNNs are considered the state-of-the-art method to
perform image classification (Berner et al., 2021, p. 2).

The discussion above revealed that a reference class gets narrower with each pred-
icate that is added to its definition. It also revealed that features in a dataset can be
interpreted as predicates that determine a reference class. Taking these aspects together,
one can conclude that given high-dimensional input data, a DNN starts a prediction
exercise like image classification with the narrowest reference class possible that is
defined by a high number of features.*? Thus, this very first step is in line with Reichen-
bach’s recommendation to use information for the narrowest reference class available.
It is also in line with Franklin’s (2010) feature-selection approach according to which
one should start the process of finding a suitable reference class by considering the
model that contains the highest number of variables. However, there have to be safe-
guards that counterbalance a strict preference for narrow reference classes and prevent
overfitting.

When trying to determine a suitable reference class, the criterion of predictive
homogeneity introduced above can be seen as a counterpart to the criterion of nar-
rowness. Recall that a reference class is predictively homogeneous just in case it is
determined by all and only those features that are predictively relevant (see Sect. 2.2).
In the context of DNNs, predictive relevance is assessed via ERM: given the training
data, the SGD algorithm chooses all weights within the network such that the empir-
ical risk is minimized. As long as the empirical risk is not minimal, the algorithm
proceeds by altering the weights to get closer to the minimum. Once the minimum is
reached, the algorithm terminates. Put differently, the algorithm only converges to the
minimum and terminates once everything predictively relevant is taken into account
and appropriately weighted, since otherwise, the empirical risk could be decreased
even further.*! We have seen that very complex DNNs often achieve perfect accu-
racy and hence zero empirical risk in the training sample as well as a high ability to
generalize to new data. In the context of the RCP, this means that such DNNs are
able to exploit the large number of features in the data to an extent that allows them
to make accurate predictions on both the training and the test data.*> For instance,
in the example of image classification, DNNs are highly successful in selecting and

40 “Narrowest ...possible’ is to be understood relative to the available d-dimensional data, since I am
concerned with the problem of finding a suitable reference class based on given statistical evidence rather
than with the problem of determining whether additional evidence is required.

41 1n principle, it is possible that the SGD algorithm only converges to a local minimum (Goodfellow
etal., 2016, p. 281). However, in the case of highly complex networks, convergence to a global minimum
is particularly likely to occur (Li et al., 2018, Poggio et al., 2020, p. 30044, Vidal et al., 2017, p. 2).

42 This is in line with the aforementioned formal justification of choosing narrow reference classes since
they maximize predictive accuracy (Thorn, 2017; Wallmann, 2017) .
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appropriately weighting those features that correspond to the pixels that are crucial for
classifying new images (Huh et al., 2021; Krizhevsky et al., 2012) . Consequently,
it is reasonable to assume that DNNs operating within the ERM paradigm take into
account all predictively relevant features during their learning process.

However, we have seen that a reference class is predictively homogeneous just
in case it is determined by all and only those features that are predictively relevant.
Maximizing accuracy alone is therefore insufficient, because apart from all relevant
features, the most accurate model might also include irrelevant features. Furthermore,
maximizing accuracy alone involves the risk of overfitting. Above, I discussed how
classical model selection techniques try to address this issue and fail to consider all
predictively relevant features in high-dimensional settings. DNNs are different in this
respect. The previous section revealed the central role of implicit regularization that
takes place in the determination of a network’s weights. In addition to maximizing
accuracy, the SGD algorithm generally yields a final prediction rule that is simple
in the sense that the network’s weights have a small norm. This means that some
weights are assigned a high value, since the associated input is considered to be of
high predictive relevance for the output, but others are assigned a low value—maybe
even zero—, since the associated input is considered less relevant—or not relevant at
all—for the output. Put bluntly, irrelevant features are downweighted or eliminated to
achieve a simple configuration of weights.

We can now combine both insights. First, within the framework of ERM and assum-
ing that a global minimum for the empirical risk was reached, the final prediction
rule is the one that maximizes accuracy and hence includes all predictively relevant
features (otherwise the risk could be decreased further by including additional fea-
tures). Second, given maximal accuracy, the final prediction rule is also the simplest
solution and hence only includes predictively relevant features due to the simplicity
bias of SGD.*? Taking both aspects together reveals that the combination of ERM
and the simplicity bias of SGD seems to identify all and only those features that
are predictively relevant, thereby giving rise to a predictively homogeneous reference
class.#4

So in sum, the learning process of DNNs is governed by ERM, leading to the
consideration of all predictively relevant features and to maximal accuracy. However,
it is also governed by a bias towards simple solutions, leading to the consideration of
predictively relevant features only, thereby preventing overfitting. Thus, in situations
involving big data, the specific functionality of DNNs allows them to exploit data for
very narrow yet predictively homogeneous reference classes and to incorporate the
relevant information in a combination of weights that maximizes predictive accuracy.

43 Huh et al. (2021) explore this combination of accurate predictions and simplicity bias for the example
of image classification.

44 This observation does not even presuppose implicit regularization, but only some kind of simplicity
bias of the SGD algorithm. For instance, Réz (2022) recently argued on information-theoretic grounds that
DNNGs achieve homogeneous partitions of the input data by getting rid of irrelevant information during the
learning process. However, he characterizes these partitions as very complex and hence rejects them as not
useful, since his focus is on explaining DNNs rather than on using DNNs for predictions (Réz, 2022, p. 28).
S As pointed out, e.g., by Buckner, (2018, p. 5362), DNNs generate increasingly abstract representations
of the input features across their layers. However, assessing whether these representations might have a
bearing on the RCP is beyond the scope of this paper.
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This is why DNNs are suited to deal with the RCP as it arises in the context of
prediction. Contrary to methods of classical statistics, they might offer a remedy to it
in these situations.

Clearly, there is a flipside to the latter reasoning: by illustrating how DNNs can
offer a remedy to the RCP in some very specific situations, it also suggests that in
many others, DNNs fare no better than methods of classical statistics.

First, I emphasized that the concept of predictive homogeneity crucially depends
on the minimization of the empirical risk. Yet I also pointed out that, sometimes,
the SGD algorithm might fail to achieve this minimization and converge to a local
instead of a global minimum of the loss function (see Fn. 41). Consequently, predictive
homogeneity cannot be achieved in these situations and neither do they give rise to a
suitable reference class of features.

Second, we have seen that the criterion of reliability is crucial for determining a
suitable reference class. Above, I explicitly tied reliability to characteristics of the data,
in particular to the sample size (see Fn. 32). On the one hand, this seems to be very much
in the spirit of Reichenbach,’s (1949) requirement to compile reliable statistics. On the
other hand, one might question whether this is sufficient or whether reliability should
also be an explicit requirement for the method that does the compiling. This question
is particularly pressing in the case of DNNS, since several network architectures have
been shown to lack robustness and to be easily fooled by slight perturbations of the
input data.*® Tying reliability to the data, however, the above reasoning rests on the
assumption that DNNs indeed work reliably and thus only applies to situations in
which this really is the case.

6 Conclusion

This paper set out to answer the question whether ML faces the same methodological
problems as classical statistics. I tried to shed light on this question by investigating the
RCP, a long-standing challenge to classical statistics. Albeit originating as a problem
of (frequentist) probability theory, the RCP also concerns the more general question
as to how statistical evidence should have a bearing on individual cases. My focus in
this paper was on cases in which a reference class should be chosen so as to allow for
accurate predictions, that is, on the epistemological RCP as it arises in the context of
prediction.

I argued that one particular method of ML, namely DNNs, are sometimes able
to overcome the RCP in settings involving high-dimensional data. First, the high
dimensionality of the data can be linked to the concepts of narrowness (via a high
number of features) and reliability (via a high number of observations), both of which
were proposed as criteria for a suitable reference class by Reichenbach (1949). Second,
the particular functionality of DNNs predestines them to exploit high-dimensional
settings. Due to the SGD algorithm’s behavior of implicit regularization, they are
less susceptible to overfitting. Consequently, they can select a narrow reference class

46 This is perhaps most evident in adversarial examples (Szegedy et al., 2014) . They can mislead DNNs
that only consist of linear components, while DNNs that also include non-linear components seem to be
less vulnerable (Goodfellow et al., 2015) .
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consisting of a high number of features that is also predictively homogeneous in the
sense that it only includes features that are relevant to make accurate predictions.

In sum, I conclude that contrary to methods of classical statistics, DNNs can offer
a remedy to the RCP in settings involving high-dimensional data. However, and this
is just as important a conclusion, there are also many settings in which DNNs can-
not provide such a remedy—and in which, consequently, the RCP remains a serious
methodological challenge.
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