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Abstract
Practical ability manifested through robust and reliable task performance, as well as
information relevance and well-structured representation, are key factors indicative of
understanding in the philosophical literature. We explore these factors in the context
of deep learning, identifying prominent patterns in how the results of these algorithms
represent information. While the estimation applications of modern neural networks
do not qualify as the mental activity of persons, we argue that coupling analyses
from philosophical accounts with the empirical and theoretical basis for identifying
these factors in deep learning representations provides a framework for discussing and
critically evaluating potential machine understanding given the continually improving
task performance enabled by such algorithms.

Keywords Machine learning · Deep learning · Artificial intelligence ·
Understanding · Representation · Information theory

1 Introduction

Advances in machine learning (ML), especially using deep learning (DL) techniques,
have accelerated performance in numerous areas of practical application. One metric
worthy of attention is the rate at which DL has enabled algorithms to compete with
human benchmarks on specific tasks. Image classification, for instance, has evolved
dramatically thanks to a series of specific improvements in DL, including convolu-
tional neural network (CNN) andmore recently vision transformer (ViT) architectures
coupled with technical advances in the optimization of neural networks with multiple

1 This article belongs to topical collection : Philosophy of Science in Light of Artificial Intelligence edited
by Atoosa Kasirzadeh, Sarita Rosenstock, and David Danks

B Michael Tamir
mike.tamir@berkeley.edu

B Elay Shech
eshech@auburn.edu

1 University of California, Berkeley, California, USA

2 Auburn University, Auburn, Alabama, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11229-022-03999-y&domain=pdf
http://orcid.org/0000-0002-2011-6137


51 Page 2 of 27 Synthese (2023) 201 :51

hidden layers, leading to DL beating human performance on the ImageNet bench-
mark data set (He et al., 2015). AlphaGo’s defeat of Lee Sedol in 2016 is another
celebrated example of DL in interactive reinforcement learning contexts. Similarly,
better than human deep reinforcement learning successes were achieved by OpenAI
in Dota2 competitions, and CMU’s Libratus and Plaribus poker algorithms. More
recently, tasks in modern natural language processing (NLP) have also seen ostensi-
ble breakthroughs by becoming competitive with human performance. Hassan et al.
(2018) achieved parity with human translation on the WMT17 benchmark, leveraging
DL Transformer architectures. Transformer architectures have also inspired a wave
of advances leading to performance increases on the general language understand-
ing evaluation (GLUE) benchmark (Wang et al., 2018), overtaking non-expert human
performance in (Nangia & Bowman, 2019). Similarly, over a dozen DL Transformer
based techniques have bested human performance scores on the Stanford Question
Answering Dataset 2.0 (SQUAD 2.0) (Rajpurkar et al., 2018).

Human competitive performance on such benchmarks has accompanied an
increased use of terms like “understanding” in artificial contexts. Machine under-
standing of natural language applications is commonly discussed by researchers both
in terms of task goals as well as model capabilities. The GLUE benchmarks in “Nat-
ural Language Understanding” (NLU) tasks are framed in terms of “aspir[ing] to
develop models with understanding beyond the detection of superficial correspon-
dences between inputs and outputs” (Wang et al., 2018, p. 353). The SuperGLUE
benchmark lists as the first criteria that “[t]asks should test a system’s ability to under-
stand and reason about texts” (Wang et al., 2019, p. 4). Devlin et al. (2019, p. 4174)
motivate specific techniques “[i]n order to train amodel that understands sentence rela-
tionships,”whileRaffel et al. (2020)moremodestly claim that techniques such as those
of (Devlin et al., 2019) “can be loosely viewed as developing general-purpose knowl-
edge that allows the model to ‘understand’ text.” Researcher discussion of machine
understanding is even bolder in areas focused on DL representation learning. Bengio
et al. (2013) influentially framed conversations on machine understanding in terms of
disentanglement, arguing that “the ultimate goal of AI research is to build machines
that can understand the world around us, i.e., disentangle the factors and causes it
involves.” Chen et al. (2016) motivate using generative techniques with “the belief
that the ability to synthesize, or ‘create’ the observed data entails some form of under-
standing, and it is hoped that a good generative model will automatically learn a
disentangled representation,” and Higgins et al. (2017) claim that representations with
disentangled factors are “an important precursor for the development of artificial intel-
ligence that understands the world in the same way that humans do.” DL successes
coupled with such loose (if not bold) claims about potential machine understanding
have prompted responses from intersecting research in cognitive psychology (Lake
et al., 2017; Marcus, 2020) and linguistics (Bender & Koller, 2020). These responses
make the easy case that models trained for human competitive performance in spe-
cific tasks fail to possess what Marcus calls “deep understanding” (characterized as
the kind of understanding found in humans), citing failures to perform when “cir-
cumstances deviate from training data” (Marcus, 2020). While few claim that current
algorithms possess such “deep” or “human level” understanding, the more interesting
question of which conceptual criteria are appropriate for evaluating (partial) machine
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understanding has not received sufficient attention. Can the philosophy of science and
epistemology literature on understanding shed light on which conceptual criteria are
important for machine understanding? Are there trends and patterns in howDL trained
algorithms process data from a representation and information compression standpoint
that could partially or fully satisfy such conceptual criteria? If so, do such patterns
provide insight into critically evaluating and interpreting the relevance of concepts
like “understanding” in an artificial context?

In this work, we answer these questions, identifying three key factors taken from
the philosophy of understanding literature which we argue have a basis for eval-
uation in DL trained algorithm performance and learned data representations. Our
aim is twofold. First, viewing DL successes in the context of philosophy of under-
standing may shed light on the extent to which references to “understanding” in DL
research have any grounding (or not) in traditional analyses of the concept. Second,
the philosophy of understanding literature provides valuable resources for identifying
the conceptual criteria that are appropriate for evaluating and comparing any partial
applicability of concepts like “understanding” to machines. Using these resources, we
identify methods for experimentally detecting the presence of key factors indicative
of understanding, allowing for future evaluation of potentially more complete or so
called “deep” machine understanding in the rapidly evolving field.

We lay out the paper as follows. Drawing from select philosophical accounts of
understanding in Sect. 2, we identify reliable and robust task performance, as well
as information relevance and well-structured representation, as three key factors. In
Sect. 3, we provide a brief introduction toML andDL practices.While even successful
individual DL trained algorithms are not minded agents, in Sect. 4 we show how phe-
nomena analogous to said factors can be observed and evaluated in DL applications
through an information theoretic analysis. Specifically, deep neural networks use mul-
tiple layers of representations that systematically learn to extract and organize relevant
information, and this process directly relates to methodologies used by DL researchers
to ensure reliable and robust success. Information relevance is learned by the neural
network, preserving task-relevant information in deeper hidden layer representations
of the raw data. When successful, learned representations develop insensitivity to
unimportant factors while optimally leveraging and organizing the relevant features,
thereby disentangling raw details in deeper layers based on (task) significance. Sec-
tion 5 ends the paper with a consideration of three related objections to evaluating
“understanding” in the context of automated task performance. Our goal is to estab-
lish a discussion framework for understanding in ML and DL, and to encourage future
investigation grounded in philosophically coherent terms and direct engagement with
the technology driving these accomplishments.
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2 Three key factors of understanding

The philosophical literature on understanding is large and growing,1 but certain com-
mon factors stand out. Drawing on selective accounts, and working with guiding
examples, we identify three key factors of understanding. Before doing so, let us con-
sider three caveats: First, the key factors that we identify are considered by various
philosophers to be constitutive of understanding, so that their presence is either neces-
sary and/or (jointly) sufficient for understanding. We wish to remain neutral on such
issues and so we speak of said factors as indicative of understanding instead of con-
ditions constitutive of understanding. That is, said factors may provide (defeasible)
evidence that understanding is present or that there is comparatively more understand-
ing. Second, other key factors not discussed here may also be worthy of investigation.
Third, it has become common to note that understanding admits degrees (Khalifa,
2017; Shech, 2022) and is gradual in the sense that it can “vary in breadth, depth
and accuracy” (Baumberger, 2014, p. 83). This provides a basis for finer distinctions
among factors (where some factors promote greater understanding) and generally fits
well with how we consider potential machine understanding.

To begin, consider the prosaic example of evaluating a child’s understanding of
cat identification2 If the child can remember every cat in the neighborhood, and can
identify each one as a cat, we might suspect they understand how to identify cats. Suc-
cessful task performance is indicative of understanding. Looking at the philosophical
literature, it has been noted by various authors that practical ability in task perfor-
mance is especially telling of understanding. For example, Catherine Elgin holds that
“[understanding] physics is not merely or mainly a matter of knowing physical truths.
It involves ... a capacity to operate successfully...”(Elgin, 1993, pp. 14-15). De Regt
and Dieks (2005) characterize understanding in terms of what it enables one to do.
This idea is encapsulated byDe Regt’s claim that the “quintessence of scientific under-
standing lies in the ability to perform a difficult task rather than in knowing the answer
to a difficult question” (De Regt, 2015, p. 3790; our emphasis).

Of course understanding requires more than task completion in specific instances.
In more recent work, De Regt and Gijsbers (2016, 55-56; our emphasis) suggest an
effectiveness condition on understanding: “Understanding can only be gained from
representational devices that are, for a subject in a context, effective... [wherein a]
device is effective just in case the device is usable by the scientist and using it reliably
leads to scientific success....” If a new cat were to come by and the child could not
classify this cat because, for example, it is not one of the original memorized cats,
then arguably they do not (yet) understand very well. In contrast, a child who can
identify new cats and correctly identify what are (and are not) cats when tested has
more understanding because of this reliability. Their ability to generally complete the
task in new instances is a mark of the kind of reliability indicative of understanding.
Compare, for instance, with Mark Newman’s account of theoretical understanding,

1 See, e.g., (De Regt, 2009; Grimm et al., 2017; Lawler et al., 2023) for recent contributions and surveys of
the literature. See (Tamir & Shech, 2023; Shech & Tamir, 2023) specifically for understanding phenomena
with ML models and Shech (2022) for the roles of idealizations in facilitating understanding.
2 To be clear, the target of understanding in this example is the task of cat-identification and not full
understanding of the cat itself.
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which holds that: “[Subject] S understands scientific theory T if and only if S can
reliably use principles, Pn, constitutive of T tomake goal-conducive inferences ... that
reliably results in solutions to qualitative problems relevant to that theory” (Newman
2017, p. 582; our emphasis).

Beyond performing a task successfully in additional instances (what we will call
reliability), the ability to perform a related new type of task (what we will call
robustness3) is especially indicative of understanding. This point has been empha-
sized in Alison Hills’ account of understanding why p, which is constituted in part by
the ability to “draw the conclusion that p′ (or that probably p′) from the information
that q ′ (where p′ and q ′ are similar but not identical to p and q)” and assuming that
q is why p (Hills, 2016, p. 663; our emphasis). That is to say, she emphasizes that
the ability to extend successful application to new similar tasks, as symbolized in p′,
is essential to understanding. Similarly, Wilkenfeld (2019, p. 2815) says that “[r]eal
understanding requires the ability to take what is in one’s cognitive possession and
apply it to a new array of cases,” providing examples of generating a “new consequence
of a mathematical theory” and “wholly new proof” as variations of this novelty. These
positions reflect that understanding requires more than reliability of repeated success
for further instances of the same type of task. Extending successful performance to
new (related) tasks provides further evidence of understanding. For our cat identifica-
tion example, if the child can identify cats appropriately in photographs, as cartoon
drawings, as species of large cats or other new (but related) task applications, then the
child has (better) understanding. They can apply this skill both reliably and robustly,
that is to say, they can do it repeatedly for the same type of task in question (e.g.,
more house cats), and for related but non-identical types or variations of the tasks
(e.g., cartoon cats or apex predator cats). Using this terminology, we have the first
key factor of reliable and robust task performance: the ability to perform a task in
additional instances (reliability), and the ability to perform a similar or related novel
type of task (robustness).

We consider three immediate worries. First, one may object that while reliable and
robust task performance is perhaps minimally needed for understanding, it falls short
of sophisticated theoretical and scientific understanding. A second (related) worry
might be that while task performance may indicate “practical understanding,” it isn’t
as clear that it is important for the central notions “explanatory understanding” and
“objectual understanding” (e.g., (Baumberger, 2014; Khalifa, 2017; Stuart, 2018)). In
reply to the first worry, our aim modestly focuses on specific factors of understanding
that we will argue have a basis in ML contexts. Theoretical and scientific understand-
ing plausibly have additional requirements, but, we submit, also place importance on
reliable and robust application as indicated above. For the second worry, reflecting on
the literature, there is a strong tradition of accounts of understanding that incorporate
some aspect of practical ability, say, the ability to give an explanation, make an infer-
ence, solve a problem, manifest a skill, etc. In fact, Hills (2016), Baumberger (2014),

3 For the purposes of this work, we use the concepts of reliability and robustness strictly as shorthand for
successful repeated application of a task, viz., reliability, and application of a new related type of task, viz.,
robustness. We do not intend our usage of robustness to be understood in relation to the notion of robustness
analysis in, e.g., (Schupbach, 2018; Stegenga &Menon, 2017). Further, our usage of robustness should not
be confused with adversarial DL concept of “non-robust features" in (Buckner, 2020).
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and (most explicitly) Stuart (2018) note that it may be possible to reduce accounts
of explanatory and objectual understanding to practical understanding, wherein abil-
ity/skill takes center stage. However, since our objective does not concern questions
about whether “know-that” can be reduced to “know-how” (or vice-versa), we qualify
that by “understanding” we focus here on an ability that can (at least sometimes) be
measured by the observable result of performing a task. We set aside the issue of how
this may be related to or compatible with other notions such as understanding why
some phenomenon happened (Khalifa, 2017), understanding some proposition (Hills,
2016), understanding with a scientific theory (Strevens, 2013), understanding a the-
ory itself (Shech, 2022; Newman, 2017), or understanding as grasping (Baumberger,
2014).

Third, one may worry that the concept of a similar or related novel task type in
our articulation of robustness is unclear, or at least not easily distinguished from what
we describe as reliability, namely, repeated success on different application instances.
Whereas reliability is intended to cover cases where one can successfully perform
what may be fairly described as additional instances or tokens of the same type of
task, robustness covers cases that might fairly be described as a different sort of task
type. In other words, where reliability is about one’s “depth” of ability in a particular
sort of example (same task type), robustness is about one’s ability when it comes to the
“breadth” of applications they can navigate (different task types). This is clear in Hills’
own account of understanding why. Namely, in her discussion of how propositional
knowledge is not sufficient for understanding, she emphasizes that the type of cognitive
control required for understandingdepends on “the ability to drawconclusions yourself
in a new case” (Hills, 2016, p. 671). She says that while “to have knowledge, you do
not need to be able to judge new cases correctly,” but that the application to new cases is
“essential to understanding” (p. 670). Thus, as noted above, our concept of robustness
is grounded in Hills’ conception of application to “similar but not identical” cases and
Wilkenfeld’s talk of “a new array of cases.”4

Returning to our guiding example, a child with understanding of cat identification
should not be thrown off when, for example, they cannot see the entire cat, when the
cat is sitting on a countertop instead of a sofa, while wearing a new collar, etc. A child
thrown off by these irrelevant details understands less well than a child who can ignore
what is unimportant and attend to what is important in the available information. As
Wilkenfeld notes, “attributes relevant to determining [the] degree of understanding
in some particular context are those that enable one to make the types of inferences
and perform the types of manipulation that are relevant in that context” (Wilkenfeld,
2013, pp. 1007-1008; our emphasis). It is only the “relevant information” that matters.
Thus, an “account of understanding should reward an agent for being able to produce
more of the kind of information picked out as relevant by the context” (Wilkenfeld,

4 Ultimately, whether performing a particular task will count as an additional instance of the same task
performance (reliability) or a new type of task performance (robustness) may not have a precise boundary
and may for general understanding be somewhat case dependent. However, in our Sect. 4 discussion of
ML models, we elaborate how reliability can be substantiated by consistent task success on data ostensibly
described by the same distribution, whereas robustness can be substantiated by enabling task success on
data described by different distributions (e.g., data generated from different sampling processes or with
different features).
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2019, pp. 2809, 2810). Accordingly, we identify as a second key factor of understand-
ing, information relevance: the ability to represent the relevant and only the relevant
information useful to a task or tasks.

Information relevance is not entirely orthogonal to reliable and robust task per-
formance. Mastering reliability when different irrelevant details are introduced in
additional circumstances is important. Similarly, being able to represent what matters
to cat identification can be essential to robustness, like understanding which details are
relevant to why Garfield is a (cartoon) cat despite the many differences from a phys-
ical house cat that, in this context, are not relevant. While detecting reliability and
robustness can be couched in observable criteria of responses to examples, informa-
tion relevance is not necessarily directly observable from task responses themselves.
What contrasts the second key factor from the first is that it places further requirements
on how the understander represents the relevant information.

Wilkenfeld highlights that the extent that an understander’s internal representation
captures what is useful, while removing the irrelevant information, is indicative (or, for
him, constitutive) of understanding. Specifically,Wilkenfeld takes understanding to be
essentially representation manipulability (URM): “A statement, attributed in context
C , that thinker T understands object o, is true if and only if T possesses a mental
representation R of o that T could (in counterfactuals salient in C) modify in small
ways to produce R′, where R′ is a representation of o and possession of R′ enables
efficacious (according to standards relevant in C) inferences pertaining to, or manip-
ulations, of o” (Wilkenfeld, 2013, pp. 1003-1004). More recently, he has articulated
a different account of understanding as compression (UC), which also emphasizes
the comparative and incremental aspect of understanding: “A person p1 understands
object o in context C more than another person p2 in C to the extent that p1 has a
representation/process pair that can generate more information of a kind that is useful
in C about o (including at least some higher order information about which infor-
mation is relevant in C) from an accurate, more minimal representation”(Wilkenfeld,
2019, p. 2810).5 He highlights how information minimization viewed as compression
depends on how the representation organizes the (relevant) information. Particularly,
if there are regularities in the relevant information, then the extent to which an under-
stander can identify and leverage those regularities in how they represent the important
information, the better their understanding. Importantly, someone who is better able
to leverage structure and regularities in a task to abstract and organize how they rep-
resent what is important has more understanding; they are better able to represent the
relevant information present in the range of potential instances for which the task may
be completed.

For example, compare one driver who memorizes every list of directions for any
pair of locations they want to travel between in a city with a second driver who instead

5 Since Wilkenfeld is identifying what he takes to be constitutive of understanding, the URM and UC
accounts are rival accounts. For example, (Wilkenfeld, 2019, p. 2828) notes that while “URM claims that
one’s understanding of (for example) the soundness proof consists in the fact that one could correct small
mistakes and that one could potentially prove soundness for other logical systems... UC predicts that they
are neither necessary nor sufficient." Again, we do not commit to a particular view about what constitutes
understanding. Instead, we are focused on leveraging a multitude of philosophical accounts to guide our
identification of key factors that are (at least) indicative of understanding in order to show that such factors
can be used as (partial) criteria for appraising machine understanding.
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learns a map of the city and all the important roads connecting those same locations.
The latter driver has a better understanding of navigation tasks (in this city) than the
former. Assuming the former driver directions are suitably spartan, e.g., there are no
details in the directions about the scenery except for essential landmarks like street
signs, we might argue that both drivers only leverage relevant information, but there
are still (at least) two important differences. First, contingent on the complexity of
the city and location pairs, it is plausible that the directions-driver has “more things
to remember” than the map-driver. Several of the direction lists may have redundant
overlap in sequences of steps across lists, which could be better understood given
a map of said overlapping paths. Eliminating these redundancies as with the map-
driver requires less aggregate encoding of (ostensibly equivalent) information. Second,
if a roadway, for instance, were temporarily blocked, the direction-driver could not
complete any navigation requiring it, whereas the map-driver could more easily adjust
to alternative routes.6

The map-driver has better organized the relevant topological graph structure of
the roadways. By organizing their representation of the relevant navigation informa-
tion, the map-driver can remove redundancy of what needs to be remembered (and
represented). The navigation information is relevant for both the map-driver and the
memorization-driver, but more efficient for the map-driver in, for example, the sense
that they would have less to “write down” (in total) using their method of expressing
said navigation information than the other driver. More importantly, by separating out
the relevant information in a structured way, the usefulness of their representation is
less brittle with respect to changes. This example is analogous to when Wilkenfeld
(2019, p. 2808) compares the capabilities of his first-order logic students who have
memorized “a derivation of De Morgan’s Laws in the Lemmon-Mates system, which
has something on the order of 20 or 30 steps” versus his own deeper understanding:
“Because I understand, I don’t need to have it memorized—I have more basic facts
memorized, and a bunch of rules, heuristics, and hypotheses that let me recreate the
proof fairly easily.” After all, if we slightly perturb the steps memorized by a stu-
dent for the derivation of De Morgan’s Laws (e.g., if they forget or misremember a
step), they couldn’t recover: “if [they] had forgotten one step-even potentially a rel-
atively trivial step-in the middle of the proof, [they] would have been lost” (2814).
Memorization does not involve learning “enough higher-order information” in order
“to reconstruct the proof from simpler representations” (2812-2814). Someone with
Wilkenfeld’s self-described understanding of the basic facts involved with proving De
Morgan’s Laws is immune to such mistakes; if Wilkenfeld misremembers a particular
step, in the course of deriving the proof from his representation of more basic facts
and rules the memory error could be discovered and corrected.7 Our third key factor

6 Note that there is an ambiguity between the modal notion of “potential compressibility” and the non-
modal notion of “actual compression.” The (Wilkenfeld, 2019) account leverages actual compression. In
our discussion of the third key factor indicative of understanding we likewise identify actual compression as
what is important for understanding. In relation to our example, both the map-driver and the memorization-
driver may have the same amount of potentially compressible navigation information, but the map-driver’s
information is actually more compressed.
7 Of course, Wilkenfeld’s representation is not immune to any error whatsoever (e.g., forgetting basic
deduction rules) but according to the argument, as a matter of degree, there are fewer critical failure points
from which he could not recover.
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terms this importance as well-structured representation: the ability to structure how
(relevant) information is minimally represented to make it efficacious in a task or tasks
(even or especially under perturbations).

To be clear, while information relevance concerns an ability to represent only the
relevant information for tasks of interest, well-structured representation concerns the
ability to represent said relevant information in a manner that is minimal and less
sensitive to perturbations. We have attempted to illustrate this idea with the example
of a memorization-driver and map-driver: both have relevant information, but the
map-driver better organizes the relevant information as a topological graph structure
such that (i) the map-driver’s information is more minimal (because there is no need
to memorize redundant sub-lists of directions when paths overlap) and (ii) their task-
completion ability is less sensitive to perturbations (say, if a roadwaywere temporarily
blocked).

Last, it is evident from accounts of understanding that are articulated via “Subject
S understands...,” with explicit mention of a “thinker,” a “person,” and a “mental”
representation (as in URM and UC), that there is an additional “minded agent” or
what we might summarize as a “mentality” factor of (or constraint on) understanding.
To be clear, we do not claim here that conscious mentality or “strong AI” exists
in the contemporary ML or DL trained algorithms we consider. Since our focus
is on formalizing indicative factors for the purposes of grounding the notion of
machine understanding,we delay discussion of this excluded “mentality” condition for
Sect. 5.

In sum, reflecting on the philosophy of understanding literature, we have three key
factors identified as substantive potential indications of understanding:

1. Reliable and robust task performance: the ability to perform a task in additional
instances (reliability), and the ability to perform a similar or related novel type of
task (robustness).

2. Information relevance: the ability to represent the relevant and only the relevant
information useful to a task or tasks.

3. Well-structured representation: the ability to structure how (relevant) informa-
tion is minimally represented to make it efficacious in a task or tasks (even or
especially under perturbations).

Given appropriate characterization, as we provide below, such factors (hereafter the
key factors) can be used as (partial) criteria for appraising machine understanding.
Foreshadowing what’s to come, reliable and robust task performance corresponds to
low generalization error on test data sampled from the same process and a reduced
need of further training for novel applications (respectively). Information relevance
can be evaluated through information bottleneck analysis techniques substantiated
empirically by nuisance insensitivity. Well-structured representation corresponds to
representation disentanglement measured through geometric clustering and measures
of mutual information with respect to a representation.
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3 Machine learning fundamentals

ML can be loosely construed as an algorithmic process for generating an estimator
f : xi �→ ŷi that assigns “output elements” ŷi ∈ Y to “input elements” in a data set
{xi }i∈N ⊂ X .8 While the multiplicity of different estimation procedures f is quite
broad, f is typically parameterized by some set of parameters θ ∈ �, establishing a
family of estimators { fθ }θ∈� for the given estimation procedure. What distinguishes
the generation of a particular estimator as an ML process from directly designed rule-
based algorithms is that inML, the selection of fθ is accomplished through a process of
optimizing the parameter values θ so as to best “fit the data” according to a prescribed
objective. In what is called supervised ML, the parameters defining the estimator fθ
are selected by taking a set of sample pairs {(xi , yi )}Ni=0 ∈ X × Y , called the training
set, and for a given loss function L : Y ×Y → R, finding the optimal parameterization
θ∗ such that:

θ∗ = argminθ∈�

N∑

i=0

L( fθ (xi ), yi )

The process of finding the optimal fθ∗ for a given training set is called training the
model.9

An estimator fθ does not need to be complex in ML. One familiar basic example
that counts as supervised ML is Ordinary Least Squares (OLS). In OLS, the input
data points xi are vectors of dimension m and the estimation procedure fθ and loss
function L are given as follows:

fw,b(xi ) := w · xi + b = ŷi
L(ŷi , yi ) = ||ŷi − yi ||22

where the model parameters are just w, a vector of dimension m, and the bias term b.
Often raw input data xi are transformed into some new mathematical representation
xi �→ x′

i , through a process called feature engineering, prior to training. Especially
for simpler estimator processes, engineering new features {x′

i }i from the original {xi }i
through handcrafted transformations has traditionally been an essential step in suc-
cessfulML training (Domingos, 2012). In contrast, more contemporaryDL techniques
reduce such feature engineering, instead shifting towards methods of leveraging ML
optimization to automate this process.

DL designates a suite of related ML estimation procedures constructed through the
composition of linear and nonlinear transformations referred to as a neural network.

8 Alternatively, f may map to a scoring function (like a distribution) over output elements.
9 Note, for simplicity we are here glossing over several potential alternative ML paradigms to supervised
learning such as unsupervised learning and reinforcement learning paradigms in addition to exceptions and
modifications including details in how the loss function is optimized (e.g., variations of gradient descent),
Maximum Likelihood Estimation versus Bayesian approaches, hyper-parameterization and selection of the
family of parameterized functions, etc. f may even have components that are stochastically altered during
the training process (e.g., dropout), and so may not strictly speaking even be a deterministic mapping (at
least for the purpose of training). More comprehensive presentations of ML fundamentals can be found in,
e.g., (Murphy, 2012).
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Fig. 1 Fully connected artificial neural network diagram

In the simplest style of neural network, we may set:

fθ = σL ◦ zL(WL ,bL ) ◦ . . . ◦ σ1 ◦ z1(W1,b1)

where for each l ∈ 0, ..., L , σl represents some non-linear transformation called the
activation function, zl(h) = Wlh + bl is an affine transformation parameterized by a
linear transformationWl and bias vector bl , and the h(l) called the hidden variables are
the respective outputs after each “layer” of transformations h(l) = σl(zl(h(l−1))) with
the convention h(0) := x (see Fig. 1). Researchers have innovated several alternatives
to this (simplest) style of neural network, called fully connected, that help to better
manage the number of parameters needed to efficiently transfer information from one
hidden layer to the next, including pruning connections, convolving hidden layers with
local kernel functions (CNNs), keeping track of “cell” states whose updates are man-
aged by sigmoidal gating functions, generating multiple pipes of hidden vectors fed
through the neural network to compare relative positions using “attention” mappings
or to linearly combine them at later stages, etc.

Generally, neural networks can be characterized as multiple layers of parameter-
ized transformations of the data whereby said parameters are “learned” through ML
optimization. The application of ML through layers of transformations is an exam-
ple of the general concept of representation learning which is a central focus for
the remainder of this paper. Representation learning can be defined as the process of
using ML to optimize the parameters involved in transforming how the input data is
mathematically represented to achieve some objective. In the case of DL, transformed
data representations are the hidden layer outputs h(l), whose transformations are opti-
mized to reduce the final estimator loss.10 DL and more generally any representation
learning algorithm helps to automate the feature engineering process by leveraging the

10 In the context of representation learning, while the vector (tensor) outputt h(l) at each hidden layer is
characterized as a “representation” of the original input data, in the sense that it is some mathematical
transformation of the input data carrying (representing) the information in the input x data that is optimized
for the ultimate ML estimation task, the utility of said representations (layers) is not equivocal. Deeper
layers, being closer to the final output estimation layer, can be expected to be transformations to vector
(tensor) representations better suited for the ML estimation task. Further, in Sect. 4.3 (below), we see
how select hidden layer representations are commonly repurposed by ML researchers as part of a transfer
learning process to new tasks as with text embedding methods (Devlin et al., 2019; Mikolov et al., 2013;
Liu et al., 2019) or self-supervised generative autoencoding methods (Higgins et al., 2017; Xiao & Wang,
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same data driven optimization techniques used to parameterize some final estimation
(e.g., in neural networks the final “output” layer) in order to learn the optimal repre-
sentation of the input data. Our proposal is that investigating the nature of learned
representations provides a basis for more deeply engaging in questions of machine
understanding.

4 Deep learning and the key factors

In Sect. 3 we explained how DL can be directly viewed as a framework for extensive
representation learning; learning the transformations of each hidden layer of a neural
network is an iterated process of learning ML optimized representations to improve
the representations of the layers before. In Sect. 2 we identified three key factors
prominent in philosophical analyses of understanding. In this section, leveraging an
information theoretic analysis of the representation learning that occurs in DL, we
argue that there are experimental and theoretical means of evaluating (1) reliable and
robust task performance of the DL model, (2) the relevance of information in hidden
layer representations (information relevance), and (3) the organization of information
in hidden layer representations through disentanglement (well-structured representa-
tion). The presence of each of these three factors is a matter of degree (in both humans
and machines). Again we neither claim that the three factors are jointly sufficient (in
the classical conceptual analysis sense), nor that the presence of any key factor exists
to a sufficiently high degree in any known algorithm to claim that it “understands.”
However, we argue that the ability to detect the presence and degree to which these key
factors can be found in successful DL applications provides a basis (at least partially)
for future evaluation of machine understanding to the extent that the key factors are
satisfied.

4.1 Reliable and robust task performance

In Sect. 2 we identified the first key factor, reliable and robust task performance, in
terms of the following: “reliability” means success completing a task in additional
cases, and “robustness” means successful application to new (but related) tasks. For
ML, tasks success can be quantified using appropriate evaluation metrics, where lower
error indicates greater success. Establishing reliability of anMLapplication is typically
done by measuring performance on out of sample data or test data, which was neither
used to optimize the estimator parameters (training data) nor to guide hyperparameter
tuning (validation data). In other words, if an algorithm can take new data, not used
for training or tuning, and still “correctly” estimate the target, then, we argue, the
reliability component of the key factor is satisfied (to the corresponding degree of
correctness).

2019; Kingma & Welling, 2013). Note, while the hidden layer representations (typically) are not directly
designed to capture human intelligible concepts, (remarkably) such techniques often detect hidden layer
representations corresponding to such human intelligible concepts as illustrated in Fig. 3, such as chair-size,
azimuth, etc. (see also (Iten et al., 2020) for a related physics example).

123



Synthese (2023) 201 :51 Page 13 of 27 51

To justify this claim we must elaborate on what is meant by “correctly” estimating,
and what is meant by “new” data. For “correctness,” if the difference in the selected
evaluation metric on test vs. train data, called generalization error, is low in addition
to the test and train errors themselves being low, then we have good indication that the
success achieved in training was reliable and not due to mere overfitting of the training
data. For “newness,” a new data set (viz., a test data set) is generated from the same
sampling process as the training and validation data and as such is described by the
same distribution. There is a subtlety here: just because a new data point is sampled
from the same process, the model need not be successful on an arbitrary raw data
input. In image recognition, for instance, data is represented typically as something
like a bitmap. For example, if we are working with 64 × 64 grayscale images, then
the space of all possible data points is [0, 1]4096. Most points in this space are just
white noise for which presumably no target label exists (aside from a generic null
label). The data points generated by the sampling procedure approximates a low rank
submanifold in this space. This low rank submanifold of “potentially” sampled data
points with target labels characterizes the set of images an ML trained algorithm (or
human) should be expected to classify.11 Sampling test data from the same process
(with the same distribution) captures the expectation that reliability means success on
such additional examples. To the extent that a model can achieve high performance
on a test set (with low generalization error) defined in this way, we can say it exhibits
reliable task success.

In contrast to reliability, we have used the term “robustness” to refer to new (related)
task applications (as noted in Sect. 2). Reuse of pretrained models in the context of
DL applications has become commonplace in contemporary practices such as text
embedding or reusing pretrained image classification or generative networks. Here,
a model is trained for one task (e.g., predicting a masked word in some text) and
then reused for a different task (e.g., translation, part of speech tagging, named entity
recognition) using different data. This can happen with minimal or no additional
training (as in zero-shot or few-shot transfer learning (Brown et al., 2020; Vinyals et
al., 2016)) or, more generically, where the pretrained model is an upstream process for
representing rawdata that is then fed as input to additional layers trained specifically for
a new task or tasks. Pretraining word representations for natural language processing
(NLP) applications as in (Mikolov et al., 2013), or, in recent years, for sequences of
text for natural language understanding (NLU) applications as in (Devlin et al., 2019),
is the overwhelming standard for contemporary research. Similarly, it is common
practice for image tasks to transfer the representations of already trained large models
or self-supervised generative encoders (Higgins et al., 2017; Xiao & Wang, 2019;
Chen et al., 2016; Kingma & Welling, 2013) for new applications where deeper or
added layers receive further training. While limited further training, called fine tuning,
is often used in such transfer learning of pretrained model applications, the pretraining

11 Adversarial examples are typically characterized as data points that both have small (e.g. L1 or L2)
deviations from labeled data points within this submanifold but are challenging for an algorithm to correctly
label. Models vulnerable to adversarial attack represent a commensurate failure to meet our reliability or
potentially our information relevance factors.
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of a common representation core12 often permits successful application to novel tasks
with far less time and data required. The degree to which a common representational
core reduces or even eliminates further fine tuning provides ameasure of the robustness
component of this key factor.

Recall, for the purposes of this work, in Sect. 2 we reserved the terms ‘reliability’
and ‘robustness’ as shorthand for extending to additional instances of the same task and
to applications in new (related) tasks respectively. In this section, for ML applications
we have proposed one way to distinguish the two can be based on the novelty of the
distributions describing the respective data sample generation sources. Specifically,
we propose our usage of reliability in ML can apply to performance on new data
generated from the same sampling process and so ostensibly corresponding to the
same underlying distribution. In contrast, we propose robustness in ML can apply not
simply to using new data, but to using data corresponding to a different underlying
distribution (e.g., because it is sampled through a substantively different process, or
it has new variables including labels).13 Hence, according to our proposal, in the
case of ML, novelty of an underlying distribution is (at least) one mode sufficient for
establishing novel applications consistent with the general account of Sect. 2.

To summarize, reliability in task performance corresponds to reduction of error
on appropriately new out-of-sample test examples and robustness corresponds to the
degree to which a representation core learned in hidden layers can then be reused for
novel tasks reducing or eliminating the need for further training.

4.2 Relevance and the information bottleneck analysis

Our goal in this subsection is tomake a connection between information relevance (the
second key factor), which is the ability to represent the relevant and only the relevant
information useful to tasks, and the relevance of information in hidden layer represen-
tations in DL. Specifically, we explain how the technical concepts (defined below) of
sufficiency andminimality align respectivelywith the two directions of information rel-
evance: Sufficiency quantifies the degree to which relevant information is preserved.
Minimality can be framed as the degree to which only the relevant information is
preserved, i.e., the degree to which irrelevant information is removed. The analysis
that follows consists of formulating how these two (potentially conflicting) objectives
can be simultaneously optimized (through what Tishby and Zaslavsky (2015) frame

12 To be precise, such a representation core specifically refers to any vector (tensor) space representa-
tions resulting from hidden layer outputs of a pretrained component transferred as part of a new (larger)
neural network. Such pretrained components often establish a base or “core” representation space from
which downstream layers of the neural network develop deeper layer representations, hence the suggestive
terminology.
13 Of course, the underlying distributions will not be entirely unrelated (i.e., share no mutual information).
After all, data used to pretrain one language model (e.g., for masked language modeling (MLM)) in a
particular language presumably shares a good deal of mutual information with data used to fine tune it
for a second use case (e.g., a semantic similarity task (SST)). However, the distribution of the MLM data
will be substantively different from that of a labeled SST data, if only (among other potential differences)
because there are relationships in the joint distribution of the latter, which contains the labeled variable(s),
that did not exist in the former data. It is a virtue of our novel distribution proposal that in “different labels”
examples it follows that we have a new task type (e.g., SST), consistent with the discussion of Sect. 2.
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as a form of “compression”). This subsection will be devoted to understanding how
these technical concepts can be used to evaluate (and potentially quantify) informa-
tion relevance (the second key factor) in an ML context. The following subsection
then leverages this formulation’s account of “compression” to further evaluate well-
structured representation (the third key factor) in an ML context.

For a neural network with at least one hidden layer, each hidden vector {h(l)
i }i is

some mathematical transformation of the raw data {xi }i . In a trivial sense, we can
think of any mathematical transformation as a kind of representation.14 However,
clearly not any representation resulting from a mathematical transformation succeeds
in capturing the relevant information. For information relevance, the {h(l)

i }i should
preserve the “relevant” and (for the most part)15 “only the relevant” information in the
data {xi }i for the task. To formalize these concepts for an analysis of their presence in
neural networks, following (Tishby & Zaslavsky, 2015), consider x and y as random
variableswith joint distribution p(x, y) fromwhich the training and test data {(xi , yi )}i
are sampled. For a given layer l, the hidden vector representations {h(l)

i }i of the {xi }i
can be viewed as samples from the random variable h(l). We can formalize h(l) as
representing the “relevant and only the relevant information” in terms of the concepts
of sufficiency and minimality:

(Sufficiency)Since the information h(l) shareswith y comes byway of the information
it shares with x , y → x → h(l) forms a Markov chain, and we have:16

δl := I (x, y) − I (h(l), y) = H(y | h(l)) − H(y | x) ≥ 0

where I (·, ·) is mutual information and H(· | ·) is conditional entropy. When δl = 0,
the representation h(l) is a sufficient statistic of y (for the information in x). While
δl = 0 is not typical, the closer h(l) is to preserving information that x shares with y

14 Mathematical transformations, mapping elements of one space to another may trivially count as such
representation if only through mere ostension via said mapping. The purpose of this subsection is to investi-
gate if suchmappings go beyond suchmere ostensionmappings from an information perspective, preserving
relevant and only the relevant information for the ML task. Of course, the term “representation” has a vast
scope of application contexts widely discussed in philosophical literature, ranging from mere stipulated
ostension or denotation (Callender & Cohen, 2006) to more information content rich representations used
for inference in, e.g., scientific modeling, as in similarity accounts (e.g., (Weisberg, 2012)), structuralist
accounts (e.g, (Da Costa & French, 2003)), and inferential accounts (e.g., (Khalifa et al., 2022)). For our
present purposes, we restrict our focus to the context of how hidden layer vector (or tensor) space objects
h(l) represent other vector (or tensor) space objects and not the (separate) question addressed in (Tamir
& Shech, 2023) concerning how data may succeed or fail to represent the phenomena from which it was
sampled.
15 In the case of representations serving as pretrains for other downstream tasks, the restriction on “only
the relevant” might be loosened to something like “mostly.” Pretrain representations can work when they
are trained on a broad enough task that the representations successful for the pretrain task overlap with
further applications. There is plausibly something of a tradeoff here between the scope of minimality for a
specific task and the generality of a representational core (robustness) that happens with pretraining.
16 This follows from the data processing inequality.
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(i.e., the smaller δl ) the greater the sufficiency ofh(l). The sufficiencyof a representation
h(l) formalizes the degree to which it represents “the relevant” information.

(Minimality) Simultaneously minimizing I (x, h(l)) corresponds to preserving “only
the relevant” information. Specifically, h(l) is aminimal representationwhen I (x, h(l))

is the smallest among all sufficient representations. Couching in terms of degree, the
smaller the quantity I (x, h(l)) is (i.e., the closer to the minimal representation) the
better its minimality.

Tishby andZaslavsky (2015) apply a generalization of finding aminimally sufficient
representation h(l) in DL with the Information Bottleneck Lagrangian (IBL):

LI B = H(y | h(l)) + β I (x, h(l))

where β is a Lagrange multiplier. The IBL generalizes the simultaneous optimiza-
tion of finding a minimally sufficient statistic h(l), where β balances the trade off
between sufficiency (minimizing H(y | h(l)) ≥ H(y | x)) and minimality (mini-
mizing I (x, h(l)) ≥ 0). In this analysis they characterize the representation learning
process within a neural network as removing information in x (minimizing I (x, h(l)))
“unneeded” for sufficiency (minimizing H(y | h(l))) as a process of “compression.”
Is such compression merely a technical artifact,17 or does simultaneous minimization
of both terms in the IBL constitute the kind of compressions described particularly
in Wilkenfeld’s (UC)? From their theoretical constructions, the sufficiency and mini-
mality terms in the IBL seem to track the dual requirements that the representation be
“useful and relevant to context” (low H(y | h(l))) but also “minimal” (low I (x, h(l))).
Do DL representations with good sufficiency and minimality exhibit the properties
expected in philosophical accounts of understanding? Do they (A) ignore or abstract
away unimportant information and (B) organize the important information for (reliable
and robust) task success? We address (A) presently by exploring the DL phenomenon
of nuisance insensitivity. We return to (B) in the following subsection where we inves-
tigate the concept of disentanglement and its relation to the third key factor.18

Nuisance factors are variations in the data carrying no mutual information with
the target task. This can include noise factors, but also systematic influences due to
data sourcing methods. For instance, differences resulting from perspective including
occlusion, translation, or rotation of a pictured object exemplify nuisance factors for
object recognition. Nuisance factors are incidental to particular examples, so over-

17 Under typical circumstances if the h(l) is a deterministic function of x then I (x, h(l)) is infinite or
constant. This degeneracy can be avoided however either by adding noise as with the common training
process practice of dropout—see (Goldfeld et al., 2019; Achille & Soatto, 2018)—by introducing noise
only for evaluation, or by bucketing estimation as in (Saxe et al., 2019; Shwartz-Ziv and Tishby, 2017).
Bucketing can introduce obfuscating artifacts in the estimation (Goldfeld et al., 2019; Amjad & Geiger,
2020), and as such in the results cited below we rely only on alternative estimations of I (x, h(l)).
18 Note, the dichotomy of these two questions does not alignwith theminimality and sufficiency dichotomy.
(A) clearly is focused on the question of removing irrelevant information (minimality). In contrast, (B) is
focused not only on preserving “the right information” (sufficiency) but more specifically with how that
(“right”) information is organized so as to be effective (disentanglement). Sufficiency should not be conflated
with disentanglement. While both are required for task success, the former (strictly speaking) corresponds
to the presence of the (relevant) information, while the latter (as we discuss in Sect. 4.3) corresponds to
how effectively it is then organized for this task (if present).
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Fig. 2 Spiral label data in an original feature space undergoing a sequence of linear and nonlinear transfor-
mations into a disentangled representation space

fitting to incidental correlation with the target in training data causes generalization
error. Achille and Soatto (2018a) formalize a variable n that affects x as a nuisance to
the target y whenever I (n, y) = 0 even though I (x, n) > 0. An h(l) is insensitive to
nuisance n whenever I (h(l), n) is small. Achille and Soatto (2018) show experimen-
tally that when minimality gets increased IBL weight, surrogate measures of mutual
information (resulting from artificially introducing occluding nuisance factors) reduce
as test performance approaches optimality.19 Achille and Soatto (2018a) later prove
more generally that as I (x, h(l)) decreases, insensitivity to nuisances improves, and
(sufficient) representations become more insensitive the deeper they are in the neural
network. This means that if a neural network is trained with enough data to ensure
sufficiency of some deeper layer representation, then insensitivity to (irrelevant) nui-
sances is induced. Results like these support the empirical hypothesis that the kind of
compression represented by reducing the minimality term (I (x, h(l))) is indeed more
than a mere technical artifact as questioned above. Nuisance insensitivity induced by
such compression directly corresponds to the intuitive expectations of the information
relevance key factor, ignoring unimportant information while utilizing what’s impor-
tant. We hence conclude that such nuisance insensitivity is both empirically detectable
and a germanemanifestation of the information relevance key factor of understanding.

4.3 Well-structured representation as disentanglement

Bengio (2009, p. 6) first introduced the notion of disentanglement, explaining that
hidden layers "can be seen as learning to transform one representation (the output of
the previous stage) into another, at each step maybe disentangling better the factors of
variations underlying the data." In their influential review of representation learning
(Bengio, 2013, p. 1798) elaborate that an “AI must fundamentally understand the
world around us, and we argue that this can only be achieved if it can learn to identify

19 See also (Goldfeld et al., 2019; Saxe et al., 2019). Whie, Saxe et al. (2019) highlight compression in the
original work (Shwartz-Ziv and Tishby, 2017) as an artifact of saturating the sigmoidal activation functions
they used, they provide empirical evidence that when nuisance data is added to x in the form ofmanufactured
irrelevant features, a compression phase specifically for nuisance features is in fact observed.
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and disentangle the underlying explanatory factors hidden in the observed milieu of
low-level sensory data.” This concept is illustrated in Fig. 2 depicting the sequence of
linear and non-linear neural network transformations.20 The y labels are “tangled
up” in a spiral pattern in the original feature space but in deeper representations
these points are clearly mapped to separable “red” and “blue” regions respectively.
Intuitively, while raw representations (like the tangled up spiral) may be sensitive to
certain changes (red and blue points are close in the raw representation), by mapping
the raw representation to a disentangled representation layer, such instability under
perturbation is an artifact of the raw representation: small changes to blue/red data
points in the final representation keep them “safely” in their respective classification
neighborhoods.

The proximity of learned representations makes sense from a practical perspec-
tive. If a neural network can map diverse input data such as image bitmaps (i.e., the
“milieu of low level sensory data”) to more localized regions of a learned represen-
tation space, it improves the chances of a final layer estimating correctly. Early text
embedding techniques such as (Mikolov et al., 2013), or more recent text-in-context
embedding techniques like (Devlin et al., 2019; Liu et al., 2019) provided examples
of how “low-level” information about word occurrence in text sequences can be trans-
formed into semantically significant representation as text vectorizations in hidden
layers. In particular, such embeddings can be used to find synonymous terms (or term
usages in context) through proximity in the embedding vector space. Geometric clus-
tering, which focuses on this kind of proximity in learned representation spaces, is one
measure of disentanglement. Goldfeld et al. (2019) study how labeled data clusters in
learned hidden layer representations during training. In a series of experiments,21 they
observe that as the network trains, compression measured as a reduction of the quan-
tity I (x, h(l)) directly corresponds to geometric clustering. Such experiments show
how disentanglement claims relate to induced compression and can be empirically
evaluated in terms of this relationship.

Disentanglement is central to studies of self-supervised generative neural networks
used to find low rank representations of raw data (Higgins et al., 2017; Xiao &Wang,
2019; Chen et al., 2016; Kingma & Welling, 2013). This family of techniques is
often used for learning low rank latent hidden layer representations of images, and
are frequently optimized for loss functions closely related to the IBL (Achille &
Soatto, 2018a; Higgins et al., 2017). Researchers have established a strong relation-
ship connecting the β parameter in the IBL, which controls minimality, with both
phenomenological observations and quantitative measures of disentanglement.

The images in Fig. 3 represents a typical phenomenological exploration of how
dimensions in representation spaces exhibit disentanglement of latent factors. Specifi-
cally, it depicts the emergence of how high-level factors like (a) azimuth (b) chair size
(c) leg style and (d) backrest vary as individual latent representation dimension val-
ues are traversed holding the other dimensions fixed. The phenomenological patterns
depicted suggest that the latent representation dimensions learned by such models

20 Figure 2 adapted from (Olah, 2014).
21 Notably, Goldfeld et al. (2019) run a three dimensional version of the spiral disentanglement experiment
(B.2) suggestively similar to the initial spirals of Fig. 2.
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Fig. 3 Latent traversal of dimensions in representation spaces disentangled usingβ-VAE (top rows) (Higgins
et al., 2017) and β-TCVAE (bottom rows) (Chen et al., 2018). Respective traversals along dimensions in
the representation space exhibit changes in the observable factors of a Azimuth, b chair size, c leg style
and d backrest

successfully factor out (disentangle) these high level properties and can be manipu-
lated independently in the representation space. The models learn to treat each factor
separately as a different dimension in the representation space. These patterns have
also inspired a variety of quantitative measures of disentanglement (Achille & Soatto,
2018a; Higgins et al., 2017; Xiao & Wang, 2019; Kim & Mnih, 2018; Chen et al.,
2018) that evaluate the degree to which dimensions in the representation layer vary
independently. While specific measures vary, as a general pattern, increased com-
pression/minimality induces corresponding increased disentanglement as measured
by such metrics.22

Let us take a look now at how disentanglement relates to our third key factor
that a representation be well-structured. In Sect. 2, we summarized this factor as the
ability to structure how (relevant) information is minimally represented to make it
efficacious in a task or tasks (even or especially under perturbations). If a hidden layer
representation exhibits geometric clustering for a given task, then data points with
particular labels tend tomap to specific regions of the hidden layer’s space. This means
that not only do similarly labeled data tend to cluster in similar regions, but also that,
as observed with the spiral example, the algorithmwill be stable under perturbations in
the representation space. This sort of stability is reminiscent ofWilkenfeld’s examples
of proof memorization and our example of the two drivers in Sect. 2. In both examples,

22 For instance, Achille and Soatto (2018), measure the total correlation defined as the KL-divergence
between a representation vector treated as a random variable and the factorization of its component
dimensions treated as independent variables. In specific experiments, they demonstrate that as the compres-
sion/minimization penalty increases (with β), so does disentanglement as measured by the total correlation
Footnote 22 continued
of the hidden layer representations. Kim and Mnih (2018) offer an example of improvements to such total
correlation based measures of disentanglement addressing tactical vulnerabilities that exist with pure total
correlation measures.
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the argument is that a “brute memorization” indicates less strong understanding when
it comes to task completion because small perturbations to the execution of brute force
representations render them less effective or ineffective. In contrast, a well organized
representation of the important information (viz., what Wilkenfeld refers to as “higher
order information,” or, in the driver example, the topological structure of roadways)
enables an understander to better adapt under similar changes. Literal perturbations of
how an example is transformed into a hidden layer representation space using dropout
techniques show similar stability of representations disentangled enough to ensure
geometric clustering.23 Experiments like (Achille & Soatto, 2018a; Higgins et al.,
2017) show that this organization leverages more than proximity. Putting sufficient
weight on the minimality term of the IBL induces representations that organize the
relevant information in the data. Though disentanglement is still an active area of
research, multiple techniques for evaluating different aspects of how neural networks
learn to organize relevant information are clearly available. As with our other two key
factors, the extent to which researchers can detect such aspects of how information
transformed to hidden layer representations is well-structured allows us to evaluate
the extent to which the third key factor is evident in these algorithms.

5 Deep learning andmachine understanding

We noted in Sect. 1 that advances in ML and DL have enabled algorithms to per-
form on specific tasks in many cases at levels competitive with humans, and such
improvements have been accompanied by the increased use of terms like “under-
standing” in artificial contexts. This led us to ask if the philosophy of understanding
literature can help identify the conceptual criteria for evaluating potential machine
understanding, and whether trends and patterns in how DL algorithms process data
from a representation and information compression standpoint could partially or fully
satisfy such criteria. We answer the former question in Sect. 2 and the latter ques-
tion in Sects. 3 and 4. Specifically, in Sect. 4 we reviewed the three key factors of
understanding from Sect. 2, identifying a basis for evaluating the presence of each
factor either in direct task performance of DL models or in analyzing representations
learned in neural net hidden layers. We argued for the following: (1) reliability and
robustness can be respectively evaluated in terms of generalization error and potential
reduction of further training requirements, particularly in transfer learning. (2) Infor-
mation relevance can be evaluated through the sufficiency and minimality of a hidden
layer representation (respectively corresponding to representing the relevant and only
the relevant information) with the information bottleneck analysis, and we saw (con-
cretely) that nuisance insensitivity to irrelevant information is induced directly by
minimality. (3) Well-structured representation can be understood in terms of the DL
concept of disentanglement, and specific techniques for measuring aspects of disen-
tanglement correspond to measuring how factored dimensions in the representation

23 Cf. Information dropout (Achille & Soatto, 2018) which generalizes this method and can be used to
induce increased disentanglement.
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layer organize (relevant) information and provide stability under perturbations. We
conclude by considering three objections.

The first objection observes that the success of DL trained algorithms ostensibly
achieving human competitive performance is often limited to narrow tasks. AsMarcus
(2020) argues, while incredibly large language models similar to that of (Brown et al.,
2020) show remarkable success in transfer learning on a diversity of tasks, suchmodels
still have notable challenges in other language tasks. Bender and Koller (2020) further
argue that even if languagemodels trained only throughword context successfully gen-
erate appropriate text responses, the meaning is “ungrounded” by external reference
and vulnerable to leveraging purely syntactic language patterns instead of detecting
genuine semantic relations.24 How can we attribute understanding to machines given
such current limitations? In reply, first we argue (only) that a technical basis for eval-
uating the presence of the key factors exists and can be conducted especially through
appropriate task evaluation and information theoretic analysis of hidden layer repre-
sentations (as elaborated in Sect. 4). We do not claim that this means such evaluation
must conclude that any algorithmpossesses a specific degree of understanding ormeets
the key factors associated with said understanding. Machines with understanding of
the kind sought by Marcus (2020) and Bender and Koller (2020) may well consist
of multiple coordinated algorithms and broader goals and reward structures perhaps
more in line with advancing reinforcement learning research focused on developing
internal (hidden) representations of the observed environment (“world models”), its
dynamics, and self-critical action planning (Ha & Schmidhuber, 2018; Hafner et al.,
2019b, a; Okada & Taniguchi, 2021). Coordination of multiple DL components for
(world) model based reinforcement learning, or grounding tasks like image captioning
or text to image generation (Ramesh et al., 2022; Saharia et al., 2022), leave room
for the future possibility of machine understanding to a degree and with the breadth
of abilities expected of such critics. It is our goal in Sect. 4 to provide a framework
for evaluating such claims by more directly engaging with the abilities and repre-
sentations of any such ML/DL models or machines that positively manifest potential
understanding (to some degree).

As a second objection, one may be concerned that we have identified the three
key factors as (merely) indicative of understanding instead of insisting that they are
constitutive of understanding. In response, we frame the contributions of this work as
identifying multiple concepts in existing philosophical literature on (human) under-
standing as independent touchpoints for what might arguably deserve focus when
considering understanding inmachines. Having identified three such objects of consid-
eration, we show that the presence of such factors can be evaluated and even quantified
to various degrees in machines, which we argue may serve as a useful critical tool. We

24 McCoy et al. (2019), notably present evidence that transformer architectures leverage syntactic heuristics
to achieve human competitive performance rather than detecting genuine semantic implication. See also
(Liu et al., 2020; Nie et al., 2019) which similarly highlight foils in the most popular benchmarks, and then
introduce tactics for (modestly) addressing these serious vulnerabilities. Despite such notable information
Footnote 24 continued
leakage failures, recent work training models using unstructured text simultaneously with images (Radford
et al., 2021) in order to develop text to image generation models (Ramesh et al., 2022; Saharia et al., 2022)
frame the more principled arguments of (Bender & Koller, 2020) against the possibility of grounding such
language models as rather hollow.

123



51 Page 22 of 27 Synthese (2023) 201 :51

claim that observations measuring the degree to which these factors (or other potential
factors) are present in machines may constitute (partial) evidence of understanding,
even if they do not play the deductive role of analytic conceptual conditions. Evi-
dence comes in degrees, and we do not make claims on how much evidence warrants
a decisive conclusion that a machine (or human) possesses understanding. However,
we do claim that having tools for quantifying and comparing evidence constitutes a
substantive step in considering the (relative) warrant(s) for said putative judgments.
The arguments of Sect. 4 demonstrate how the key factors we have identified can
concretely support this role.

Further, while our efforts here take no aim at settling the larger philosophical debate
over the proper conceptual analysis of understanding (human or otherwise), our posi-
tion ismore closely alignedwith positions claiming that understanding likewise comes
in gradations. Not only does evidence (for any understanding) come in gradations, the
degree and extent of said understanding also comes in gradations. Again, we view
the contributions of Sect. 4 as an asset in comparative evaluation (as illustrated with
our example below) rather than delineating some crisp conceptual border (presently)
separating human understanders from machines. Indeed, we propose leveraging the
methodology for evaluating the three factors to compare important aspects of under-
standing indicated in different machines, even when they may not qualify as having
human understanding. We take this work to be the first step in a larger enterprise,
which may ultimately provide more critical insight into discussions of machines that
might (one day) merit full consideration as exhibiting a quality like understanding.

The last objection we consider hinges on the claim that the “mentality” of minded
persons is a necessary condition for understanding. How can there be value to evaluat-
ing (partial) machine understanding in terms of the three key factors when a machine
falls short of the mentality necessary for understanding? Again, we are not claiming
that any current AI technique or trained algorithm successfully satisfies a mentality
condition or counts as aminded agent, butwe note three reasonswhy independent eval-
uation of the key factors may prove beneficial. First, as highlighted in Sect. 1, active
researchers familiar with the field make use of understanding terminology, especially
when discussing DL. Establishing a technical basis for the extent to which the key
factors of understanding do (and do not) apply provides philosophical context for
considering whether such claims merely succumb to human tendencies to anthropo-
morphise (Zlotowski et al., 2015) or if such usage has a technical and philosophical
basis. Second, by grounding clear criteria for key factors of significance in philo-
sophical accounts of understanding in (human) persons, we open the possibility of an
account that is more sensitive to machines exhibiting some aspects of understanding
while falling short of strong AI mentality or the kind of “deep” understanding sought
in works like (Lake et al., 2017; Marcus, 2020). By highlighting the key factors and
their potential for evaluation, we have (at least three) concrete methods of detecting
these aspects.

As a toy example of such nuanced evaluation of understanding (or lack thereof) in
artificial cases, imagine we need a gate to open for cats and only cats. To operate this
gate we first have a human operator, second a passive infrared sensor (PIR) calibrated
to detect heat levels of cats (but not, say, mice), and third a DL trained cat recognition
model, each operating the gate by opening only for cats. The human, we stipulate,
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understands this task sufficiently. What about the other two? While neither the PIR
nor the neural network have the kind of understanding the human has, there is a salient
question of what (if any) similarities can be found. Is the neural network “closer”
to understanding how to recognize cats than the PIR? The framework laid out in
Sect. 4 provides guidance for answering this question in a more nuanced manner
than the coarse grained distinction of human vs. machine. For the PIR there is binary
input data, which maps to a binary control (open if correct_heat == 1,
else do nothing). Even if we say that the PIR’s mapping is a representation,
there isn’t much basis for suggesting this representation extracts or organizes the right
(and only the right) information through more than a heuristic control. In contrast,
analysis of the neural network hidden layer representations could reveal which raw
image features it ignores through nuisance insensitivity and which it transforms and
disentangles in the deeper hidden layers. The way the neural network extracts and
organizes the relevant features plays out in counterfactual reliability and robustness:
For example, if a cat-sized dog were to attempt to go through the gate, the neural
network might correctly respond by keeping the gate closed where the PIR would not.
For the neural network this is not just observable in the performance success, but in
the internal representations of how it disentangles relevant raw features and ignores
other nuisances to distinguish cats from dogs and other non-cats. Such representation
provides a basis for characterizing how the neural network is “closer” to exhibiting
the human’s understanding than the PIR.

For our third and final response, while a full account of what qualifies as mentality
(particularly in non-human persons) is out of scope for this work, the speculation that
possessing the potential to understand plays a role is not unreasonable. Insisting that
mentality is required for understanding runs the risk of begging the question when it
comes to artificial cases. Given how challenging questions of artificial personhood are,
having an aspect sensitive (if partial) account of machine understanding independent
of a mentality presupposition could inform such questions. By introducing this frame-
work through engagement with the techniques, algorithms, and theory underlying DL
successes while also leveraging philosophical analyses of understanding in human
persons, we better position future exploration of possible artificial mentality without
rejecting it out of hand.
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