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Abstract
The number of adjustable parameters in a model or hypothesis is often taken as the 
formal expression of its simplicity. I take issue with this `definition´ and argue that 
comparative simplicity has a quasi-empirical measure, reflecting experts’ judge-
ments who track past use of a model-type in or across domains. Since models are 
represented by restricted sets of functions in a suitable space, formally speaking, 
a general `measure of simplicity´ may be defined implicitly for the elements of a 
function space. This paper sketches such a framework starting from intuitive con-
straints. It is shown how experts’ judgements feed into this framework and how the 
usual definition can be recovered. A theorem by H. Akaike in the theory of model-
choice has recently been used to shine new light on the relationship between the 
demand for simplicity and empirical success, or even `truth´. The approach favored 
here permits an alternative answer based on a reliabilist account of justification: 
if judgements of simplicity track past successful use of a model-type comparative 
simplicity is evidential and inductive.

Keywords  Simplicity · Induction · Confirmation · Bayesianism · Model 
selection · AIC

What makes one hypothesis simpler than another? Does simplicity have evidential 
value, i.e. is it rational to believe (or accept) the simpler of two hypotheses, other 
things being equal? In the words of Forster and Sober: “the fundamental issue is 
to understand what simplicity has to do with truth.” (1994, p.5) Many scientists, 
anecdotal evidence suggests, think the simpler hypothesis or model is evidentially 
privileged, and various Bayesian and non-Bayesian accounts aim to underwrite the 
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practitioners’ judgment. Some philosophers grant simplicity at best a pragmatic, heu-
ristic value in the pursuit of science (Quine, 1960) or remain profoundly skeptical 
about the very notion of simplicity (as in H. Putnam’s statement: “I hate talk of ‘sim-
plicity’.”; see also Howson & Urbach 1989).

Despite deep disagreements on how to account for the evidential nature of sim-
plicity (if at all), there is now broad agreement on how to rank certain classes of 
quantitative hypotheses according to their simplicity. Objective Bayesians (Bandyo-
padhyay et al., 1996, 1999, 2014) and some non-Bayesians (Quine, 1960; Popper, 
1980; Forster & Sober, 1994) agree in holding that the simplicity of quantitative 
functions between observables is – if not defined by – at least “measured” by the 
number of their adjustable parameters: the less – the simpler. With respect to two 
polynomials Bandyopadhyay et al. for instance express the “formal” notion of sim-
plicity thus: “H1 is simpler than H2 because it has fewer adjustable parameters.” 
(Bandyopadhyay et al. 2014; see also 1999 S398).

Addressing first the question regarding the definition of simplicity for quantita-
tive hypotheses in Sect. 2 I begin by questioning the adequacy of the “measurement 
thesis” and point to a lack of independent reasons for it. Simplicity of a family of 
quantitative hypotheses, I suggest, varies with and “tracks” successful past use of the 
hypothesis. In Sects. 3 and 4 a formal (axiomatic) account of degree of simplicity in 
quantitative hypotheses based on elementary properties of function spaces to which 
the hypothesis’ mathematical representations belong is proposed. The resulting sim-
plicity ordering of families of hypotheses is compatible with, but independent of an 
ordering based on numbers of parameters. Any concrete simplicity ordering essen-
tially depends in the present approach on the deliveries of experience and scientific 
practice which inform the scientist about the relative empirical success of a fam-
ily in similar experimental circumstances. The discussion is restricted to parametric 
hypotheses in deterministic contexts: no effort is made to adapt it to richer treatments 
that include measurement error or to broader issues like simplicity as a feature of lan-
guages (cp. Goodman 1955), of theories or procedures, or to make connections with 
investigations of algorithmic or informational complexity (see f.e. Dasgupta 2011).

Turning to the second question regarding the evidential import of simplicity, in 
Sect. 5, it is shown how the novel account of simplicity sketched here offers the pros-
pect of an independent non-probabilistic justification for the claim that the simpler 
hypothesis of a lot is the rational choice.

1  Degree of simplicity and empirical success

Why does it seem to many so plausible that the number of free parameters of a family 
of quantitative hypotheses “measures” its simplicity? As Forster observes: “So, the 
definition of simplicity is not a source of major disagreement.” (Forster, 2001, p.90) 
Perhaps it is not a matter of major disagreement, but it should be one.

Popper’s enthusiasm for this particular measure has a normative background: Pop-
per held that the number of adjustable parameters is inversely related to the testability 
(and falsifiability) of a hypothesis (Popper, 1980, p. 140f). Hence, if simplicity of a 
function were measured by the number of free parameters, than higher simplicity 
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is proportional to greater falsifiability. This is a pleasing conclusion (“our theory 
explains why simplicity is so highly desirable.” loc.cit. p. 142), but logically it does 
not help to establish the premise.

Forster and Sober hold that “The simplicity of a family of hypotheses (referred 
to by statisticians as a model) is measured by the number of adjustable parameters” 
(1994, p. 31). The “goodness of fit” of a parametric model in repeated measurements 
of a quantity (whose error is normally distributed) can be measured by its expected 
log-likelihood, or in Forster and Sober’s terminology by its “predictive accuracy”: 
the higher – the better. This quantity in turn decreases linearly with the number of 
the model’s adjustable parameters. Consequently, models with the lesser number of 
free parameters are expected to do better in repeated experiments, other things being 
equal. Hence, if simplicity were measured by the number of free parameters, sim-
pler models are rationally to be preferred in curve-fitting settings. Again, the condi-
tional logically does not help to establish the premise that simplicity is generally and 
properly “measured” by the number of adjustable parameters of a model. Lacking a 
proper argument to this effect, claims that AIC finally vindicates the role of simplicity 
considerations in inductive reasoning (Forster & Sober, 1994, p.11) are premature.

More recently, Bandyopadhyay et al. too assert the measurement thesis of simplic-
ity: “Recall our formal approach, where H1 is simpler than H2 because it has fewer 
adjustable parameters.” (2014, Sect. 3.2) In their argument for an objective constraint 
on a priori probabilities in adjudicating between competing hypotheses,  they go as 
far to suggest that “simplicity is a traditional part of the a priori basis for inference” 
(loc.cit.). I doubt that warranted inference requires an a priori basis, except perhaps 
in a vague psychological sense of “a priori”. However that may be, the authors adopt 
the measurement thesis without offering a reason. On first sight, objective Bayesians 
should not care which formal notion of simplicity is at work, as long as it sufficiently 
motivates the assignment of priors to alternative models. But the account of simplic-
ity matters, since as Sober (2000, p.436) pointed out, assigning a higher prior degree 
of subjective belief to the simpler model requires a justification – which is difficult 
to come by if simplicity is nothing more than the number of a model’s adjustable 
parameters.

Forster & Sober (1994) carefully use “measure” of simplicity instead “definition” 
of simplicity. The measurement thesis cannot be a definition of (comparative) sim-
plicity in the desired way, because the notion of “adjustable parameter” in itself is 
slippery (see the next paragraph) and because the measurement thesis may well turn 
out to be false, as I will argue. 

For one, note that experts and laymen judge the comparative simplicity of a pair 
of functions prior to counting parameters. The function sin (x) is simpler than the 
function sin(x) + cos(x), the linear function is simpler that the quadratic etc. Simplic-
ity must be an essentially parameter-independent quality. Many competing models 
studied in Burnham and Anderson (2002) have the same number of adjustable param-
eters, without by the way impeding the applicability of AIC. For instance, biologists 
studying the growth in length of female salmon consider these two models among 
others: L (t) = L∞ [1 − exp (−k (t − t0))] and L (t) = L∞exp (−exp (−k (t − t0)))
with two model parameters k and L∞ (each one is combined with four sub-models; 
Burnham and Anderson 2002, p. 142). Insofar as these models do not strike one as 
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equally simple, their relative simplicity must reflect (other) structural differences. 
Consequently, the notions “degree of simplicity” and “number of parameters” are 
conceptually distinct.

For many purposes the concept of the number of free, adjustable parameters of a 
family of functions is clear enough, yet counting and individuating free parameters 
of a quantitative hypothesis is not always a straight forward affair. The number of 
free parameters is a surprisingly elastic quantity: does y1 = a

r2  have one adjustable 
parameter while y∗

1 = a · b
r2  has two? The difficulty vanishes by interpreting the prod-

uct „a·b” as one parameter (a move advocated by Sober 2000 p. 439). Reparametriza-
tion is formally possible, but of doubtful physical significance and methodological 
virtue. If a denotes, say, the mass of body 1 and b denotes the mass of body 2, should 
their product count as one genuine quantity? In Newton’s law of universal gravity, 
for instance, this is not the case. Physical interpretation and certain formal charac-
teristics are the preferred means for individuating and counting parameters. It is ad-
hoc to treat distinct, physically differently interpreted parameters as one for no other 
purpose than fitting this class of cases to a preferred meta-theory of model-selection. 
Bandyopadhyay et al (2014) raise this issue, but instead of concluding that the mea-
surement thesis is false, they severely restrict its application and resort to informal 
“pragmatic” criteria of simplicity for a very large class of cases.

Before turning to an alternative account of simplicity in Sect. 3, I will briefly look 
at one of the “pragmatic factors” that are supposed to guide judgements of simplic-
ity, namely the degree to which one family of functions is easier “to handle” than a 
competing alternative (Bandyopadhyay et al. 2014 Sect. 3.2.): “Whether an equation 
is easy to handle plays a vital role in theory choice, and hence in the assignment of 
prior probabilities to theories. Working scientists rely on this reason frequently”.

`Ease of manipulation’ (cp. Quine 1960) is an aspect of the everyday use of “sim-
ple”: it is easier to play checkers than chess, the former being the simpler game. A 
straight line segment is easier to draw unaided than a circle, the former being the 
simpler geometric figure. Similarly perhaps, the linear function is easier to calculate, 
to differentiate, to integrate, to keep “before” the mind and to remember than other 
functional relationships. Nevertheless, simplicity as `ease of manipulation’ hardly 
“plays a vital role in theory choice” for three reasons. (a) Given the routine use of 
computer algebra systems nowadays (f.e. Mathematica) differences in formal manip-
ulability between hypotheses of the kind used in modeling contexts are neglectable. 
(b) `Ease of manipulation´ is a matter of experience, skill and kind and degree of for-
malization. It depends on who is doing the manipulation and (historically speaking) 
when. On this account “anything goes” while most methodologists treat simplicity 
as an objective formal feature of a hypothesis or model or reference class of models. 
(c) `Manipulability´ cannot explain the rationality of choosing the simplest among a 
lot of alternative hypotheses for predictive purposes. Suppose we judge manipulabil-
ity of a function by the ease the world’s leading mathematician X displays in doing 
the relevant mathematics. Why should a biologist, considering the growth pattern of 
salmon, say, trust a methodological rule like “assign the model that X can most eas-
ily manipulate the highest probability” in order to point her reliably to the truth or to 
novel predictions? Nothing in the concept of formal manipulability has any connec-
tion to how the world is or might be.
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I conclude that “being easier to handle” is unlikely to be a pragmatic operating 
factor in simplicity judgements as far as the modern sciences are concerned.

Judgments of (comparative) simplicity may be an outgrow or result of an inborn 
disposition. Particularly the way perception of shapes functions may manifest such 
a disposition (R. Arnheim). Subjects presented with, say, 10 points at equal distance 
from an unmarked center, spontaneously perceive the points as lying on the circum-
ference of a circle, not as marking a 10-pointed irregular star. Yet, granted such a per-
ceptual disposition exists (suggested by Quine 1960), it is hard to see how this feature 
operating on a basic non-cognitive level can account for, or even justify, inductive 
reasoning in advanced quantitative sciences of the sort considered here.

Having critically reviewed one prominent formal and two informal criteria, I 
turn to a more promising source of simplicity judgments. If one looks over well-
worn examples of “simple” and “not so simple” phenomenological laws once again, 
then one conspicuous difference between them is the degree to which they are com-
mon. High-exponent, multi-summand and multi-bracketed families of functions are 
“uncommon” in the sense of being rare birds in the sciences: few, if any, known 
phenomenological laws have a really complex form. The family of linear functions, 
on the other hand, is ubiquitous and has been used frequently and successfully for 
inter- und extrapolating data. A large number of elementary quantities varies linearly 
with each other: on small intervals without exceptions (every functional dependence 
between two quantities can be locally linearized under mild formal requirements) 
and sometimes over the whole range. The dependence between distance traversed 
and time elapsed is the best known example; suffice it to say that there is no area of 
quantitative science that has not discovered a linear phenomenological law. True, the 
family of “parabolas” is as familiar to the practitioner and pupil alike as the linear 
family, still the latter has been vastly more frequently applied successfully than the 
former or the “cubic”, and so on.

An electrical engineer who (today) observes oscillatory phenomena, naturally 
represents them in terms of sin- or cos- dependencies and chooses between certain 
forms of amplitudes. This type of transcendental functions has been applied hugely 
successfully in the past, particularly in cases where the underlying processes are of 
electromagnetic nature. It is no coincidence that trigonometric dependencies are now 
classified with the most simple families. Experts have gotten used to them and they 
are widely taught. Similar things can be said about the family of power laws, (now) 
universally used to model complex systems from astronomy to economy.

Being “common” by itself is of little relevance, except as a crude measure of the 
frequency of application, that is: of successful applications of a class of functions in 
point of successful prognosis, useful definitions and “absorption” into theories (this is 
somewhat analogue to the “entrenchment” of a predicate in Goodman (1983 p. 94f): 
certain families of functions are entrenched). Hence there is reason for the claim, that 
differences in the intuitive degree of simplicity of a quantitative hypothesis, or the 
family to which the hypothesis belongs, reflect the (perception of) frequency of suc-
cessful past application. Very complex functional dependencies between observables 
are rare, if at all used successfully in the sciences; and if a complex form is used suc-
cessfully, it is hardly transferable from one domain of application to another (as the 
linear, the exponentials, etc. are). Differences in the estimate of relative simplicity 
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between alternative hypotheses (by a scientist) reflect differences in the estimate of 
relative frequency of successful employment.

Talk of “frequency of successful use” is vague. It seems naïve to hope that one 
can quantify that notion by counting the number of successful applications and the 
number of not-so-successful applications of a family, and dividing by the total num-
ber of (known) applications. Is the counting restricted to a subject matter, an area of 
research, a discipline, or is it cross-disciplinary? 

The concept of “frequency of successful application” is vague but not ill-defined. 
Absolute frequencies (of successful fit) are difficult to determine and to determine 
with any certainty and confidence, yet in practice the scientist may rely on reasonable 
estimates of the frequency. It is an integral part of the training of the scientist to learn 
which family of function works for what type of problem and which doesn’t. In any 
case, what matters are less estimates of the absolute (historic) frequencies, but the rel-
ative proportions of such frequencies for alternative functions that are being consid-
ered relevant in pursuit of a fitting model. Relevant information for this task is much 
easier to get by. Judgments of simplicity thus sum up in an informal way relevant 
information for the scientist: simplicity rankings track those frequencies, albeit more 
or less closely. (A fuller account should include - beside the “frequency of successful 
fit” - the degree to which a family has been transferred from one field of application 
to another.) In the majority of cases in which neither the scientist’s personal experi-
ence nor her or any other “disciplinary matrix” provides for such frequencies their 
value is, strictly speaking, uniformly zero. This consequence is unnecessarily strict 
in view of the following consideration. Scientists cannot anticipate future develop-
ments: a complex exotic family of functions may one day turn out to be an adequate 
representation for the data in one area. Simplicity rankings of parametric families 
may track actual (historic) frequencies, as I have suggested so far, but may also be 
taken instead as forward estimates of true frequencies in the light of past use. As a 
matter of policy and open-mindedness the scientist’s estimate for the true frequency 
should then never be set to zero. The choice of a sufficiently small non-zero value, 
subject to further consistency requirements (see below), will suffice for all delibera-
tions. For the expository purpose of this section this point is left open.

These remarks do not answer objections to the notion of “frequency of success” 
fully, but I hope they help to make the thesis that simplicity of quantitative hypothesis 
varies with the frequency of successful applications (“tracking”), both more clear 
and plausible. Note two consequences. First, if the “tracking thesis” is true there 
need not be any intrinsic connection between the value of exponents, say, and the 
degree of simplicity of a function. Any function could have succeeded in the past (if 
nature favored it and actual scientific practice took the right turn), and hence become 
“simple” in the eyes of practitioners regardless of the number of its adjustable param-
eters, the absolute values of its exponents (if any), mean curvature or similar charac-
teristics of functions. Second, judgments of simplicity by scientists on this account 
will change with the course of scientific history and practice. One may expect, for 
instance, that such judgments were generally less firm and had less authority (were 
less evidential) in the period of the rise of modern quantitative science, since there 
were few useful “frequencies” to track. One may expect, furthermore, that simplicity 
judgments differ both in firmness and with regard to rankings between disciplines, 
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and from research area to research area (though there may be convergence). A cursory 
look at the history of quantification in the sciences seems to bear out that simplicity 
was not an active criterion in formally representing sets of data, Occam’s dictum not 
withstanding. The nearest case is the debate over the superiority of the heliocentric 
system. The increased “simplicity” (if measured by the number of parameters) of 
Copernicus’s system, however, did nothing to persuade a scrupulous observer like 
Tycho Brahe of its truth, nor should it have done so pace Forster & Sober (1994, 
p.14). On the other hand, the continuous preference for circles and circular geomet-
ric representations (witness Galilei’s belief that a falling body describes the arc of a 
circle, Dijksterhuis 1981, p. 349f) may have had less to do with an enduring attach-
ment to Platonic conceptions of perfection, but with the perception that the geometric 
circle had an impressive empirical track-record as an instrument of data representa-
tion for planetary orbits.

Summing up: In the curve-fitting or model-selection context the formal concept of 
simplicity should not be reduced to “number of adjustable parameters”, hence AIC 
does not vindicate simplicity as a guide to truth. Expert’s judgements of comparative 
simplicity track past successful use, and although pragmatic factors may be at work 
in guiding scientists’ judgements, “ease of manipulation” of formulas is not among 
them.

2  Degrees of simplicity for families of functions

In this section I outline a general method of assigning arbitrary functional dependen-
cies (in a given space of functions) a degree or index of simplicity in a consistent and 
unique fashion. As it turns out, simplicity thus defined and certain features of families 
of functions, like the absolute value of exponents, are not necessarily linked. The 
previous section’s suggestion that simplicity tracks frequency of successful past use 
conveniently complements the method (see Sect. 4).

Starting point is the observation that one tends to judge the sum of two func-
tions to be less simple than each of them separately, provided the functions are in a 
sense independent of each other. The comparison of linear with quadratic functions 
(models) and higher-order polynomials in point of simplicity in curve-fitting contexts 
rests on an intuitive “rule of composition”: a sum or product tends to produce more 
complex functions. Concepts like “composition” and “independence” have a natural 
and precise interpretation in the mathematics of function spaces, the “reservoir” of 
functional dependencies (hypotheses) between observables.

For the following only elementary properties of function spaces as vector spaces 
are needed. The space considered is complete, normed and has a (Schauder) basis, 
that is there is countable sequence of elements of the space such that all elements of 
the function space can be represented uniquely as a linear sum of independent ele-
ments of the basis. In particular, S = L2((a, b); R) ,the space of real square integrable 
function on a suitable interval (a,b) will do. S is equipped with an inner (weighted) 
product giving rise to the L2 – norm ||.||2 and is convenient for representing quantita-
tive relationships and models between observables. Widely used systems of (ortho-
normal) bases for the vector space S are Legendre-polynomials and the trigonometric 
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system Fourier’s. The existence of a suitable set of specific functions in S that spans 
a set of candidate models, finite in number, is sufficient for the present purpose. The 
spanning set is usually finite and suggests itself by the models under investigation or 
perhaps by a look at the solution space of a differential equation.

The structure of S invites one to think of its elements as “composed” in the sense 
of being expressed (represented) as a sum of elements of the chosen, fixed basis or 
span. The elements of the basis in turn are not so composed, are not decomposable 
into more “elementary” entities of the space: they are intuitively the simplest ele-
ments of S. Let the letter “c” denote the index or degree of simplicity of an arbitrary 
function f in S relative to a fixed basis B ( f =

∑
kak · fk, {fk}k∈N is a basis for f). 

The index satisfies the following conditions:

1)	  c(-) is a positive number in the interval [0,1] (“1 = maximally simple”).
2)	 Elements f of S, that only differ in the value of those coefficients of the develop-

ment f =
∑

kak · fk , which are non-zero, have the same degree of simplicity.

The first condition sets upper and lower bounds for c(-). The second condition says, 
that c(-) has the same value on certain classes of functions. For instance, the poly-
nomials y1 = x2 + 3x3  and y2 = 25x2 − 103 x3  in   L2((a, b); R) (or in C(a,b)) are 
intuitively speaking equally simple, and this is what the second condition intends to 
capture. Classes of functions, whose members have the same zero coefficients, like 
y1 and y2, are equivalence classes and together with the class consisting of the “zero-
element” of S form a partition of S.

The second condition is perhaps controversial: Jeffreys proposed to rank differ-
ential equations (in one real variable) according to the absolute values of their coef-
ficients, apart from degree and order (Jeffreys, 1961, p. 47; cp. Howson, 1988). It is 
the class, however, not an individual member, that is assigned an index c. Condition 
2 is problematic but for a reason that becomes evident in connection with functions 
that cannot be represented by a finite sum in the chosen basis; more on this below.

The third condition expresses the “composition property” introduced a few para-
graphs above. It says that a function which is a sum of more than one element of the 
basis cannot be simpler than any combination of those elements of the basis B, that 
enter with non-zero coefficients into the development of the function. The elements 
of B are to be the “simplest” elements of the space S.

3)	 The index c of an arbitrary element f of S is always smaller or equal to the product 
of the indices of the elements of the basis of f in S (with fixed B).

In Sect. 4 I consider a final requirement.
The following examples of value distributions for c(-) are meant to illustrate the 

consequences (and consistency) of the “axioms” stated. For this purpose suppose the 
model f in question can be represented in the vector space of polynomials of degree 
N, PN, spanned by the set of monomials {fk}k≤N.

Let c(-) be defined on PN as follows:
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The index satisfies all three conditions. c is in [0,1]. c(f) is independent of the abso-
lute values of the (non-zero) coefficients of f. The product of the indices of the ele-
ments of the span that enter the development of f with non-zero coefficients is larger 
or equal to c(f). (Note, if the subspace is partitioned as suggested, and a representative 
g is selected from each of the 2 N−1 partitions, than the indices of the representatives 
sum up to 1.) Besides the finiteness of PN , the example is limited in an important 
respect: it represents all elements of B as equally simple. These restrictions on c(-) 
are lifted easily:

Let fk := xk(k ∈ N0), then the set {fk} spans the space of all polynomials P on the 
interval [a,b].

Let the indices of the elements of the set {fk} , c (fk) = ck , be in [0, 1] such that.∏∞
k=0 (ck + 1) = 2; and define for f in P:

The first two conditions are evidently satisfied. So is the third condition: the prod-
uct of the indices of those elements of the span which appear in f with non-zero 
coefficients, c(fk), is equal or larger than the index of f: 

∏N
k=0c (fk) ≥ c(f ), from the 

definition of c(-). If f in P  is an infinite power series, then lim
N→∞

∏N
k=0c (fk) converges 

to 0. In this case c(f) =0, and the third requirement is again satisfied.
Any f in P  that is represented by an infinite power series has the same index c = 0 

– f is maximally not simple. For instance, the degree of simplicity of the local Tay-
lor expansion of sin (x) in (a,b) has index 0. This is an apparently counterintuitive 
result: sin and cos are among the most simple functions known. The reply is that sin 
is indeed not simple if its representation is an infinite power series. Conversely, since 
the map sin(x) appears “simple” for the representation of certain phenomena, a poly-
nomial basis is just not adequate for describing those phenomena. (Equivalent terms 
need not appear equally simple.) Hermite polynomials turn up not only in quantum 
mechanics of the harmonic oscillator but also rather unexpectedly in models of the 
population density of kangaroos (Burnham Anderson 2002, p.257). The next section 
explores the question of how a scientist may choose a space of “plausible” models 
(expressed as a “basis” or a spanning set) in a given experimental context.

In concluding the section it is worthwhile pointing out an instructive transforma-
tion of the index c(f):

	 ζ(f ) = DF − log c(f )

hence ζ in [0, ∞ [. Condition 3) gives the inequality:

1 3
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ζ(f ) ≥

∑

k

ζ(fk),

where the sum is over all those elements of the basis B (of L2) that enter the finite 
development of f with non-zero coefficients. A natural interpretation of ζ is as a degree 
of complexity of f relative to the chosen basis B. The inequality says intuitively cor-
rect: the degree of complexity of a sum of independent functions is greater or equal 
to the sum of the degree of complexity of each of the independent functions. The 
definition allows a comparison with Jeffreys’ “complexity of an equation”.

3  On choosing a “model space”

The space of models reflects in a precise way background information and assump-
tions imported into modeling the phenomenon in question. The choice of a function 
space, a basis or a span, represents this information. What can be said generally about 
choosing a basis? Which rules govern the assignment of degrees of simplicity to the 
basis?

Three factors guide the choice of a mathematical basis for the quantitative repre-
sentation of a phenomenon: (a) the data themselves; (b) considerations of what has 
worked well for similar looking data-sets; (c) theoretical expectations regarding the 
causes (the explanation) of the phenomena (set of measurements) in question.

“Raw data” usually suggest or exclude certain general requirements for mathemati-
cal representations: periodicity, boundedness from above, monotonicity, symmetries, 
etc. The curve-fitter will tend to choose a basis (and “basic” models) accordingly. She 
builds up model spaces from families of functions that have “proved” themselves in 
the past (although perhaps in different contexts), guided by the considerations men-
tioned. As noted above, this repertoire is changing and perhaps growing with time 
and practice. The hope is that any of these by itself will suffice for the task, or else a 
finite combination of them will do the job: a linear sum, or a more general operation 
(like summing up their inverses). The fewer independent functions are needed for 
interpolation and prognosis the “simpler” (and convincing) the result will appear. 
Finally, theoretical explanations of the phenomenon usually suggest suitable can-
didates for the mathematical basis of description: if the curve-fitter believes she is 
observing a decay process she may avoid trigonometric functions and opt for lin-
ear combinations of exponentials. Pragmatic considerations like these only partially 
determine the choice of a basis for S since an infinite sequence of independent func-
tions is required. New and novel data may prompt a switch to a new or differently 
structured model space at any time. While the orthodox “paucity-of-parameters”-
criterion suggest an invariant, universal measure of simplicity, the present account 
takes care of the fact that simplicity orderings may change over time even without 
prompt by an expanding data set.

Secondly, how are degrees of simplicity assigned to the elements of the basis once 
it is chosen? In the light of what was argued for in the previous sections I suggest 
that the degrees of simplicity of the elements of the basis track the frequency of 
past successful application. This suggestion gives an “experiential” meaning to the 
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c(fk). It comes at a price: most elements of any basis will never have been “applied 
successfully” at all (that is directly, as an integral law). The frequency of success-
ful use is zero. In consequence, a finite segment only of any (model) space S has 
non-zero degrees of simplicity. (The issue is more complicated; see Ellis 1966 about 
dependencies between the form of phenomenological laws and scaling properties 
of the observables. To avoid a threatening conventionalism, I assume here that the 
set of observables along with their “scales” have been fixed prior to any inductive 
generalization.)

This feature of the present account of simplicity actually fits scientific practice: if 
the data force the curve-fitter “to go beyond” what is expressible as, say, a linear sum 
of a few well-tested functions, so that c(f)=0 , then she will reject the initial model 
space – and hence theoretical assumptions governing its choice – as unsuitable. For 
instance, if she finds that the growing set of data can be better expressed directly 
by the trigonometric sin than by any finite, fine-tuned sum of polynomials, she will 
switch to a basis that includes sin; hence c(f)  ≠ 0.

However, given that determining the frequency of successful use of a family of 
functions is not an exact science, it is perhaps sagacious to adopt the maxim never to 
set c(fk)  equal to zero (fk∈ B ), and always to work with an arbitrary small but non-
zero “place holder” value. In consequence, all f in the present space of models (with 
the exception of the zero-element and those with infinite developments in B) have 
non-zero degrees of simplicity.

For the purpose of illustration, consider y1 = a sin(bx) and y2 = a
(
1 − exp

(
−x2

))

· sin(b·x) as competing two-parameter models. Both are in S  = L2((−1, 1); R). If the 
basis of S is provided by the set of Fourier functions, then y1 has a finite develop-
ment, but not y2. Consequently, y2 appears as less simple than y1 in accordance with 
intuition. If instead the set, say, of Legendre Polynomials is chosen as a orthonormal 
basis of S, than y1 and y2 appear as equally simple, though perhaps with degree of 
simplicity zero. The current proposal shows why the number of adjustable param-
eters is not always and not per se a useful measure of simplicity.

Finally, given the interpretation of c(-) as frequencies it is a requirement that the 
c(fk) sum up to 1. Of course, frequency counting requires subtle classifications and 
groupings of phenomena in “relevant” and “irrelevant” and “similar” and “non-sim-
ilar” classes (the vagaries of which enhance the point about not letting c(fk) take the 
value zero). The “summation condition”, announced earlier as a final condition on 
c(-), says:

4)	 Let S be partitioned (π) in the way indicated under 2); then the indices of the 
representatives gk selected from each partition in π sum up to 1: 

∑
k∈πc (gk)= 1.

Both examples toward the end of Sect. 3 satisfy the summation condition. The con-
dition is motivated solely by the particular “empirical” interpretation adopted here 
for the index c . It is formally independent of 1) to 3) as the core of an “axiomatic” 
characterization of a simplicity index for functions.

(Note that the summation condition and the 3. condition (above) work against each 
other in infinite function spaces:

∑
k∈πc (gk) = 1 ⇒ c(gk) → 0 for k→∞ (gk ∈ B) as a 
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necessary condition for convergence of the sum. Hence lim
k→∞

∏
kc (gk)= 0, for any f in 

S that has no finite development.)

4  Simplicity and induction

The present account of simplicity may serve as a self-contained, non-probabilistic 
basis for justifying the reliance on the simplest hypothesis as a guide to the future. 
Besides, it helps overcoming difficulties in a Bayesian account of the "curve-fitting" 
problem. I begin with the second claim.

Simplicity orderings are an important factor in objectivist Bayesian probabil-
ity kinematics. I have commented in Sect.  2 on two methods proposed (Jeffreys, 
1961, Bandyopadhyay et al. 2014, 1999) in order fix the priors by ranking compet-
ing hypotheses in the light of counting “adjustable parameters” or by “ease of use”. 
Neither solves the problem of justifying belief in the simplest hypothesis among a lot 
of alternatives in the sense of giving an independent reason (or explanation) for why 
the simpler one should be the more probable one. By assigning the simplest hypoth-
esis the highest probability Bayesians presuppose a (hypothetical) “solution” of the 
problem in question. The present account fills in the gap: suppose there are (only) two 
“competing” models f and g in S, with basis B, that both deductively fit the data up 
to now. The curve-fitter’s background information ( W ) includes information about 
relative frequencies of successful applications for f and g, and she evaluates the a 
priori probabilities of both in the light of W. Let h denote the relative frequencies 
of successful applications in her “field” and making use of David Lewis’ “Principal 
Principle” one finds.:

p(f | W) = p(f | W’& h(f)) = h(f) = c(f).
p(g | W) = p(g | W’ & h(g)) = h(g) = c(g).

Hence p(f | W) > p(g |W) if and only if c(f) > c(g), that is if f is simpler than g. The 
same argument goes through in the case of countable many alternatives. No further 
conditions on a priori probabilities are called for.

However, the present treatment of simplicity furnishes an independent, non-prob-
abilistic justification for believing or “accepting” the simplest of a lot. Suppose then, 
that relative to S and B and a set of data, a simplicity function c(-) is given. In order to 
justify the choice of the most simple family as rationally superior to any other choice, 
one would need a claim (T) like:

“The simplest family in S, compatible with the data, is the mostlikeliest to be 
true."

assuming that (controversially perhaps) scientists pursue truth. Alternatively: “The 
simplest family of functions in S, compatible with the data, is the most rational to 
believe (to `choose´).” (The difference does not matter for the question at stake here.)

The key to justifying (T) is that simplicity judgments track the frequency of past 
successful applications (Sect. 2), hence (T) is schematically equivalent to (T*):
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“The most frequently successfully applied family of functions in S, compatible 
with the data, is the most likeliest to be true.”

(T*) says that past successful applications are a reliable guide to the truth in the 
choice of functional forms: family f (in S) has been “frequently successfully applied” 
in the past, so it will likely make a “successful fit” in the present, similar case too. 
This is a piece of garden-variety inductive reasoning, enumerative induction. It is the 
most simplistic of inductive modes, perhaps more often false than right (see Wagenitz 
2003 for interesting examples). Nevertheless, many ingenious justifications for enu-
merative induction have been offered in the past. One sticks out as initially attractive 
and intuitive: enumerative induction itself has (frequently) led to true conclusions in 
the past, hence enumerative induction will likely lead to a true conclusion (or true 
predictions) in the present case as well. This sort of justification for enumerative 
induction is itself “enumerative” and appears badly circular. On a closer look the cir-
cularity is of a special kind (“rule circularity”), and set in the context of an externalist 
theory of justification, may not be vicious at all (Papineau, 1992; H. Mellor 1991). 
This is not the place to fill in the details and argue this case, but one point should 
have become clearer: if enumerative induction is justifiable, then comparative sim-
plicity of a quantitative hypothesis has evidential value. Much the same can be said 
if one takes induction in the sciences to be broadly “eliminative” instead of (naively) 
enumerative. Papineau (1993, p.166) argues that “physical simplicity” is the key to 
eliminative induction:

“if the constituents of the world are indeed characterized by the relevant kind 
of physical simplicity, then a methodology which uses observations to decide 
between alternatives with this kind of simplicity will for that reason be a reli-
able route to the truth.”

Papineau leaves the content of the notion of “physical” simplicity, and hence the 
question of how this particular feature can take on such a crucial role, open. If sim-
plicity is understood in the sense indicated in this paper this lacuna is filled and the 
account strengthened.

The task of justifying (T) is a version of the familiar problem of induction. If the 
considerations above are on the right track, one cannot well consistently embrace the 
rationality of inductive reasoning and be a sceptic about simplicity’s evidential role 
(I suspect Putnam 1972, from which the quote at the beginning was taken, is a case 
in point). There is no special problem regarding the “evidential” value of simplicity 
of hypotheses.
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