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Abstract
We explore the question of whether cost-free uncertain evidence is worth waiting
for in advance of making a decision. A classical result in Bayesian decision theory,
known as the value of evidence theorem, says that, under certain conditions, when you
update your credences by conditionalizing on some cost-free and certain evidence,
the subjective expected utility of obtaining this evidence is never less than the sub-
jective expected utility of not obtaining it. We extend this result to a type of update
method, a variant of Judea Pearl’s virtual conditionalization, where uncertain evidence
is represented as a set of likelihood ratios. Moreover, we argue that focusing on this
method rather than on the widely accepted Jeffrey conditionalization enables us to
show that, under a fairly plausible assumption, gathering uncertain evidence not only
maximizes expected pragmatic utility, but alsominimizes expected epistemic disutility
(inaccuracy).

Keywords The value of evidence theorem · Expected utility · Accuracy · Jeffrey
conditionalization · Virtual conditionalization

1 Introduction

Can it be that a rational agent would postpone a decision in order to acquire cost-
free but uncertain evidence? Suppose that there are two types of urns containing
marbles. Urn X contains 8 blue and 2 violet marbles, while urn Y contains 2 blue and
8 violet marbles. A given urn is selected at random by the toss of a fair coin. Ann is
about to guess the type of the selected urn, and her possible guesses have different
practical consequences that depend on whether the selected urn is of type X or Y .
But before guessing, she has the opportunity to draw, cost free, a marble from the
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selected urn. Yet Ann knows in advance that the lighting is so dim that it would be
difficult to discern what her experience says: given her background information about
the lighting conditions, she expects that learning experience would make her uncertain
about whether the drawn marble is blue, B, or violet, V .

A classical result in Bayesian decision theory (Savage 1954, ch. 4; Raiffa and
Schlaifer 1961, ch. 4.5; Good 1967; Ramsey 1990), known as the value of evidence
theorem (VET), says that, under certain conditions, when an agent updates her cre-
dences upon the receipt of cost-free evidence, the subjective expected pragmatic utility
of obtaining this evidence is never less than the subjective expected pragmatic utility
of not obtaining it. That is, expecting to obtain cost-free evidence cannot lead you to
expecting to make worse practical decisions.1 The original VET, however, is limited
to cases where the agent learns proposition E for certain from a set E of mutually
exclusive and jointly exhaustive propositions, and hence may update her credences by
dint of Bayesian conditionalization (BCondi, for short). Crucially, in such cases the
agent is certain ex ante that exactly one proposition E from E will be true. But often,
like in Ann’s case, we undergo learning experiences where it is hard to discern what
that proposition is, and so we become uncertain about which element of E is true.
Could cost-free uncertain evidence so understood be worth waiting for in advance of
making a decision?

This question has not gone unnoticed in the literature. Graves (1989) showed that
we can extend VET so that it holds for cases where we become uncertain about
what the logically strongest proposition we learn is, and update our credences by
using a rule called Jeffrey conditionalization (JCondi, for short). This rule requires
uncertain evidence to be specified as a redistribution of the agent’s credences over the
propositions in some partition E of a set of possibilities, without assigning absolute
certainty to any particular proposition (hereafter, a Jeffrey shift). For example, Ann’s
learning experience can be understood as a Jeffrey shift over the partition {B, V }. To
accommodate this type of uncertain evidence, Graves’s argument, as we will argue,
is mobilized by two conceptual moves. The first one is that any Jeffrey shift can be
specified as a sort of propositional certainty, i.e. as a proposition that receives posterior
credence 1 in an enriched subjective probability space. This enrichment is achieved
by adding to the original smaller space propositions about one’s posterior credences
attached to the members of a partition E . The second key move is to show that, under
certain conditions, BCondi on the proposition specifying the posterior credences over
E in the enriched space is equivalent to JCondi in the original small space.

After challenging Graves’s argument, this paper offers an alternative extension of
VET to the case of learning from uncertain evidence. To preview, instead of recasting
uncertain evidence as certain in an enriched subjective probability space, the proposed
view retains the uncertainty of one’s evidence in the original smaller space, and pro-
vides a specification of this uncertainty by utilizing the method of virtual evidence
proposed by Pearl (1988, 1990) and developed in Chan andDarwiche (2005). Accord-
ing to this method, uncertain evidence can be specified as a set of likelihood ratios,
where each likelihood ratio tells you how well some virtual evidence fits with some

1 Note that VET does not say that the agent will actually do better by learning a proposition. It says that
she will do better in expectation, from the perspective of her ex ante credence function.
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proposition in partition E as compared to how well it fits with another proposition in
that partition. The virtual evidence is meant to be an auxiliary proposition that bears
on the truth of propositions in E . We supply this method with a specific understanding
of what the auxiliary proposition could be in the context of learning from uncertain
evidence. Our proposal is that it can be understood as the proposition UE

cλ which says
that you take your evidence to be E and adopt the posterior credence function cλ in
response. For short, we will refer to this proposition as saying that you update on
E .2 Importantly, when you take E as your evidence and adopt a posterior credence
function in response, you foresee the possibility that UE

cλ could be true, even if E is
in fact false. This is because, in the context of learning from uncertain evidence, you
may mistake the true evidence E ′ for some other E ∈ E . So for example, in Ann’s
case, when looking at the drawn marble in a dim light, she might take her evidence to
be B, and adopt the posterior cλ in response, when in fact V is true.

There is, we suggest, a way to incorporate this possibility of mistake in one’s learn-
ing into the update mechanism. The key idea is that we can express it by determining
the extent to which the propositionUE

cλ is more likely under E than E ′, or the extent to
whichUE

cλ favours E over E ′. Intuitively, if Ann has updated on B, she can express the
extent to whichUB

cλ is more likely under B than V . One natural way to determine this
extent is to settle on a likelihood ratio which tells Ann to what extent the proposition
UB
cλ is more expected under B than V . This likelihood ratio can be any non-negative

number she considers reasonable in the light of her background knowledge. As will
be explained in more detail later on, there is a reasonable way to plug these likelihood
ratios into an update rule, without the need of determining the absolute likelihoods
for UE

cλ . As will be shown, the proposed update method gives the expected result in
Ann’s case in the sense that it leaves B and V uncertain in Ann’s posteriors.

Armed with the method of virtual evidence so understood, we show how VET
can be extended to the context of uncertain evidence. Three basic ideas underpin this
extension. First, updating on a set of likelihood ratios for the proposition UE

cλ can be
modelled as a variant of what Pearl called ‘virtual conditionalization’ (VCondi, for
short). Second, under a plausible assumption, updating by this variant of VCondi is
equivalent to a version of Bas van Fraassen’s (1984) reflection principle. This principle
says that one’s posterior credence function should be equal to one’s prior conditional on
the propositionUE

cλ . Third, once we assume that the propositionsUE
cλ form a partition,

we can show that the expected worth of accomodating cost-free uncertain evidence by
the proposed variant of VCondi cannot be negative. And this expectation is calculated
relative to the agent’s prior credences over the propositions UE

cλ .
We proceed as follows. In Sect. 2, we discuss three different ways of specifying

uncertain evidence that play a crucial role in bothGraves’s andour alternative extension
of VET. In Sect. 3, we present three updating rules, each attuned to a different way
of specifying uncertain evidence. In Sect. 4, we spell out in detail Graves’s extension
of VET. In Sect. 5, we show that Graves’s argument is problematic when we care
not only about the practical rationality of our decisions, but also about the epistemic
rationality of our beliefs. In Sect. 6, we lay down our alternative extension of VET to

2 A very similar proposition has been employed by Gallow (2019) in his account of externalist updating
which covers situations where it is rational for an agent to be uncertain about what her evidence is.
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the case of learning from uncertain evidence and show that it dovetails with a purely
epistemic approach that aims to vindicate updating on uncertain evidence. Section 7
concludes.

2 Specifying uncertain evidence: three ways

Let (W,F , c) be an agent’s subjective probability space (her credal space), whereW
represents the possibilities that the agent can distinguish between, F is an algebra of
subsets of W that can be understood as the propositions the agent can express, and c
is the agent’s credence function which assigns numbers from [0, 1], called credences,
to propositions in F . We will assume throughout that, at any given time, the credence
function c is a probability function over F . Since we will be mostly interested in
the dynamics of credences in a decision context, we require that F includes a finite
partition S ofW , S ⊆ F , which contains propositions S representing the states of the
world upon which the consequences of the agent’s actions depend. As will be apparent
later on, we also need to require that the algebraF is sufficiently rich so that it includes
a finite number of propositionsUE

cλ . Recall that a proposition of this sort says that you
update on E .

Now, learning experience can provide an agent with various types of evidential
input λ that may prompt a revision of their credence in any X ∈ F , c(X), resulting
in a posterior credence in X , cλ(X). But how can we characterize an evidential input
more precisely? There are at least two ways of answering this question that are well
entrenched in Bayesian epistemology. Both assume that learning experiences do not
provide evidential inputs all by themselves. Rather they provide evidential inputs
because they impact on our credences about evidence propositions, which may in turn
provide support for other propositions. However, these two approaches differ on how
this impact should be cashed out.

According to the first, somewhat more popular view, any evidential input takes the
form of a direct change in one’s credences over some set of propositions. Thus, any
evidential input acts like a constraint on the set of possible credence functions C and
restricts the candidates for the agent’s posterior credence function. More formally, an
evidential input of this sort can be understood as a set of posterior credence functions
over F , Cλ, which contains those possible credence functions of the agent that are
consistent with this input, that is, Cλ ⊆ C (see, e.g. van Fraassen 1989, ch. 13; Uffink
1996; Joyce 2010; Dietrich et al. 2016; van Fraassen and Halpern 2017). Importantly,
this view allows us to treat as evidential input information or data that cannot be
expressed as propositional evidence.

According to the second view, we may think of evidential input as a sort of update
factor, which can then bring about changes in one’s credences (see, e.g. Wagner 2002;
Hawthorne 2004). Some update factors may be essentially relative, i.e. they tell us how
well an outcome of one’s learning experience fits with the proposition X as compared
to how well it fits with the proposition Y . A classical example of such a factor is given
by the likelihood ratio of propositions X and Y given the evidence proposition E ,
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c(E |X)
c(E |Y )

(see, e.g. Good 1950). A more general representation of this factor is given by

the odds ratio of X and Y , also called the Bayes factor:3

Bayes factor: If cλ is a posterior credence function and X ,Y ∈ F , then the
Bayes factor of X and Y is given by:

Bcλ,c (X ,Y ) = cλ (X)

cλ (Y )
/
c (X)

c (Y )
. (1)

That is, the Bayes factor of X and Y is a ratio of new-to-old odds for X against Y ,
where the new odds are cλ(X)

cλ(Y )
, and the old odds are c(X)

c(Y )
. This ratio is meant to capture

the factor by which the old odds for X against Y can be multiplied to get the new
odds. Observe that the agent’s Bayes factors do not uniquely specify her posterior
credences, but only impose overall constraints on these posteriors.

In order to show that the likelihood ratio—which isolates the full import of learning
experience, with prior credences factored out—is an instance of the Bayes factor,
assume that one’s posterior credence for any X ∈ F , cλ (X), comes from one’s prior
credence in X by conditionalizing on the proposition E ⊆ W , i.e. cλ (X) = c (X |E).
Then,

Bcλ,c (X ,Y ) =
c(X |E)
c(Y |E)

c(X)
c(Y )

=

c(X)c(E |X)
c(E)

c(Y )c(E |Y )
c(E)

c(X)
c(Y )

=
c(X)c(E |X)
c(Y )c(E |Y )

c(X)
c(Y )

= c (E |X)

c (E |Y )
. (2)

Given the above preliminaries, how can we represent uncertain evidence? In what
follows, we will characterize three ways of specifying uncertain evidence: the first
one is due to Jeffrey (1983), the second one is due to Skyrms (1980), and was used
in Graves’s extension of VET, and the third one is an amended method proposed in
Pearl (1988, 1990) and developed in Chan and Darwiche (2005).

Jeffrey (1983) argued that in many cases learning experience does not constrain an
agent’s credences in a way that is tailor-made for the orthodox Bayesian conditioning,
that is, when the evidential input can be modelled as the logically strongest evidence
proposition E in W that receives the posterior credence of 1, or simply as the Bayes
input:

Bayes input: CE
λ = Cλ = {cλ : cλ (E) = 1} for some E ⊆ W such that E �= ∅.

Jeffrey believed that, in cases like Ann’s, although learning experience does not single
out an evidence proposition E that receives posterior credence 1, cλ (E) = 1, it
nevertheless directly affects the agent’s prior credences over the propositions in some
set E , which is a partition of W , shifting them to posterior credences cλ (E), for all
E ∈ E . Thus, uncertain evidence so understood can be modelled as the following
evidential input:

3 Some philosophers deny that a Bayes factor represents an evidential input. Most notably, Bradley (2005)
claims that the Bayes factors must be regarded as features of the agent’s response to experience, not as
what experience delivers to her. And this is so because they lack the kind of objectivity which obligates
others using them as constraints on their posterior credences. But, as Jeffrey (1992, pp. 7-9) pointed out
convincingly, so long as others trust your response to your experience, they would use your Bayes factors
to move to a posterior credence function, whether or not they share your prior credence function.
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Jeffrey shift: CEλ = Cλ = {cλ : cλ (E) ≥ 0 for all E ∈ E} for some set E of
ordered pairs {〈E, cλ(E)〉} such that E ∈ E and

∑
E∈E cλ (E) = 1.

That is, uncertain evidence so understood is a redistribution of the agent’s credences
over the propositions in some partition E of the set of worlds she considers possible.

To provide Skyrms’s characterization of uncertain evidence, we need to consider a
particular extension of (W,F , c). Given two algebrasF andF∗, let the injective map
∗ : F → F∗ be an algebra embedding, that is, a function that preserves all Boolean
operations. Then, let (W∗,F∗, c∗) be an extension of (W,F , c) such that:

E1 For every X ∈ F , c∗ (X∗) = c (X).
E2 For some E ⊆ F and a finite set of posterior credence functions Cλ , F∗ contains

a finite number of propositions RE
cλ .

That is, the algebra F∗ in the extended credal space (W∗,F∗, c∗) contains the copies
X∗ of all the propositions X in the original smaller algebra F , and it also contains a
finite number of propositions RE

cλ , each saying that the posterior credences over E are
given by the credence function cλ.

Now, we can also consider learning experiences in the extended credal space that
prompt revisions of c∗ resulting in a new credence function c∗

λ. In particular, given the
set of posterior credence distributions over F∗, C∗

λ ⊆ C∗, that are consistent with the
evidential input λ in that extended credal space, uncertain evidence may be presented
as the following evidential input:

Skyrms input: C∗R
λ = C∗

λ = {
c∗
λ : c∗

λ

(
RE
cλ

) = 1
}
for some RE

cλ such that R
E
cλ �=

∅.
Thus, uncertain evidence modelled as Skyrms input is the agent’s assignment of pos-
terior credence 1 in the extended algebra to the proposition RE

cλ that specifies a Jeffrey
shift over some partition E .

Unlike Jeffrey’s and Skyrms’smethods, Pearl’smethod of virtual evidence specifies
uncertain evidence as an evidential input that directly constrains quantities different
from the absolute values of posterior credences. The core idea of Pearl’s method is
that we can interpret the uncertainty of every proposition E in some partition E of
W as the uncertainty of E’s relevance to some auxiliary proposition in W . And to
specify how uncertain this relevance is, Pearl proposes to use a set of likelihood ratios.
Here we will amend Pearl’s method by assuming that the auxiliary proposition is the
proposition UE

cλ , which says that you update on E . More precisely,

Pearl-style input: LE =
{

αE : αE = c
(
UE
cλ

|E
)

c
(
UE
cλ

|E ′
) , αE ∈ [0,∞) and αE ′ = 1

}

,

for some UE
cλ ⊆ W and some partition {E : E ∈ E} of W .

That is, the set LE contains the likelihood ratios αE of the proposition UE
cλ that are

relative to a pair of propositions E and E ′, with the likelihood ratio
c
(
UE
cλ

|E ′
)

c
(
UE
cλ

|E ′
) set

equal to 1. And each likelihood ratio in this set is given by the prior credence of UE
cλ

conditional on E divided by the prior credence of UE
cλ conditional on E ′.
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Importantly, to determine a Pearl-style input, we only need to specify a set of
likelihood ratios, not the absolute likelihoods for UE

cλ given E , for every E ∈ E . But
since every likelihood ratio αE in the set LE is proportional to the absolute likelihood
ofUE

cλ given E , i.e. αE ∝ c
(
UE
cλ |E

)
, there exists a positive constant l such that, for all

E ∈ E , c (
UE
cλ |E

) = l ·αE . Thus, the absolute likelihoods can be determined indirectly
from the set of likelihood ratios, albeit not uniquely.

Before moving on, let us elaborate on the propositionUE
cλ . Recall that this proposi-

tion says that you take your evidence to be E and adopt the posterior credence function
cλ in response. Firstly, followingGallow (2019), we assume that ‘taking your evidence
to be E’ does not involve any belief that E is true, and hence does not mean that you
assign to E the posterior credence 1. Secondly, we want to emphasize that even if the
agent already knows that she has updated on E , it does not entail that c

(
UE
cλ |E

) = 1,
for all E in E . That is, though UE

cλ can be regarded as ‘old evidence’ after the agent
has updated on E , we can still reasonably inquire about its evidential impact on the
propositions in E .4 If so, we should not interpret the conditional credence c

(
UE
cλ |E

)

as the agent’s actual credence in UE
cλ , supposing E to be true, for if you already know

that UE
cλ is true, your prior actual credence in UE

cλ conditional on any proposition is
1. Instead, we should understand it as a kind of counterfactual credence. That is, in
determining these credences, we should answer the question: How probable would the
actual evidence UE

cλ be if E were true? Naturally, we might expect that assigning pre-
cise counterfactual credences to propositions involves a lot of conceptual and formal
intricacies.5 Fortunately, in our approach, there is no need to determine the precise
values of these counterfactual credences. It suffices that the agent will express only
their ratios, leaving the precise values unspecified.

Let us now show how uncertain evidence recast as Pearl-style input can be applied
to Ann’s case. Recall that Ann knows beforehand that because she would observe the
drawn marble in a dim light, she would neither become certain that B is true, nor that
V is true. Nevertheless, foreseeing the possibility of error, she can take B or V as her
evidence and adopt some posterior credences over F in response. Suppose that, after
looking at the drawn marble, she updates on B. But, due to her knowledge about the
dim lighting, she foresees the possibility that UB

cλ could be true, even if B is false.
Still, she can interpret UB

cλ as providing evidence for B against V whose strength
can be given by a set of likelihood ratios. Let us suppose that Ann thinks that it is
twice as likely that UB

cλ would be true if B were true as if V were true. If this is so,
then we may say that learning experience provides Ann with the following likelihood

ratios: αB = c
(
UB
cλ

|B
)

c
(
UB
cλ

|V
) = 2 and αV = c

(
UB
cλ

|V
)

c
(
UB
cλ

|V
) = 1, and so LB = {1, 2}. This set

of likelihood ratios enables her in turn to specify, though not uniquely, the absolute

4 Consider the following analogy. You are about to toss a coin, but you don’t know whether it is fair (H1)
or double-headed (H2). Suppose that you have observed that the coin lands heads 100 times in a row (E).
Even though you already know that E is true, your observation provides evidence in favour of H2. For the
more times you see heads, the more evidence you have for the coin being double-headed. Hence, you are
far from saying that c (E |H1) = c (E |H2) = 1.
5 See, e.g. Sprenger (2015).
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Table 1 Ann’s likelihoods expressed in terms of her error credences c
(
UB
cλ |¬B

)
and c

(
U¬B
cλ |B

)

B ¬B

U B
cλ 1 − c

(
U¬B
cλ |B

)
c
(
UB
cλ |¬B

)

U¬B
cλ c

(
U¬B
cλ |B

)
1 − c

(
UB
cλ |¬B

)

likelihoods c
(
UB
cλ |B

)
and c

(
UB
cλ |V

)
. For example, she might assign c

(
UB
cλ |B

) = 0.4
and c

(
UB
cλ |V

) = 0.2, or c
(
UB
cλ |B

) = 0.8 and c
(
UB
cλ |V

) = 0.4.
The above understanding of Pearl-style input can also be explained in terms of

Ann’s error credences, as shown in Table 1. Think of UB
cλ and U¬B

cλ , where ¬B = V ,
as the possible, mutually exclusive noisy signals of Ann’s learning experience. That is,
before looking at the drawn marble, Ann thinks that she could mistake B for ¬B, and
likewise she could mistake ¬B for B. Thus, Ann thinks that there is some non-zero
probability—Ann’s false positive credence—that UB

cλ would be true, even if B were
not, and some non-zero probability—Ann’s false negative credence—thatU¬B

cλ would
be true even if B were true. Then, when Ann takes B as her evidence and adopts the
posterior cλ in response, the differential support that UB

cλ provides can be expressed

as a likelihood ratio αB of false negative and false positive credences,
1−c

(
U¬B
cλ

|B
)

c
(
UB
cλ

|¬B
) .

Why should we think that the problem of specifying uncertain evidence is philo-
sophically important? Firstly, as it turns out, the way we choose to specify uncertain
evidence helps us to resolve the problem of non-commutativity of JCondi, which says
that, once you update sequentially by dint of JCondi, switching the order in which
a pair of Jeffrey shifts over partitions E and E ′ is learned can yield different poste-
rior credences in the end. This feature of JCondi is often regarded as its flaw. But, as
shown by Field (1978) and developed byWagner (2002), JCondi is commutative when
identical learning is interpreted as identical Bayes factors. Note also that if uncertain
evidence is represented by Skyrms input, then sequential updating on such uncertain
evidence by a variant of BCondi, as given in chapter 3, would also be commutative,
since BCondi is essentially commutative. Secondly, as argued in Wagner (2009), a
certain parametrization of JCondi which uses the agent’s Bayes factors rather than
her posterior credences enables us to show that JCondi and the so-called opinion
pooling—a method of aggregating probabilistic credences—commute. That is, the
result of pooling and then updating by JCondi is the same as first updating by JCondi
and then pooling.

As we will show in what follows, the way we specify uncertain evidence bears also
on whether or not updating on uncertain evidence both maximizes expected pragmatic
utility and minimizes expected epistemic disutility (inaccuracy).
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3 Updating on uncertain evidence

A widespread position in Bayesian epistemology is that JCondi is an appropriate
update rule when the agent undergoes a learning experience which does not rationalize
absolute certainty in any proposition. This rule may be presented as follows:

JCondi: Given a Jeffrey shift CEλ , the agent’s posterior credence function cλ

should be such that, for every X ∈ F ,

cλ (X) =
∑

E∈E
c (X |E) · cλ (E)

Although any Jeffrey shift CEλ which does not rationalize absolute certainty in any
proposition in E cannot be mediated by way of Bayes input in the credal state
(W,F , c), it might be tempting to think that it can be mediated by some other propo-
sition in (W,F , c) that we learn for certain. But if this were possible, there would
be no need for JCondi in the first place. After all, this rule was motivated by the
thought that there is no proposition in F to conditionalize upon. Consider Jeffrey’s
candlelight case in which the agent inspects a piece of cloth by candlelight and gets
the impression that it is green, although she concedes that it might be blue, or even
violet. As Jeffrey (1983, p. 165) argued convincingly, there is no proposition that can
convey the precise quality of this learning experience. And even if we allow for the
possibility that the agent learns with certainty the proposition that the cloth appears
green, this proposition would be too vague, for various learning experiences that fit
this proposition would justify different credences in the proposition that the cloth is
green (Christensen 1992). But we might well think that a Jeffrey shift can be mediated
by the proposition RE

cλ that the agent learns with certainty in (W,F , c). After all,
it seems plausible to think that, in the context of JCondi, the agent becomes certain
that her credences over some partition E shifted in a certain way. But it seems that, in
cases like Jeffrey’s candlelight example, this proposition does not describe the precise
content of the agent’s learning experience, but merely summarizes the effect of this
experience on her posterior credences over E . And, again, if (W,F , c) included this
kind of proposition, there would be no need for JCondi in the first place. After all, one
could just then use only BCondi and conditionalize on the proposition RE

cλ , so that,
for every X ∈ F , cλ (X) = c

(
X |RE

cλ

)
.

Schwan and Stern (2017) have recently argued that what the agent learns with
certainty in the context of JCondi can be represented by a dummy proposition, D,
which says what the agent would have learned with certainty were she capable of
expressing it. They claim that this in turn allows us to represent updating on uncertain
evidence as conditionalization on a dummy proposition inF . For example, when Ann
looks at the drawn marble in a dim light and undergoes a Jeffrey shift over {B, V }, we
can represent her as if she becomes certain of some ineffable-colour-proposition D.
But though this view has considerable merit when combined with Schwan and Stern’s
causal understanding of when the condition called rigidity6 is satisfied, it does not

6 Rigidity says that for all X ∈ F and all E ∈ E , cλ (X |E) = c (X |E). As shown in Jeffrey (1983), rigidity
is equivalent to JCondi.
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provide much help in establishing VET in the context of uncertain evidence. For VET
requires an agent to determine prior credences over various evidence propositions that
she might learn in the future, but the ineffability of the dummy proposition prevents
it from entering into the calculation of her prior credences. In particular, we cannot
determine Ann’s prior credence in the ineffable-colour-proposition D because we lack
the ability to describe what Ann sees in a dim light.

Still, however, it seems reasonable to think that a Jeffrey shift can be mediated by
way of a Skyrms input, C∗R

λ , i.e. by the proposition RE
cλ that one learns with certainty

in the extended credal state (W∗,F∗, c∗).7 If so, then we may think that when the
agent updates by JCondi, she ought to update as if she were (i) expandingF toF∗ and
extending c to c∗, (ii) conditionalizing c∗ upon some RE

cλ in F∗ to get the posterior
c∗
λ, and then (iii) recovering her posterior cλ over F by restricting c∗

λ to F . This idea
is captured by the extended Bayesian conditionalization:

EBCondi: Given a Skyrms input C∗R
λ , the agent’s posterior credence function

cλ should be such that, for every X ∈ F :

cλ (X) = c∗(X∗|RE
cλ).

Skyrms (1980) has argued that, under some auxiliary assumptions, updating by
EBCondi in (W∗,F∗, c∗) is equivalent to JCondi in (W,F , c). This result can be
stated more formally as follows:

Proposition 1 Suppose that E is a finite partition of W and RE
cλ ∈ F∗. And suppose

that c∗ satisfies the following two conditions:

C1 For every E ∈ E , c∗ (
E∗|RE

cλ

) = cλ (E), provided that c∗ (
RE
cλ

)
> 0.

C2 For every X ∈ F and every E ∈ E , c∗ (
X∗|E∗ ∧ RE

cλ

) = c∗(X∗|E∗), provided
that c∗(E∗ ∧ RE

cλ) > 0.

Then, EBCondi ⇔ JCondi.

Proof Given the conditions (C1) and (C2), the proof of Proposition 1 is straightfor-
ward:

cλ(X) = c∗ (
X∗|RE

cλ

)

= c∗ (
X∗ ∧ RE

cλ

)

c∗ (
RE
cλ

)

= c∗ (∨
E∈E

(
X∗ ∧ RE

cλ ∧ E∗))

c∗ (
RE
cλ

)

=
∑

E∈E c∗ (
X∗ ∧ RE

cλ ∧ E∗)

c∗ (
RE
cλ

)

=
∑

E∈E c∗ (
X∗|RE

cλ ∧ E∗) c∗ (
RE
cλ ∧ E∗)

c∗ (
RE
cλ

)

7 For this view, see Skyrms (1980).
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=
∑

E∈E c∗ (
X∗|RE

cλ ∧ E∗) c∗ (
E∗|RE

cλ

)
c∗ (

RE
cλ

)

c∗ (
RE
cλ

)

=
∑

E∈E
c∗ (

X∗|RE
cλ ∧ E∗) · c∗ (

E∗|RE
cλ

)

=
∑

E∈E
c∗ (

X∗|E∗) · cλ (E)

(by (C1) and (C2))

=
∑

E∈E
c (X |E) · cλ (E)

(since c∗ (
X∗|E∗) = c (X |E))

��
More informally, Proposition 1 tells us that, given a fixed extended credal state

(W∗,F∗, c∗) which satisfies both (C1) and (C2), updating by EBCondi in that space
gives the same result as if the agent were updated her credences by JCondi in the
smaller credal state (W,F , c).

Note that condition (C1)may be understood as an instance ofwhat Bas van Fraassen
(1984) called reflection principle, i.e. a principle which requires one’s current cre-
dences to defer to one’s future credences. After all, (C1) says that the agent’s prior
conditional credence in proposition E∗ ↔ E ∈ F given that her posterior credences
over E are determined by cλ should be equal to the posterior credence in E , cλ (E).
The second condition (C2) tells us that once you learn that some E in the partition E
is true, the information about your posterior credences over E should have no bearing
on the truth of X .

Importantly, Proposition 1 is not the only way to establish how JCondi can be rep-
resented as Bayesian conditioning in some extended credal state. Another influential
approach has been given by (Diaconis and Zabell 1982, Theorem 2.1). They have
identified a necessary and sufficient condition, sometimes called superconditioning,
for one’s posterior credence to be the result of conditioning one’s prior credence in
some larger credal space. It says that cλ comes from c by conditioning in the extended
credal space just in case there exists a number b ≥ 0 such that, for every X ∈ F ,
cλ (X) ≤ b · c (X). However, contrary to Skyrms, Diaconis and Zabell’s approach
places no constraints on how the extended credal state should look like. It only says
that we can construct an extended credal space by adding two propositions a and b
to the original credal space, where a says that the agent had the learning experience
she had, and b indicates its absence. For this reason, Skyrms’s approach appears to be
better suited for the task of providing VET in the case of uncertain evidence. For VET
requires an agent to assign prior credences to propositions describing the possible
outcomes of her learning experience. And in order to do this, the agent should be in
a position to grasp the content of these propositions, prior to her learning experience.
But a is a proposition the agent is in a position to grasp once she has already had the
learning experience. Skyrms’s approach appears to deliver the required element by
telling us that these propositions, represented by the RE

cλ ’s in the extended credal state,
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describe the possible Jeffrey shifts the agent might undergo, and hence their content
can be grasped before the agent’s learning experience.

Aswe have argued in the previous section,we can also think of uncertain evidence in
terms of Pearl style-input. But how should the agent update her credences in response
to this input? Here we propose a variant of what Pearl calls virtual conditionalization:8

VCondi: Given a Pearl-style input LE , an agent’s posterior credence in every
X ∈ F should be:

cλ (X) =
∑

E∈E αE · c (X ∧ E)
∑

E∈E αE · c (E)
.

Let us look at how VCondi works in Ann’s case. Suppose that Ann assigns equal
credences to the proposition that the selected urn is of type X (S) and to the proposition
that the selected urn is of type Y (¬S). Given the experimental set-up she faces, her
prior credences for the propositions B, V , S ∧ B, and S ∧ V can be determined as
follows:

• c (B) = c (S) · c (B|S) + c (¬S) · c (B|¬S) = 1
2 · 8

10 + 1
2 · 2

10 = 1
2

• c (V ) = c (S) · c (V |S) + c (¬S) · c (V |¬S) = 1
2 · 2

10 + 1
2 · 8

10 = 1
2

• c (S ∧ B) = c (S) · c (B|S) = 1
2 · 8

10 = 2
5

• c (S ∧ V ) = c (S) · c (V |S) = 1
2 · 2

10 = 1
10

Ann then looks at the drawn marble in dim light, takes B as her evidence and adopts
the posterior credence function cλ in response. This in turn provides her with evidence

for B and V whose differential support is settled by Ann as αB = c
(
UB
cλ

|B
)

c
(
UB
cλ

|V
) = 2 and

αV = c
(
UB
cλ

|V
)

c
(
UB
cλ

|V
) = 1. Then, VCondi prescribes the following posterior credence for S:

cλ(S) = αB · c (S ∧ B) + αV · c (S ∧ V )

αB · c (B) + αV · c (V )

= 2 · 2
5 + 1 · 1

10

2 · 1
2 + 1 · 1

2

= 3

5
.

8 Since the likelihood ratio αE is a special kind of the Bayes factor, our variant of VCondi can be understood
as an instance of Wagner’s (2002) updating which says that upon learning Bayes factors of the form

bE = Bcλ,c
(
E, E ′) = cλ(E)

cλ(E ′) /
c(E)
c(E ′) , an agent’s posterior credence in every X ∈ F should be:

cλ (X) =
∑

E∈E bE · c (X ∧ E)
∑

E∈E bE · c (E)
.

Note also that Wagner’s updating rule is a reformulation of Field’s (1978) updating—yet another updating
rule in the context of learning from uncertain evidence.
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Similarly, VCondi shows that, when after looking at the drawn marble in a dim
light, Ann updates on B, she should become more confident in B, though still less
than certain. That is:

cλ(B) = αB · c (B ∧ B) + αV · c (B ∧ V )

αB · c (B) + αV · c (V )

= αB · c (B)

αB · c (B) + αV · c (V )

(since B and V are mutually exclusive)

= 2 · 1
2

2 · 1
2 + 1 · 1

2

= 2

3
.

Although VCondi seems to deliver intuitively correct answers in the context of
learning from uncertain evidence, one might still ask if it is a rational update method
to follow. Specifically, VCondi hinges on the assumption that, after learning, the agent
takes her evidence to be some E from E and adopts the posterior credence function
cλ in response. But why shouldn’t we think that the agent adopts this posterior also
for reasons other than taking E as her evidence? For example, suppose that you take
E as your evidence and you believe it provides a strong support for your scientific
hypothesis. But you are a scientist in a small town, and you suspect that, like most
small-town scientists, you will come very soon to justifiably doubt your hypothesis.
So your posterior credence in X is not only a result of taking E as your evidence,
but also a result of expecting evidence against X in the near future. But this is hardly
acceptable, for expecting evidence against X is not the same as possessing or taking
E as evidence against X .9 Yet there is nothing in the update mechanism of VCondi
that precludes this possibility.

But there seems to be a reasonable way to prevent the above possibility. It rests on
the following condition:

CIndi: For every E ∈ E and X ∈ F ,

c
(
UE
cλ |E ∧ X

)
= c

(
UE
cλ |E

)
.

That is, CIndi, when imposed on one’s prior credences, expresses a relation of condi-
tional independence between UE

cλ and X given E . It says that once we suppose E , the
propositions UE

cλ and X cease to bear any information about one another. Recall the
small-town scientist’s example. Suppose you think that it is more likely to have a high
posterior credence in X when you don’t expect evidence against X than when you
do. What CIndi says is that, given E , your posterior credence function which assigns
a high credence to X should be insensitive to whether or not you expect evidence
against X . This seems intuitively right, for you adopt your posterior credence in X in

9 This is a slightly modified example due to Bovens (1995).

123



13326 Synthese (2021) 199:13313–13343

response to taking E as your evidence which provides a strong support for X , and not
in response to expecting evidence against X .

As it turns out, when we assume CIndi, an agent who updates by VCondi would
satisfy an instance of reflection principle which goes as follows:

Reflection: For every X ∈ F ,

c
(
X |UE

cλ

)
= cλ (X) ,

provided that c
(
UE
cλ

)
> 0.

That is, this principle says that your prior credence in X givenyour anticipated posterior
credence function overF which results from taking E as your evidence should be equal
to your anticipated posterior credence in X .10 Note that the proposition UE

cλ does
not specify the mechanism by which you arrive at the posterior credence function
in response to taking E as your evidence. It thus describes your anticipated posterior
credence function after the black-box learning event,where the content of your learning
experience is left opaque (see Huttegger 2017, ch. 5.4). For your learning experience
does not tell you which proposition in E is true.

More precisely, we can state the following proposition:

Proposition 2 Suppose that an agent’s prior credences satisfy CIndi. Then, VCondi
⇔ Reflection.

Proof (VCondi ⇒ Reflection)
Suppose c satisfies CIndi and cλ satisfies VCondi. Then:

cλ (X) =
∑

E∈E αE · c (X ∧ E)
∑

E∈E αE · c (E)

(by VCondi)

=
∑

E∈E (l · αE ) · c (X ∧ E)
∑

E∈E (l · αE ) · c (E)

(multiplying αE by the constant l)

=
∑

E∈E c
(
UE
cλ |E

) · c (X ∧ E)
∑

E∈E c
(
UE
cλ |E

) · c (E)

(since c
(
UE
cλ |E

)
= l · αE )

=
∑

E∈E c
(
UE
cλ |E ∧ X

) · c (X ∧ E)
∑

E∈E c
(
UE
cλ |E

) · c (E)

(by CIndi)

=
∑

E∈E c
(
X ∧UE

cλ ∧ E
)

∑
E∈E c

(
UE
cλ ∧ E

)

10 A similar version of Reflection has been introduced by Gallow (2019).
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= c
(
X ∧UE

cλ

)

c
(
UE
cλ

)

= c
(
X |UE

cλ

)
.

(Reflection ⇒ VCondi)
Suppose c satisfies CIndi and cλ satisfies Reflection. Then:

cλ (X) = c
(
X |UE

cλ

)

(by Reflection)

= c
(
X ∧UE

cλ

)

c
(
UE
cλ

)

=
∑

E∈E c
(
X ∧UE

cλ ∧ E
)

∑
E∈E c

(
UE
cλ ∧ E

)

=
∑

E∈E c
(
UE
cλ |E ∧ X

) · c (X ∧ E)
∑

E∈E c
(
UE
cλ |E

) · c (E)

=
∑

E∈E c
(
UE
cλ |E

) · c (X ∧ E)
∑

E∈E c
(
UE
cλ |E

) · c (E)

(by CIndi)

=
∑

E∈E (l · αE ) · c (X ∧ E)
∑

E∈E (l · αE ) · c (E)

(since c
(
UE
cλ |E

)
= l · αE )

=
∑

E∈E αE · c (X ∧ E)
∑

E∈E αE · c (E)
.

It is important to emphasize that the above result may be understood as providing
a guidance to rational updating in the context of uncertain evidence. For it is often
argued that reflection principles regulate rational learning in the sense that an agent
cannot violate some instance of reflection principle and at the same time think that she
will form her posterior credences in a rational way (see, e.g. Skyrms 1990, 1997; Hut-
tegger 2013, 2017). For example, when you update your credences in cases involving
forgetting or memory loss, you often violate reflection principles and hence you do
not form your posterior credences by rational learning.11 If so, then the above result
tells us how learning uncertain evidence can be deemed rational. After all, it implies
that when VCondi is combined with CIndi, the agent’s credences satisfy an instance
of reflection principle, and hence are mandated by a rational learning process.

11 For an excellent survey of these cases, see Briggs (2009).
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4 Graves’s extension of VET

In this section, we present a variant of Graves’s extension of VET. Before doing so,
however, let us highlight a few assumptions of this result.

First, we assume that an agent faces a decision problem 〈A,S, c, u〉, in whichA is
a finite partition of propositions A1, ..., An representing the actions available to her,
S is a finite set of propositions S1, ..., Sn representing the possible states of the world
upon which the consequences of the actions depend, c is the agent’s credence function
in her credal state (W,F , c), and u is the agent’s utility function which assigns to
propositions of the form A ∧ S a number that measures the pragmatic utility that
would result for the agent were the act A to be performed in state S.12

Second, followingGraves, we assume that before undergoing a learning experience,
the agent contemplates a finite set R of possible Jeffrey shifts. And each of these
possible Jeffrey shifts can be represented as proposition RE

cλ that specifies the agent’s
assignment of posterior credences to the members of E . Thus, what is crucial to
Graves’s argument is that there exists an extension (W∗,F∗, c∗) of (W,F , c) such
that:

(G1) For every S ∈ F , c∗ (S∗) = c (S).
(G2) For some E ⊆ F and a finite set of posterior credence functions Cλ,R ⊆ W∗.
(G3) c∗ satisfies conditions (C1) and (C2).

With the above in mind, observe first that, prior to undergoing a Jeffrey shift, the agent
would choose the prior Bayes act, i.e. the act A that maximizes

Ec [u (A)] =
∑

S∈S
c (S) · u(A ∧ S). (3)

By (G1), (3) is equivalent to13

Ec∗ [u (A)] =
∑

S∗∈S∗
c∗ (

S∗) · u(A ∧ S∗). (4)

After undergoing a learning experience which results in a Jeffrey shift CEλ , the agent
would choose an act A to maximize

Ecλ [u (A)] =
∑

S∈S

∑

E∈E
c (S|E) · cλ (E) · u(A ∧ S). (5)

12 We also assume that the decision problem is framed within a Savage-style decision theory where states
and acts are probabilistically independent. Moreover, we assume that (i) the states, acts and utilities are the
same before and after the learning experience, (ii) the agent is an expected utility maximizer before and
after the learning experience, and (iii) the states are probabilistically independent of the learning experience,
though not of the particular outcomes of this learning experience. For the importance of these assumptions,
see (Skyrms 1990, pp. 90–91).
13 Since S∗ ↔ S ∈ F , it is natural to assume that the utility function for propositions A ∧ S∗ in the
extended credal space is the same as the utility function for propositions A∧ S in the original smaller credal
space. Thanks to an anonymous referee for urging us to clarify this point.
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That is, she would choose the act A that maximizes expected pragmatic utility calcu-
lated relative to the agent’s posterior credence function, cλ, recommended by JCondi.
By Proposition 1, (5) is equivalent to

Ec∗
λ

[
u (A) |RE

cλ

]
=

∑

S∗∈S∗
c∗ (

S∗|RE
cλ

)
· u(A ∧ S∗). (6)

Sincewewant to know ex antewhether updating by JCondi is always helpful inmak-
ingpractical decisions,weneed todetermine an expectationofmaxA∈A Ec∗

λ

[
u (A) |RE

cλ

]
,

which is the maximal value of making a choice after undergoing a Jeffrey shift (or the
posterior Bayes act). Because it is assumed that the agent considers ex ante a finite
set of possible Jeffrey shifts, and these shifts can be represented by propositions RE

cλ
from the partition R, this can be achieved by weighing the posterior value of Bayes
act by the prior credence of RE

cλ . Hence, the expectation of posterior Bayes act is:

Ec∗
[

max
A∈A

Ec∗
λ

[
u (A) |RE

cλ

]]

=
∑

RE
cλ

∈R
c∗ (

RE
cλ

)
· max
A∈A

Ec∗
λ

[
u (A) |RE

cλ

]
. (7)

Note that, by the equivalence of (5) and (6), maxA∈A Ec∗
λ

[
u (A) |RE

cλ

] = maxA∈A Ecλ
[u (A)], and hence (7) is equivalent to

Ec∗
[

max
A∈A

Ecλ [u (A)]

]

=
∑

RE
cλ

∈R
c∗ (

RE
cλ

)
· max
A∈A

Ecλ [u (A)] . (8)

Now let us introduce the quantity�u
c∗
λ
(AR, Amax), which is the difference between

the maximizer of (6), AR , and the maximizer of (4), Amax, as assessed by the agent’s
posterior credence c∗

λ(S
∗) = c∗ (

S∗|RE
cλ

)
for every S∗ ∈ F∗:

�u
c∗
λ
(AR, Amax) =

∑

S∗∈S∗
c∗ (

S∗|RE
cλ

)
·u(AR∧S∗)−

∑

S∗∈S∗
c∗ (

S∗|RE
cλ

)
·u(Amax∧S∗).

(9)
Importantly, notice that�u

c∗
λ
(AR, Amax) ≥ 0, for if Amax = AR , then�u

c∗
λ
(AR, Amax)

= 0, and if Amax �= AR , then �u
c∗
λ
(AR, Amax) > 0.

We can also determine the expectation of �u
c∗
λ
(AR, Amax) relative to the agent’s

extended prior function c∗ over R:

Ec∗
[
�u

c∗
λ
(AR, Amax)

]
=

∑

RE
cλ

∈R
c∗ (

RE
cλ

)
· �u

c∗
λ
(AR, Amax) . (10)

Given the above notions, it is now not difficult to show that the maximal value of
choosing now cannot be greater than the expected value of choosing after updating by
JCondi. To begin with, observe that since �u

c∗
λ
(AR, Amax) ≥ 0, its expected value is
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also non-negative, and thus:

0 ≤ Ec∗
[
�u

c∗
λ
(AR, Amax)

]
=

∑

RE
cλ

∈R
c∗ (

RE
cλ

)
· �u

c∗
λ
(AR, Amax) . (11)

Then, by the definition of (9), we get

0 ≤
∑

RE
cλ

∈R
c∗ (

RE
cλ

)

(
∑

S∗∈S∗
c∗ (

S∗|RE
cλ

)
· u(AR ∧ S∗) −

∑

S∗∈S∗
c∗ (

S∗|RE
cλ

)
· u(Amax ∧ S∗)

)

.

(12)

By using (6), (12) reduces to

0 ≤
∑

RE
cλ

∈R
c∗ (

RE
cλ

)
(

max
A∈A

Ec∗
λ

[
u (A) |RE

cλ

]
−

∑

S∗∈S∗
c∗ (

S∗|RE
cλ

)
· u(Amax ∧ S∗)

)

.

(13)
Then, we get

0 ≤
∑

RE
cλ

∈R
c∗ (

RE
cλ

)
max
A∈A

Ec∗
λ

[
u (A) |RE

cλ

]
−

∑

S∗∈S∗

∑

RE
cλ

∈R
c∗ (

RE
cλ

)
· c∗ (

S∗|RE
cλ

)
· u(Amax ∧ S∗). (14)

By the law of total probability we have c∗(S∗) = ∑
RE
cλ

∈R c∗ (
RE
cλ

) · c∗ (
S∗|RE

cλ

)
, and

hence (14) reduces to

0 ≤
∑

RE
cλ

∈R
c∗ (

RE
cλ

)
max
A∈A

E

[
u (A) |RE

cλ

]
−

∑

S∗∈S∗
c∗ (

S∗) · u (
Amax ∧ S∗) . (15)

And by (4) and (7), we get

0 ≤ Ec∗
[

max
A∈A

Ec∗
λ

[
u (A) |RE

cλ

]]

− max
A∈A

Ec∗ [u (A)] . (16)

Hence, we have

max
A∈A

Ec∗ [u (A)] ≤ Ec∗
[

max
A∈A

Ec∗
λ

[
u (A) |RE

cλ

]]

. (17)
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And since (3) is equivalent to (4) and (5) is equivalent to (6), we get

max
a∈A

Ec [u (A)] ≤ Ec∗
[

max
A∈A

Ecλ [u (A)]

]

, (18)

as required. Thus, we have shown that if we utilize an extended credal state in which
c∗ satisfies conditions (C1) and (C2), then the agent’s update in response to uncer-
tain evidence recommended by JCondi won’t result in making foreseeably harmful
practical decisions.

However, Graves’s extension of VET seems problematic for at least two reasons.
First, one might claim that it imposes unrealistic cognitive demands on decision-
makers. That is, it requires that they must have ex ante prior credences over all the
possible Jeffrey shifts they could undergo in the future. But it is doubtful that, in Ann’s
case, before looking at the drawnmarble, she is aware of all the possibleways bywhich
her visual experience can prompt changes in her initial credences. For a Jeffrey shift is
understood as the agent’s probabilistic judgement over E or what she takes away from
experience rather than what experience delivers to her. And it is perfectly possible that,
when undergoing her learning experience, Ann would actually judge probabilistically
in a way that she has not considered prior to her learning experience. But how fatal is
this objection?

In response, one may argue that this is just an instance of a more general problem,
which says that it is implausible that each evidence you might learn is one about
which you had a prior credence. After all, it is tempting to think that you might learn a
proposition that you do not already grasp. But if this is so, then this problem also affects
the originalVETwhich shows that updating byBCondimaximizes expected pragmatic
utility. After all, it assumes that each proposition that you might conditionalize upon
is already contained in the partition E over which you have prior credences. Hence,
the cognitive demands imposed by Graves’s extension of VET are no more unrealistic
than those imposed by the original VET.

Still, however, we think that this problem faces Graves’s approach more severely.
For, as it is often claimed, JCondi does not even tell us what partition of propositions
should be affected by a given learning experience (Christensen 1992; Weisberg 2009).
So, prior to her learning experience, the agent might not be able to even identify cor-
rectly the partition of propositions over which she would actually undergone a Jeffrey
shift. That is, the agent might contemplate ex ante various Jeffrey shifts over parti-
tion E when in fact her learning experience would directly affect an entirely different
partition E ′. For example, although in Ann’s case, she may stipulate ex ante that her
learning experience would directly affect the partition {B, V }, there is no normative
guidance as to how she could prevent the possibility that it would actually affect the
partition {B ∧ L, V ∧ L}, where L is the proposition that the lighting is dim. There-
fore, by assuming that, prior to a learning experience, the agent is always in a position
to grasp correctly the set E that would be directly affected by her anticipated learning
experience, Graves’s approach imposes far more unrealistic cognitive demands than
the original VET.

The secondproblem involves accuracy considerations, and, aswewill argue, ismore
threatening to Graves’s approach than the first one. If we grant that the only goal of
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updating our credences is to improve our practical decisions, i.e. tomaximize expected
pragmatic utility, then Graves’s approach seems successful. But many philosophers
claim that, alongside practical goals, we should update our credences in a way that
could also be regarded as epistemically rational. In particular, some argue that our
updated credences should minimize expected inaccuracy, i.e. they should be as close
as possible to the truth, from the standpoint of our prior credences (e.g. Greaves and
Wallace 2006; Leitgeb and Pettigrew 2010). If this is the case, then we will argue
that Graves’s extension of VET cannot guarantee that updating on uncertain evidence
would be both practically and epistemically rational. Since this argument requires
more scrutiny, we devote the next section to it.

5 Graves’s extension of VET and accuracy

In the previous section, we have seen that if the agent obeys JCondi, then updating on
uncertain evidence would never lead, in expectation, to worse practical decisions. In
this section, we argue that this approach is in tension with a purely epistemic approach
which seeks to justify the agent’s dynamic norms for credences as a consequence of
the rational pursuit of accuracy. That is, if we apply the machinery of accuracy-first
epistemology, then we must conclude that there appears to be no acceptable way to
show that JCondi minimizes expected inaccuracy. Therefore, for an expected inaccu-
racy minimizer, Graves’s extension of VET cannot be satisfactory, since it establishes
VET for JCondi and this update rule is hardly justifiable, if ever, in terms of the rational
pursuit of accuracy.

To make this point more precise, we assume, following accuracy-firsters, that we
have a local epistemic disutility function (or local inaccuracymeasure) for each propo-
sition X , sX , which takes X ’s truth-value atw,w(X), and the credence c(X) and returns
the local epistemic disutility (or inaccuracy) of having that credence in X at a world in
which X ’s truth-value isw(X), sX (w(X), c(X)). There are some desirable properties
that this function should have, and they single out the class of strictly proper scoring
rules. These properties are the following:

Extensionality: sX is extensional if it can be thought of as two functions:
sX (1, x) which gives the local inaccuracy of having credence x in X when
X is true, and sX (0, x) which gives the local inaccuracy of having credence x
when X is false.

Strict Propriety: sX is strictly proper if for all 0 ≤ p, x ≤ 1,

p · sX (1, p) + (1 − p) · sX (0, p) ≤ p · sX (1, x) + (1 − p) · sX (0, x) ,

with equality iff x = p.

Continuity: sX is a continuous function of x on [0, 1].

More informally, Extensionality says that the inaccuracy of having credence x in
proposition X depends only on whether X is true or false. Strict Propriety tells us that

123



Synthese (2021) 199:13313–13343 13333

an agent with probabilistic credence p in X proposition expects only that credence
to have the lowest inaccuracy. And Continuity says that the the inaccuracy of having
credence x in X varies continuously with that credence.

A standard expected inaccuracy-minimization argument for an update rule says
that, before the evidence is in, an agent should expect to have less inaccurate posterior
credences recommended by that rule than by any other update rule. To establish such
an argument, accuracy firsters say that we should evaluate our posterior credences
by looking at their expected inaccuracies, where the expectation is taken relative to a
prior credence function. Can we establish such an argument in the case where your
posterior credence in X is recommended by JCondi?

As shown by Leitgeb and Pettigrew (2010), the answer is negative. Their point is
that, under the quadratic scoring rule, one’s posterior credence in any X ∈ F that
results from JCondi does not minimize expected local inaccuracy given by

Ec [sX (w(X), cλ(X))] =
∑

w∈W
c ({w}) · sX (w(X), cλ(X)) . (19)

That is, if our goal is to choose a posterior credence function cλ that assigns credence
cλ (E) for all E ∈ E (i.e. satisfies the constraints imposed by a Jeffrey shift) and is
minimal with respect to the expected local inaccuracy of the credence it assigns to
each X ∈ F by the lights of one’s prior credence function c over the set of possible
worlds W , then this cannot be achieved by selecting the posterior credence function
that results from JCondi. A crucial assumption of this result is that the local inaccuracy
is measured by the quadratic scoring rule, qX = (i − x)2, where i = 1 or 0. That is,
this rule gives (i) the squared difference (1 − x)2 between the credence x in X and the
value w(X) = 1 of the indicator function of w (w(X) = 1 if X is true at w), and (ii)
the squared difference (0 − x)2 between the credence x in X and the value w(X) = 0
of the indicator function of w (w(X) = 0 if X is false at w). Importantly, qX is a
strictly proper scoring rule.

To make Leitgeb and Pettigrew’s point more concrete, let us first introduce their
alternative update rule:

LPCondi: Given a Jeffrey shift CEλ , let dE be the unique real number such that

∑

{w∈E : c({w})+dE>0}
c ({w}) + dE = cλ(E).

Then, the agent’s posterior credence function cλ should be such that, for w ∈ E ,

cλ ({w}) =
{
c ({w}) + dE , for c ({w}) + dE > 0

0, for c ({w}) + dE ≤ 0.

Now, suppose that initially Ann does not rule out any of the following possible worlds:

• w1, in which the selected urn is X and the drawn marble is blue.
• w2, in which the selected urn is X and the drawn marble is violet.
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• w3, in which the selected urn is Y and the drawn marble is blue.
• w4, in which the selected urn is Y and the drawn marble is violet.

More precisely, she assigns the following prior credences to these worlds:

c ({w1}) = 1

4
, c ({w2}) = 1

2
, c ({w3}) = 1

8
, c ({w4}) = 1

8
.

Ann, then, looks at the drawn marble in dim lighting which results in the following
Jeffrey shift over the partition {B, V }:
• cλ (B) = cλ ({w1, w3}) = 1

2 .

• cλ (V ) = cλ ({w2, w4}) = 1
2 .

In response to this Jeffrey shift, Ann applies JCondi and gets the following posterior
credences:

• cλ ({w1}) = cλ ({w1, w3}) · c({w1}∩{w1,w3})
c({w1,w3}) + cλ ({w2, w4}) · c({w1}∩{w2,w4})

c({w2,w4}) = 1
3 .

• cλ ({w2}) = cλ ({w1, w3}) · c({w2}∩{w1,w3})
c({w1,w3}) + cλ ({w2, w4}) · c({w2}∩{w2,w4})

c({w2,w4}) = 2
5 .

• cλ ({w3}) = cλ ({w1, w3}) · c({w3}∩{w1,w3})
c({w1,w3}) + cλ ({w2, w4}) · c({w3}∩{w2,w4})

c({w2,w4}) = 1
6 .

• cλ ({w4}) = cλ ({w1, w3}) · c({w4}∩{w1,w3})
c({w1,w3}) + cλ ({w2, w4}) · c({w4}∩{w2,w4})

c({w2,w4}) = 1
10 .

Let us then apply the quadratic scoring rule, q{w1}, as our local inaccuracy measure
in order to determine the local expected inaccuracy of Ann’s posterior credence in
proposition {w1} that results from JCondi, Ec

[
q{w1} (w({w1}), cλ({w1}))

]
. If we let

x = cλ ({w1}), then we get:

Ec
[
q{w1} (w({w1}), cλ({w1}))

] =
∑

w∈W
c ({w}) · q{w1} (w({w1}), cλ({w1}))

= 1

4

(

1 − 1

3

)2

+ 1

2

(

−1

3

)2

+ 1

8

(

−1

3

)2

+ 1

8

(

−1

3

)2

= 7

36
= 0, 194.

Now, suppose that, instead of JCondi, Ann uses LPCondi in response to the above
Jeffrey shift. Ifwe let dE = (cλ(E)−c(E))

|E | , thenAnn’s posterior credences recommended
by LPCondi are the following:

• c′
λ ({w1}) = c ({w1}) + (cλ(B)−c(B))

|B| = 1
4 +

(
1
2− 3

8

)

2 = 5
16 .

• c′
λ ({w2}) = c ({w2}) + (cλ(V )−c(V ))

|V | = 1
2 +

(
1
2− 5

8

)

2 = 7
16 .

• c′
λ ({w3}) = c ({w3}) + (cλ(B)−c(B))

|B| = 1
8 +

(
1
2− 3

8

)

2 = 3
16 .

• c′
λ ({w4}) = c ({w4}) + (cλ(V )−c(V ))

|V | = 1
8 +

(
1
2− 5

8

)

2 = 1
16 .

Then, if we apply the quadratic scoring rule, q{w1}, and let x = c′
λ ({w1}), then we

get the following local expected inaccuracy of Ann’s posterior credence in {w1} that
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results from LPCondi:

Ec
[
q{w1}

(
w({w1}), c′

λ({w1})
)] =

∑

w∈W
c ({w}) · q{w1}

(
w({w1}), c′

λ({w1})
)

= 1

4

(

1 − 5

16

)2

+ 1

2

(

− 5

16

)2

+ 1

8

(

− 5

16

)2

+ 1

8

(

− 5

16

)2

= 49

256
≈ 0, 191.

But since Ec
[
q{w1}

(
w({w1}), c′

λ({w1})
)]

< Ec
[
q{w1} (w({w1}), cλ({w1}))

]
, it fol-

lows that Ann’s posterior credence in {w1} determined by JCondi does not minimize
the local expected inaccuracy.

Moreover, as shown by Leitgeb and Pettigrew (2010), the situation is not better
when instead of focusing on the expected local inaccuracy, we focus on the expected
global inaccuracy. Firstly, given a strictly proper scoring rule (or local inaccuracy
measure) for proposition X , sX , we may define a global inaccuracy measure for the
credence function c as follows:

Is (c, w) =
∑

X∈F
sX (w (X) , c (X)) . (20)

If we define Is in this way, wemay say that the global inaccuracymeasure is generated
from s. As it is easy to see, Is is an additive inaccuracymeasure, for the inaccuracy of c
is the sum of the inaccuracies of individual credences that c assigns to the propositions
in F . Given an additive and strictly proper14 Is, we can define the expected global
inaccuracy of cλ from the standpoint of c as follows:

Ec [Is (cλ,w)] =
∑

w∈W
c ({w}) · Is (cλ,w) . (21)

Specifically, Leitgeb and Pettigrew adopt the Brier score, i.e. a global inaccuracy
measure generated from the quadratic scoring rule qX :

B (c, w) =
∑

X∈F
qX (w (X) , c (X)) . (22)

Secondly, suppose that you are governed by the following norm: you should adopt
the posterior credence function that satisfies constraints given by the cλ (E)’s for all
E ∈ E , and is minimal amongst the posterior credence functions thus constrained with
respect to expected global inaccuracy given by

Ec [B (cλ,w)] =
∑

w∈W
c ({w}) · B (cλ,w) . (23)

14 Is is strictly proper in the sense that, for any probabilistic credence function p and every credence
function c �= p, Ep [Is (p, w)] = ∑

w∈W p ({w}) · Is (p, w) < Ep [Is (c, w)] = ∑
w∈W p ({w}) ·

Is (c, w).
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Then, Leitgeb and Pettigrew show that the posterior credence that satisfies the above
norm does not result from JCondi, but is mandated by LPCondi. So, again, if your
goal is to minimize expected global inaccuracy, you should not update by JCondi.

Is there any way to salvage the idea of inaccuracy minimization for the case of
JCondi? Levinstein (2012) has suggested that this could be achieved if we replace the
Brier score with the following logarithmic global inaccuracy measure:

L (c, w) = −ln c ({w}) . (24)

More precisely, L takes the inaccuracy of a credence function c at world w to be the
negative of the natural logarithm, ln, of the credence it assigns to w. Armed with
the inaccuracy measure L, Levinstein has shown that one’s probabilistic posterior
credence function recommended by JCondi satisfies constraints given by the cλ (E)’s
for all E ∈ E and minimizes expected global inaccuracy given by

Ec [L (cλ,w)] =
∑

w∈W
c ({w}) · L (cλ,w) . (25)

However, this accuracy-based vindication of JCondi has a number of complica-
tions. First,L is not generated from a strictly proper scoring rule, and hence is not itself
strictly proper. But without a strictly proper scoring rule, neither an expected-accuracy
argument for BCondi (Greaves and Wallace 2006) nor an accuracy-dominance argu-
ment for BCondi (Briggs and Pettigrew 2020) can be established. Thus, if we adopt
L, we rule out at least two well-trodden accuracy-based justifications of the most
popular updating rule, BCondi. Second, L is not additive, for it only considers cre-
dences assigned to singleton propositions {w}, and says nothing about credences in
the more coarse-grained propositions in F . Consequently, this measure cannot dis-
tinguish between probabilistic and non-probabilistic credence functions, and hence
cannot be used to establish the accuracy-dominance argument for probabilism, i.e. the
norm which says that one’s credences ought to be probabilities.15 Thus, it appears that
L is hardly defensible.

The above considerations show that an expected inaccuracy minimizer cannot
accept JCondi as an updating rule, since it does not minimize expected inaccuracy
under the class of strictly proper scoring rules, and even if it does so under the inac-
curacy measure L, this accuracy-based justification of JCondi is hardly acceptable.
Hence, although Graves’s argument establishes VET in the context of uncertain evi-
dence, it does so for JCondi, and so cannot be accepted by the expected inaccuracy
minimizer. If we wish to show that gathering uncertain evidence is both practically
and epistemically rational in expectation, we should consider some alternatives to
Graves’s approach.

15 The accuracy-dominance argument for probabilism says that every non-probabilistic credence function is
strongly accuracy-dominated by a probabilistic credence function, while no probabilistic credence function
is even weakly accuracy-dominated by any other credence function. It thus shows that probabilism is
necessary and sufficient for avoiding accuracy-dominance. For a detailed presentation of this argument, see
Predd et al. (2009).
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6 An alternative approach

In this section, we present an alternative account of the idea that learning from uncer-
tain evidence cannot lead an agent to expect to make worse practical decisions. Our
approach utilizes the following assumptions. First, we assume that the agent assigns
prior credences to propositions UE

cλ from the finite set U , which is a partition of W .
And since U is a partition, exactly one proposition UE

cλ will be true after the agent’s
learning experience. Importantly, the finite set U is already included inW in the small
space (W,F , c). Hence, contrary to Graves’s approach, we do not need to invoke
an extended credal state (W∗,F∗, c∗) in order to account for the practical value of
updating on uncertain evidence. Recall that, in Graves’s approach, if the propositions
RE
cλ were already included in the small space (W,F , c), then, as we have argued,

there would be no need to use JCondi in the first place, and so Graves’s approach
would in fact establish VET in the case where one updates by conditionalizing on the
proposition RE

cλ . But since we do not assume that the agent updates by JCondi, and
hence that no proposition in (W,F , c) that describes your experience can be learned
for certain, we take it to be plausible that U is already included in W and the agent
learns exactly one proposition UE

cλ for certain.
Second, our approach assumes that when experience results in the proposition UE

cλ
being true, the agent settles on the likelihood ratios forUE

cλ , and updates her credences
by dint of VCondi. Moreover, in order to ensure that the agent adopts the posterior
credence cλ in response to evidence E alone, we assume that her prior credences obey
CIndi. Thus, we are assured that updating by dint of VCondi is a rational learning
process.

With the above assumptions in mind, let us now show how VET can be established
for the agent who faces a decision problem 〈A,S, c, u〉 and updates, in response to
uncertain evidence, by VCondi. Before receiving uncertain evidence, the agent would
choose the act A which maximizes:

Ec [u (A)] =
∑

S∈S
c (S) · u(A ∧ S). (26)

After undergoing a learning experience which provides a set of likelihood ratios for
some UE

cλ in U , the agent would choose the posterior Bayes act, i.e. an act A which
maximizes

Ecλ

[
u (A) |UE

cλ

]
=

∑

S∈S

∑
E∈E αE · c (S ∧ E)
∑

E∈E αE · c (E)
· u(A ∧ S) (27)

Note that the posterior Bayes act is an act that maximizes expected pragmatic utility
relative to the agent’s posterior credence function, cλ, mandated by VCondi. Since U
is a partition, we can determine the expectation of posterior Bayes act as follows:

Ec

[

max
A∈A

Ecλ

[
u (A) |UE

cλ

]]

=
∑

UE
cλ

∈U
c
(
UE
cλ

)
· max
A∈A

Ecλ

[
u (A) |UE

cλ

]
. (28)
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Now the difference, �u
cλ (AU , Amax), between the maximizer of (27), AU , and

the maximizer of (26), Amax, as assessed by the agent’s posterior credence cλ(S) =∑
E∈E αE ·c(S∧E)∑
E∈E αE ·c(E)

, can be given as follows:

�u
cλ (AU , Amax) =

∑

S∈S

∑
E∈E αE · c (S ∧ E)
∑

E∈E αE · c (E)
· u (AU ∧ S)

−
∑

S∈S

∑
E∈E αE · c (S ∧ E)
∑

E∈E αE · c (E)
· u (Amax ∧ S) .

(29)

Note that �u
cλ (AU , Amax) ≥ 0, for if Amax = AU , then �u

cλ (AU , Amax) = 0, and
if Amax �= AU , then �u

cλ (AU , Amax) > 0. We can also calculate the expectation of
�u

cλ (AU , Amax) as follows:

Ec
[
�u

cλ (AU , Amax)
] =

∑

UE
cλ

∈U
c
(
UE
cλ

)
· �u

cλ (AU , Amax) . (30)

Now in order to establish that, in expectation, updating on uncertain evidence by
VCondi cannot lead you to make worse practical decisions, we will show that

max
A∈A

Ec [u (A)] ≤ Ec

[

max
A∈A

Ecλ

[
u (A) |UE

cλ

]]

. (31)

To begin with, observe first that since �u
cλ (AU , Amax) ≥ 0, the expectation of its

value must also be non-negative, and so:

0 ≤ Ec
[
�u

cλ (AU , Amax)
] =

∑

UE
cλ

∈U
c
(
UE
cλ

)
· �u

cλ (AU , Amax) . (32)

By (29), we have

0 ≤
∑

UE
cλ

∈U
c
(
UE
cλ

)
·

(
∑

S∈S

∑
E∈E αE · c (S ∧ E)
∑

E∈E αE · c (E)
· u (AU ∧ S) −

∑

S∈S

∑
E∈E αE · c (S ∧ E)
∑

E∈E αE · c (E)
· u (Amax ∧ S)

)

.

(33)
By using (27), we get

0 ≤
∑

UE
cλ

∈U
c
(
UE
cλ

)
(

max
A∈A

Ecλ

[
u (A) |UE

cλ

]
−

∑

S∈S

∑
E∈E αE · c (S ∧ E)
∑

E∈E αE · c (E)
· u (Amax ∧ S)

)

.

(34)
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Now, assuming CIndi, we get, by Proposition 2,

0 ≤
∑

UE
cλ

∈U
c
(
UE
cλ

)
(

max
A∈A

Ecλ

[
u (A) |UE

cλ

]
−

∑

S∈S
c
(
S|UE

cλ

)
· u (Amax ∧ S)

)

. (35)

Then, we have

0 ≤
∑

UE
cλ

∈U
c
(
UE
cλ

)
max
A∈A

Ecλ

[
u (A) |UE

cλ

]
−

∑

S∈S
c
(
UE
cλ

)
· c

(
S|UE

cλ

)
· u (Amax ∧ S) .

(36)
And, by the law of total probability, we have c(S) = ∑

UE
cλ

∈U c
(
UE
cλ

) · c (
S|UE

cλ

)
, and

hence

0 ≤
∑

UE
cλ

∈U
c
(
UE
cλ

)
max
A∈A

Ecλ

[
u (A) |UE

cλ

]
−

∑

S∈S
c (S) · u (Amax ∧ S) . (37)

Finally, by (26) and (28), we get

0 ≤ Ec

[

max
A∈A

Ecλ

[
u (A) |UE

cλ

]]

− max
A∈A

Ec [u (A)] . (38)

Hence, we have

max
A∈A

Ec [u (A)] ≤ Ec

[

max
A∈A

Ecλ

[
u (A) |UE

cλ

]]

, (39)

as required.
So far we have seen that, under the assumption of CIndi, expecting to update by

VCondi cannot lead you to expect to make worse practical decisions. Since VCondi,
when coupled with CIndi, can be regarded as a rational update mechanism in the
context of uncertain evidence, our result establishes VET in that context. But could
our argument be accepted by an expected inaccuracy minimizer? It turns out that so
long as the inaccuracy of your credences is measured by a strictly proper scoring rule
and your credences obey CIndi, your posterior credences recommended by VCondi
minimize a kind of expected inaccuracy. More precisely:

Proposition 3 Suppose that cλ and c are probability functions and c obeys CIndi. If
sX strictly proper, extensional and continuous, then, for any U E

cλ ∈ U with positive
probability, and any X ∈ F , the agent’s posterior credence recommended by VCondi
minimizes the expected local inaccuracy given by

Ec [sX (w(X), cλ(X))] =
∑

w∈UE
cλ

c ({w}) · sX (w(X), cλ(X)) . (40)
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Proof Choose an arbitrary X ∈ F and UE
cλ ∈ U with positive probability. In order to

establish Proposition 3, we need to find cλ(X) which minimizes (40). Let x = cλ(X).
Since sX is extensional, the choice of cλ(X) must minimize

∑

w∈UE
cλ

∩X

c ({w}) · sE (1, cλ (X)) +
∑

w∈UE
cλ

∩¬X

c ({w}) · sX (0, cλ (X))

= c
(
UE
cλ ∩ X

)
· sX (1, cλ (X)) + c

(
UE
cλ ∩ ¬X

)
· sX (0, cλ (X)) (41)

If a choice of cλ(X) minimizes (41), it will continue to minimize it if we divide it by
c
(
UE
cλ

)
(which is positive by assumption). That is, the choice of cλ(X) will minimize:

c
(
UE
cλ ∩ X

)

c
(
UE
cλ

) · sX (1, cλ (X)) + c
(
UE
cλ ∩ ¬X

)

c
(
UE
cλ

) · sX (0, cλ (X))

= c
(
X |UE

cλ

)
· sX (1, cλ (X)) + c

(
¬X |UE

cλ

)
· sX (0, cλ (X)) (42)

Since c
(·|UE

cλ

)
is a probability function, we may write (42) as:

c
(
X |UE

cλ

)
· sX (1, cλ (X)) +

(
1 − c

(
X |UE

cλ

))
· sX (0, cλ (X)) (43)

Now, since sX is strictly proper, cλ (X) minimizes (43) iff cλ (X) = c
(
X |UE

cλ

)
. Thus,

for any UE
cλ ∈ U with positive probability, cλ (X) minimizes (40) iff cλ (X) obeys

Reflection. Hence, given CIndi, cλ (X) minimizes (40) iff cλ (X) satisfies VCondi.

Thus, unlike Graves’s argument, our alternative extension of VET dovetails with
an accuracy-centered approach to vindicating updating on uncertain evidence. Under
the current proposal, gathering uncertain evidence is not only pragmatically rational
in expectation. It is also epistemically rational to do so.

Another advantage of our approach is that it appears to be less cognitively demand-
ing than Graves’s extension of VET. The agent is no longer required to assign ex
ante prior credences over propositions describing the possible Jeffrey shifts she might
undergo in the future. Hence, she is also no longer required to grasp correctly ex ante
the partition of propositions that her learning experience would affect directly. Recall
that this is especially problematic for Graves’s approach, since neither EBCondi nor
JCondi provides a normative guidance as to how to do this. However, one might object
here that our approach assumes that the agent is in a position to specify ex ante the
anticipated posterior credence functions, which itself appears to be highly demanding.
In response, wewould like to note that our approach works well even if the agent antic-
ipates one and the same posterior credence function that she would adopt in response
to taking E as well as to taking E ′ as her evidence. That is, the propositions UE

cλ and

UE ′
cλ would be still mutually exclusive, even if the agent adopted the same posterior

credence function cλ, irrespective of whether she took E or E ′ as her evidence. This is
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so because taking E as one’s evidence is essentially different from taking E ′ as one’s
evidence.16

One may also worry that the use of VCondi in our approach is redundant, for if
the agent learns a propositionUE

cλ for certain, she might simply conditionalize onUE
cλ

and set her posterior credence function equal to c
(·|UE

cλ

)
. In particular, she might

determine her posterior credences in every E ∈ E as follows: cλ(E) = c
(
E |UE

cλ

)
. To

answer this objection, we would like to stress out that VCondi appears to be a more
user-friendly update rule thanBayes conditioning onUE

cλ . After all, Bayes theorem tells

us that c
(
E |UE

cλ

) = c(E)·c
(
UE
cλ

|E
)

c(UE
cλ

)
, and so requires the agent to determine the absolute

likelihood for UE
cλ , c

(
UE
cλ |E

)
. And this is a hard task if one wants this quantity to

be determined in a reasonable way. For example, it is hard to say what the absolute
likelihood c

(
UB
cλ |B

)
should be in Ann’s case. VCondi enables us to mitigate this

problem, for it allows the agent to express only the likelihood ratios of the form
c
(
UE
cλ

|E
)

c
(
UE
cλ

|E ′
) , without the need of determining the absolute likelihoods.

7 Conclusion

The question of how to capture learning without certainties is one of the pressing
problemswithinBayesian epistemology.A prevalent view amongBayesian epistemol-
ogists is that JCondi is an appropriate updating mechanism in the context of learning
from uncertain evidence. This rule requires uncertain evidence to be specified as a
redistribution of the agent’s credences over the propositions in some partition of a set
of possibilities. Within a decision-theoretic context, Graves has shown that gather-
ing uncertain evidence so understood is pragmatically rational, i.e. updating by dint of
JCondi is worth waiting for in advance of making a practical decision.We have argued
that Graves’s approach is problematic, for it imposes highly unrealistic demands on
the agent, and, more importantly, is in tension with a purely epistemic vindication
of updating on uncertain evidence. In its stead, we have suggested replacing JCondi
with a different updating rule in the context of uncertain evidence, VCondi. This rule
requires uncertain evidence to be specified as a particular set of likelihood ratios. As
we have tried to show, VCondi gets cases like Ann’s right, and when combined with
a fairly plausible assumption, CIndi, is equivalent to a particular sort of reflection
principle. Armed with this rule, we have shown how VET can be established when
one acquires uncertain evidence, and how updating on uncertain evidence minimizes
expected epistemic disutility.

We want to emphasize that it was not our goal to show that VCondi is the correct
updating rule in the context of learning from uncertain evidence. Rather, our aim was
to show that the way we specify uncertain evidence matters to whether updating on
uncertain evidence is both pragmatically and epistemically rational. When we specify
uncertain evidence as a set of likelihood ratios and employ VCondi, we can show that

16 For a similar view, see Gallow (2019).
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gathering uncertain evidence maximizes expected pragmatic utility and minimizes
expected epistemic disutility. But this goal is hard to achieve, if ever, when uncertain
evidence is understood as a Jeffrey shift in response to which we use JCondi.
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