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Abstract
In this paper we show that, when analyzed with contemporary tools in logic—such
as Dunn-style semantics, Reichenbach’s three-valued logic exhibits many interesting
features, and even new responses to some of the old objections to it can be attempted.
Also, we establish some connections between Reichenbach’s three-valued logic and
some contra-classical logics.
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1 Introduction

Reichenbach’s approach to the philosophy of quantum mechanics stems mainly from
his views on language and meaning in science. He thought that the logical formulation
of an adequate language for quantum mechanics would help us not only to cogently
discuss the physical laws and phenomena involved in quantum mechanics, but should
also invalidate any arguments leading to causal anomalies in quantum mechanics.
Examples of these are illustrated by theDouble-slit Experiment but include also action-
at-a-distance (or non-local causality).

Though claims along these lines were not uncommon among logical empiricists as
himself, Reichenbach’s contribution to the discussion was the introduction of a non-
classical logic which not only deviates from the logic endorsed by most Vienna Circle
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3 Department of Philosophy, Universidad Panamericana, Mexico City, Mexico

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11229-021-03313-2&domain=pdf
http://orcid.org/0000-0002-1466-0240


11822 Synthese (2021) 199:11821–11845

members (i.e. classical logic), but also, being a three-valued logic, deviates from the
traditional quantum logic of Birkhoff and Von Neumann.

Nonetheless, Reichenbach’s logic was never precisely popular, for two main rea-
sons. The first one is that it has some uncommon features that made it too deviant by
the lights of its time: for example, it is three-valued, with the usual problems in giving
a precise meaning to the additional truth values; and it multiplies the connectives but
the semantics seemingly does not justify that they are the intended connectives. The
second reason is that the logic did not live up to its promises, and it was regarded as
insufficient to address the representation and interpretation issues quantummechanics
is plagued with.

Our very modest aim in this paper is to show that, when seen through the glasses
of more contemporary tools and discussions in logic, Reichenbach’s logic exhibits
many interesting features, and even new responses to some of the old objections to it
can be attempted, or so we think when it comes not to those objections regarding its
applications to quantummechanics—which is an issue that lays out of the scope of this
paper—, but to those objections regarding the apparent formal oddities of this logic.

The plan of the paper is as follows. In Sect. 2, we revisit Reichenbach’s three-valued
logic —we will call it ‘R3V’ for short— and its underlying motivations. In Sect. 3,
we give a Dunn-style semantics for R3V, that is, a semantics based on independent,
relational truth and falsity conditions for the connectives. In Sect. 4, we reconstruct
some of the objections raised against to the formal features of Reichenbach’s logic,
and show how the presentation of R3V in Sect. 3 helps in addressing some of these
worries. Finally, in Sect. 5 we establish some connections between R3V and some
contra-classical logics, a family of yet understudied logics which validate arguments
that are invalid in classical logic.

2 Reichenbach’s logic

Motivations. Following Carnap’s idea of a physical language, Reichenbach consid-
ers an observational language and a quantum mechanical language, so as to make
every question about the existence of physical entities a matter of the meaning of the
propositions involved in such languages. Geiger counters, indicators of a dial, lines
on photographic films, etc. are observational terms which belong to the observational
language, these are directly related to measurement and experimentation, whereas the
position q of an electron, its momentum p, etc. are terms of the quantum mechan-
ical language, which describe a physical system, property or situation. The way we
construct the quantum mechanical language is what Reichenbach calls an interpreta-
tion of quantum mechanics. Of course, the meaning of a proposition of the quantum
mechanical language is determined in terms of the truth or falsity of the correspond-
ing propositions of the observational language. More precisely, a proposition A of
the quantum mechanical language has the same meaning as the set of observational
propositions a1, . . . , an which verify A (or make A highly probable) (Reichenbach
1935, p. 137).

Reichenbach is interested in showing that, while any exhaustive interpretation of
quantummechanics—i.e. any interpretation inwhich the values of unobserved entities
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are completely defined, such as p and q— leads to causal anomalies, this is not the case
with a restrictive interpretation in which such values remain undefined. The restriction
in question involves excluding statements about the combination of noncommutative
properties or quantities, such as p and q; thus, for example, any statement about the
simultaneous momentum and position of a given electron is meaningless.

An important feature of Reichenbach’s physical language for quantum mechanics
is the statistical completeness of the observational language, where an observational
language is statistically complete when, for any possible situation defined in obser-
vational terms, the observational result of a measurement can be predicted with a
determinate probability (Reichenbach 1935, p. 138). This sort of completeness is not
about the values of unobserved physical entities or situations, which leads to causal
anomalies, but about the predictive methods of quantummechanics when expressed in
observational terms.Wemay construct a restrictive interpretation of quantummechan-
ics by introducing a definition of meaning (so as to exclude meaningless statements)
and this interpretation will also be statistically complete in observational terms.

The Bohr-Heisenberg interpretation is an example of interpretation by restricted
meaning. According to Reichenbach, it employs the following definition for the values
ofmeasured entities: “the result of ameasurement represents the value of themeasured
entity immediately after the measurement” and the following definition for meaning
of statements: “in a physical state not preceded by a measurement of an entity u, any
statement about the value of the entity u is meaningless”. This interpretation does not
assert nor deny that an entity is disturbed by the measurement but it clearly excludes
simultaneous measurement of values such as p and q, as needed. This results in the
fact that not every proposition like “the value of the entity is u” has meaning.

Some neat consequences of the Bohr-Heisenberg interpretation are (1) that a mean-
ingless statement is not subject to propositional operations (if A is meaningful but B is
meaningless, then ‘A and B’ and ‘A or B’ are meaningless, and not even ‘B or not-B’
holds) and (2) that when given two complementary statements, i.e. statements about
simultaneous values of noncommutative entities, at most one of them is meaningful
and the other is meaningless (Reichenbach 1935, pp. 142–143).1

If statements about values of unobserved entities are regarded as meaningless, then
the language of physics includes meaningless statements. To avoid this, Reichenbach
suggests an interpretation much in the line with that of Bohr and Heisenberg but
which excludes statements like the aforementioned not from the domain of meaning
but from the domain of assertability, whichmay be naturally captured in a three-valued
logic, by introducing an intermediate truth value between truth and falsity, called the
indeterminate truth value.2

The logic R3V. Consider a language L consisting of formulas built, in the usual way,
from propositional variables with the connectives {¬,∼,−,∧,∨,⊃,→,�}. We will
use the first capital letters of the Latin alphabet, ‘A’, ‘B’, ‘C’…as variables ranging
over arbitrary formulas.

1 Notice that it is not necessary that one of the two complementary statements is meaningful, since in a
physical situation s determined by a wave function ψ which is not an eigen-value of one of the entities
considered, both statements will be meaningless.
2 This is different than just saying that the truth value is “unknown”, since this we may apply to two-valued
statements as well.
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A Reichenbach model for L is a function i from propositional variables to the set
of values {T , I , F}, understood as truth, indeterminacy and falsity, respectively. T is
the only designated value, i.e. D+ = {T }. The evaluation of formulas is extended and
defined recursively according to the following tables.

Conjunction and disjunction

A B A ∧ B A ∨ B
T T T T
T I I T
T F F T
I T I T
I I I I
I F F I
F T F T
F I F I
F F F F

Conjunction and disjunction are generalizations of the two-valued versions of these
connectives.

Negations

Cyclical Diametrical Complete

A ∼ A ¬A A
T I F I
I F I T
F T T T

Cyclical negation shifts a truth value to the next lower one, except for the case of the
lowest, which is shifted to the highest value; diametrical negation reverses T and F ,
but leaves I unchanged; and complete negation shifts a truth value to the higher one
of the other two.

Implications

Standard Alternative Quasi-implication

A B A ⊃ B A → B A � B
T T T T T
T I I F I
T F F F F
I T T T I
I I T T I
I F I T I
F T T T I
F I T T I
F F T T I
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Standard implicationwas already found inŁukasiewicz’s three-valued logicŁ3, which
is just a generalization of the two-valued version of this connective3; alternative impli-
cation takes any combination of the three truth values and returns either T or F ; and
quasi-implication returns the intermediate value for any combination except for the
true-case 〈T , T 〉 and the false-case 〈T , F〉 of a standard conditional.

Finally, let � be a set of formulas of R3V. A is a logical consequence of � in R3V,
� |	R3V A, if and only if, for every interpretation i , i(A) ∈ D+ if i(B) ∈ D+ for every
B ∈ �. A is valid or holds in R3V if and only if � |	R3V A and � = ∅.

Reichenbach considered the following desirable properties of an implication con-
nective © and noticed that the quasi-implication connective does not satisfy 3 and
4:

1. Detachment I if A is T and A©B is T one may validly infer that B is T .
2. Falsification if A is T and B is F then A©B is F .
3. Detachment II it is not the case that A©B �� A ∧ B. If the conditional A©B

behaves exactly like A∧B, then the separate occurrence of A’s truth inDetachment
I is completely irrelevant, since the truth of B may be deduced from the truth of
A ∧ B alone, without the need of the truth of A to detach the truth of B.

4. Reflexivity A©A is always true.
5. Non-symmetry from the truth of A©B one may not deduce the truth of B©A.

Quasi-implication does not satisfy Reflexivity and Detachment II, which are, for
Reichenbach, desirable properties of an implication connective, and since Reflex-
ivity is needed to get an equivalence relation, he only considers the following

two connectives for equivalence, where A ≡ B
d f= (A ⊃ B) ∧ (B ⊃ A) and

A ↔ B
d f= (A → B) ∧ (B → A):

Equivalences

Standard Alternative

A B A ≡ B A ↔ B
T T T T
T I I F
T F F F
I T I F
I I T T
I F I F
F T F F
F I I F
F F T T

3 The influence of Łukasiewicz on Reichenbach’s works on the possible applications of many-valued logics
in physics is partly due to fruitful discussion with Zygmunt Zawirski, a Polish logician working on appli-
cations of Ł3 in quantum physics, the foundations of mathematics and other philosophical problems, who
met Reichenbach in Paris for the 1935 International Congress for Scientific Philosophy; see Szumilewicz-
Lachman et al. (2012), pp. 43–51. We thank an anonymous referee for pointing this fact to us. Actually,
the 1935 Congress was momentous in several respects and attracted people with strikingly similar interests
and ideas; de Finetti also gave a paper there where he presented a logic with quasi-implication.
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Next, Reichenbach demands that the truth values are so defined that only a statement
having the truth value T can be asserted. This means that when we wish to say that a
statement has a truth value other than T , wemayuse∼∼ A to say that A is indeterminate
and ∼ A or ¬A to say that A is false. This enables us to eliminate statements in the
metalanguage about truth values by relying only on statements in the object language;
i.e.what we wish to say is said in a true statement of the object language (Reichenbach
1935, p. 153). Note that while Reichenbach correctly points out that when it is asserted
(it is true) that ∼ A or that ¬A it must be because A is false, he is not claiming that
∼ A ≡ ¬A or that ∼ A ↔ ¬A in general, only that a true occurrence of ∼ A and a
true occurrence of ¬A assert the same thing (to wit, A is false).

A formula A is called tautological if and only if i(A) = T , for all i ; contradictory
if and only if i(A) = F , for all i ; and synthetic if and only if there are i and i ′ such
that i(A) = T and either i ′(A) = I or i ′(A) = F . A formula A such that i(A) �= T ,
for all i , but there is a i ′ such that i ′(A) = I , is called asynthetic. Among synthetic
formulas, those that receive all three values are called fully synthetic statements; those
whose values are only T ’s and F’s are called true-false statements (or plain-synthetic
statements); and those whose values are only T ’s and I ’s are called semi-synthetic
statements. Thus,

• The cyclical or the diametrical negation of a contradictory formula is a tautology;
• The complete negation of an asynthetic statement is a tautology;
• A synthetic statement cannot be made a tautology simply by the addition of a
negation.

In the sense just defined, all quantum mechanical statements are synthetic, since
they assert something about the physical world (Reichenbach 1935, p. 154).

The following are some tautological schemata from R3V:

1. Identity: A ≡ A
2. Double Negation: A ≡ ¬¬A
3. Triple Negation: A ≡∼∼∼ A

4. Complete Double Negation: A ≡ A
5. Complete Negation: A ≡∼ A∨ ∼∼ A
6. Quartum Non Datur: A∨ ∼ A∨ ∼∼ A
7. Pseudo-Tertium Non Datur: A ∨ A (from substitution of Complete Negation in

Quartum Non Datur).

8. Non-contradiction I: A ∧ A
9. Non-contradiction II: A∧ ∼ A

10. Non-contradiction III: A ∧ ¬A
11. De Morgan I: ¬(A ∧ B) ≡ ¬A ∨ ¬B
12. De Morgan II: ¬(A ∨ B) ≡ ¬A ∧ ¬B
13. Distribution I: A ∧ (B ∨ C) ≡ (A ∧ B) ∨ (A ∧ C)

14. Distribution II: A ∨ (B ∧ C) ≡ (A ∨ B) ∧ (A ∨ C)

15. Contraposition I: ¬A ⊃ B ≡ ¬B ⊃ A
16. Contraposition II: A → B ≡ B → A
17. Dissolution of Equivalence: (A ≡ B) ≡ (A ↔ B) ∧ (¬A ↔ ¬B)

18. Dissolution of Implication: A → B ≡∼¬(A ∨ B)
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19. Reductio Ad Absurdum I: (A ⊃ A) ⊃ A
20. Reductio Ad Absurdum II: (A → A) → A

Of special importance is the following principle which links R3V with quantum
mechanical considerations:
Complementarity We call two statements A and B complementary if they satisfy the
relation

(A∨ ∼ A) →∼∼ B

that is, in Reichenbach’s reading, if A is true or false, then B is indeterminate.
The rule of complementarity of quantum mechanics can be stated as

(U∨ ∼U ) →∼∼V

whereU is the abbreviation of “the first entity has the value u”,V stands for “the second
entity has the value v”, and u and v are noncommutative quantities. Furthermore, the
condition of complementarity is symmetrical: if A is complementary to B, then B is
complementary to A, and thus we may as well write the rule of complementarity of
quantum mechanics as

(V∨ ∼V ) →∼∼U

Complementarity is not restricted to two entities. Consider the three components �x ,
�y and �z of the angular momentum, where each component is complementary to each
of the other two; then we may express the complementarity between them as three
formulas: (X∨ ∼ X) →∼∼Y , (Y∨ ∼Y ) →∼∼ Z and (Z∨ ∼ Z) →∼∼ X .

Now, to show how R3V may avoid causal anomalies in quantum mechanics,
Reichenbach considers the famous Double-slit Experiment.4 His analysis depends
on specifying some properties of disjunctions which are not available in two-valued
logic (Reichenbach 1935, p. 161):

1. A disjunction of n disjuncts is closed if, in case n − 1 disjuncts are false, the n-th
disjunct must be true.

2. A disjunction is called exclusive if, in case one disjunct is true, all the others must
be false.

4 Recall that, in this experiment, a source shoots individual electrons (which we may think as corpuscles)
to a screen which helps us detect where they landed, but the path between the source and the screen is
blocked by a barrier with two slits which we may open or close at will. If slit 1 is open but slit 2 is closed,
the electrons leave a mark in the screen’s area closest to the open slit, showing that they landed there after
coming through slit 1 but got blocked (did not land on the screen) by slit 2; similarly if slit 1 is closed but
slit 2 is open. No electron gets to the screen if both slits are closed, but if they are both open, then what is
observed in the screen is an interference pattern—typical of waves, not corpuscles—instead of a distribution
of electrons that only landed on the screen’s area closest to each opened slit. This experiment is typically
thought to show a “causal anomaly” because the expected result of the experiment when the two slits are
open is radically different from what we observe (which suggests that individually fired electrons may go
through both slits as a wave would); it is also an experiment considered to establish the wave-particle duality
in quantum mechanics.
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3. A disjunction is called complete if one of its disjuncts must be true; or, equivalently,
if the disjunction is true.

In classical two-valued logic, a closed disjunction is also complete, and vice versa,
so we may derive that the disjunction B1 ∨ B2 ∨ · · · ∨ Bn is true if the disjunction is
both closed and exclusive, which is given by the following relations

B1 ≡ ¬B2 ∧ ¬B3 ∧ · · · ∧ ¬Bn

B2 ≡ ¬B1 ∧ ¬B3 ∧ · · · ∧ ¬Bn

...

Bn ≡ ¬B1 ∧ ¬B2 ∧ · · · ∧ ¬Bn−1

where ‘¬’ is the two-valued diametrical negation, i.e. the classical negation for two-
valued logic, and similarly for ‘∧’ and ‘≡’.

In a three-valued logic like R3V, since the disjunction B1 ∨ B2 ∨ · · · ∨ Bn may be
indeterminate if some of the Bi are indeterminate and the others are false, the truth of
the disjunction B1 ∨ B2 ∨ · · · ∨ Bn does not follow from the fact that the disjunction
is closed and exclusive, which is given by the following relations

B1 ↔ ¬B2 ∧ ¬B3 ∧ · · · ∧ ¬Bn

B2 ↔ ¬B1 ∧ ¬B3 ∧ · · · ∧ ¬Bn

...

Bn ↔ ¬B1 ∧ ¬B2 ∧ · · · ∧ ¬Bn−1

where ‘¬’ is the three-valued diametrical negation, ‘∧’ is the three-valued conjunction
and ‘↔’ is the alternative equivalence.

These distinctions are important because in two-valued logic a statementC is proved
when

(B ∨ ¬B) ⊃ C

has been proved. In three-valued logic, its analogue

(B ∨ B) ⊃ C

which is equivalent to

(B∨ ∼ B∨ ∼∼ B) ⊃ C

requires a proof ofC when B is true, another one when B is indeterminate, and another
one when B is false. So while the disjunction B∨¬B is closed and exclusive, in R3V
the relation (B ∨ ¬B) ⊃ C is not a proof of C ; more generally, if the disjunction
B1∨ B2 ∨· · ·∨ Bn is closed and exclusive, then the relation (B1∨ B2 ∨· · ·∨ Bn) ⊃ C
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does not represent a proof of C since the disjunction may be indeterminate. Only a
complete disjunction in the antecedent of that implication would lead to a proof of C .

Now, as to the Double-slit Experiment, let us consider a generalization in which n
slits S1, . . . , Sn are used. Reichenbach lets Bi be the statement “The particle passes
through slit Si” and says that after we observe that an electron landed on the screen
we immediately know that the disjunction B1 ∨ B2 ∨ · · ·∨ Bn is closed and exclusive,
i.e. we know that:

• if the particle did not go through n − 1 of the slits, it went through the n-th slit
• if the particle went through one of the slits, it did not go through the others

However, recall that a closed and exclusive disjunction in R3V is not necessarily also a
complete disjunction, i.e. it may not be a true disjunction since it may be indeterminate
instead. All we can say about the disjunction B1 ∨ B2 ∨ · · · ∨ Bn after an electron hits
the screen is that the disjunction is not false.

To illustrate this, consider the case when n = 2. The conditions for a closed and
exclusive disjunction B1 ∨ B2 are

B1 ↔ ¬B2

B2 ↔ ¬B1

which is equivalent to B1 ≡ ¬B2, a relation which makes the disjunction B1 ∨ B2
what Reichanbach calls a diametrical disjunction, which is a three-valued version of
the two-valued exclusive “or”. Accordingly, we know that:

• B1 is true if B2 is false
• B1 is false if B2 is true
• B1 is indeterminate if B2 is indeterminate

hence, not all Bi can be false simultaneously, so B1 ∨ B2 may be true or may be
indeterminate and thus it need not be a complete disjunction as well.

This, for Reichenbach, represents the physical situation at hand; indeed, if an obser-
vation at one slit is made, then the statement about the passage of the particle at the
other slit is no longer indeterminate, for if the observation was positive then the propo-
sition stating that the particle went through the other slit must be false, and it must be
true if the observation was negative. Moreover, if no observation of the particle at one
of the slits has been made, the disjunction B1 ∨ B2 is indeterminate; this will also be
the case if an observation is made at the n-th slit with the result that the particle did
not go through this slit.

The latter shows that causal anomalies expressed as C may not be derived from
B1 ∨ B2 ⊃ C since the diametrical disjunction B1 ∨ B2 cannot be proved as true—or,
from another perspective, B1 ∨ B2 is not a tautological but a semi-synthetic formula.
Reichenbach puts C for “The probability holding for the particle has the value P(A∧
(B1 ∨ B2 ∨ · · · ∨ Bn) | L)”, where

P(A ∧ (B1 ∨ B2 ∨ · · · ∨ Bn) | L) =
∑n

i=1 P(A | Bi )P(A ∧ Bi | L)
∑n

i=1 P(A | Bi )
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and where A stands for “The particle leaved the source F0”, L stands for “The particle
is observed to arrive at locationU of the screen”, and the bar ‘|’ in probability functions
as P(X | Y ) indicates the conditional probability of X when given Y .

The reason for Reichenbach’s choice of C above is that the latter equation, the
principle of corpuscular superposition, can only be applied when A and B1 ∨ B2 ∨
· · · ∨ Bn are true; since we have shown that B1 ∨ B2 ∨ · · · ∨ Bn may not be true,
the equation is inapplicable. The principle of corpuscular superposition states that the
statistical pattern occurring on the screen, when all slits are open simultaneously, is a
superposition of the individual patterns resulting when only one slit is open; but this,
we know, is not the case when the experiment is performed. Thus, a causal anomaly
is logically avoided.

3 Dunn semantics for R3V

Omori and Sano (2015) propose a method to obtain the truth and falsity conditions
of the connectives in several many-valued logics in terms of Dunn conditions. Dunn
conditions are defined as follows (taken almost verbatim from Omori and Sano 2015,
p. 889):

Consider four distinct truth values a, b, c, d partially ordered as follows: x < a,
for any x ∈ {b, c, d}; d < x , for any x ∈ {a, b, c}; and b ≮ c and c ≮ b. Represent
those values by the four subsets of the set {0, 1} of classical values, i.e. {1}, {1, 0}, ∅,
and {0}, respectively, and let E = {{1}, {1, 0}, ∅, {0}}. Then
• xi (1 ≤ i ∈ ω) is a variable (at the meta-logical level) which runs over E . We use

X and Xk for {xi |1 ≤ i ∈ ω} and {x1, . . . , xk}, respectively.
• The expressions ‘1 ∈ xi ’ and ‘0 ∈ xi ’ (1 ≤ i ∈ ω) are called Dunn atoms.
Furthermore, we write the set of all Dunn atoms whose variables are from Xk as
Datom(Xk).

• Let f : Ek −→ E(1 ≤ k ∈ ω) be a finitary mapping. Positive and negative Dunn
condition for f are conditions of the following forms respectively:

i ∈ f (x1, . . . , xk) iff Bi (Datom(Xk))(i ∈ {1, 0})

where Bi (Datom(Xk)) are Boolean combinations (at the meta-logical level) con-
structed from Datom(Xk). We refer to B1(Datom(Xk)) and B0(Datom(Xk)) as
positive and negative clauses for f respectively.

• Dunn conditions for a finitary mapping f: E k −→ E is a pair of positive Dunn
condition for f and negative Dunn condition for f ”.

Said briefly, Dunn conditions are essentially all the combinations of 1’s and 0’s in
disjunctive normal form that show the cases in which a given connective is either true
or false. Notice that this construction defines non-standard assignments (like “both”
and “neither”) in terms of the standard values 1 (true) and 0 (false) and the set-theoretic
relation ∈, thus eliminating the philosophical difficulty of answering about the nature
and interpretation of additional values, since to talk about formulas with non-standard
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assignments is, in a Dunn semantics, exactly the same as to talk about the positive and
negative Dunn conditions for that formula being satisfied in a particular manner.

Given any n-valued truth table, with n ≤ 4, one can obtain its Dunn conditions
following just four steps (taken almost verbatim from Omori and Sano (2015), pp.
891–892):

(i) Suppose that we have a truth table for an n-ary connective f written in terms
of some of {1}, {1, 0}, ∅ and {0}, respectively.

(ii) Separate the truth tables into two parts, one having only 1’s in the truth table,
and the other having 0’s in the truth table.

(iii) Let En
( f ,i) be the set {(ε1, . . . , εn) ∈ En|i ∈ f (ε1, . . . , εn)} (i ∈ {0, 1}). Then,

we have the following two conditions through the two separated truth tables
obtained in the previous step (where ‘OR(ε1,...,εn)’ represents the combinations
of 1’s and 0’s in disjunctive normal form):

• 1 ∈ f (x1, . . . , xn) iff OR(ε1,...,εn)∈En
( f ,1)

(x1 = ε1 and . . . and xn = εn)
• 0 ∈ f (x1, . . . , xn) iff OR(ε1,...,εn)∈En

( f ,0)
(x1 = ε1 and . . . and xn = εn)

If En
( f ,i) = ∅, then we set OR(ε1,...,εn)∈En

( f ,1)
(x1 = ε1 and . . . and xn = εn) to

be x1 = {1} and x1 = {0}.
(iv) Finally, apply the following rules to rewrite the conditions above:

x = {1} iff 1 ∈ x and 0 /∈ x, x = {0, 1} iff 1 ∈ x and 0 ∈ x

x = ∅ iff 1 /∈ x and 0 /∈ x, x = {0} iff 1 /∈ x and 0 ∈ x .

Let us apply this to R3V. The three-valued presentation of Reichenbach’s
logic, along with the number of elements in D+, motivate the representation of
Reichenbach’s T , I and F as three subsets of the set of classical values {1, 0},
namely {1}, ∅ and {0}, respectively, leaving the remaining subset {1, 0} aside.
Thus, a Reichenbach model for the language L of Sect. 1 is a mapping i from
L to {{1}, ∅, {0}}. Consider the truth table for conjunction:

Conjunction

A B A ∧ B
T T T
T I I
T F F
I T I
I I I
I F F
F T F
F I F
F F F
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We then replace T , I and F by {1}, ∅ and {0} respectively, as in the table below:

A B A ∧ B

{1} {1} {1}
{1} ∅ ∅

{1} {0} {0}
∅ {1} ∅

∅ ∅ ∅

∅ {0} {0}
{0} {1} {0}
{0} ∅ {0}
{0} {0} {0}

Afterwards, we separate truth tables in two tables, one having just 1’s, and the other
having just 0’s, as in the tables below:

A B A ∧ B A B A ∧ B

{1} {1} 1 {1} {1}
{1} ∅ {1} ∅

{1} {0} {1} {0} 0
∅ {1} ∅ {1}
∅ ∅ ∅ ∅

∅ {0} ∅ {0} 0
{0} {1} {0} {1} 0
{0} ∅ {0} ∅ 0
{0} {0} {0} {0} 0

We obtain thus the following two conditions:

(A ∧ B) = {1} iff A = {1} and B = {1}
(A ∧ B) = {0} iff A = {1} and B = {0} or

A = ∅ and B = {0} or
A = {0} and B = {1} or
A = {0} and B = ∅ or

A = {0} and B = {0}

Rewriting both conditions in terms of Dunn atoms, we obtain the following pre-
sentation of those conditions:

1 ∈ (A ∧ B) iff 1 ∈ A and 0 /∈ A and 1 ∈ B and 0 /∈ B

0 ∈ (A ∧ B) iff 1 ∈ A and 0 /∈ A and 1 /∈ B and 0 ∈ B or

1 /∈ A and 0 /∈ A and 1 /∈ B and 0 ∈ B or
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1 /∈ A and 0 ∈ A and 1 ∈ B and 0 /∈ B or

1 /∈ A and 0 ∈ A and 1 /∈ B and 0 /∈ B

1 /∈ A and 0 ∈ A and 1 /∈ B and 0 ∈ B

which in turn can be simplified as follows:

1 ∈ (A ∧ B) iff 1 ∈ A and 1 ∈ B

0 ∈ (A ∧ B) iff 0 ∈ A or 0 ∈ B

(Omori and Sano use classical logic onmaking simplifications like the previous one.
Note also that we allowed ourselves a little abuse of notation by ommiting the inter-
pretations i and writing expressions like ‘1 ∈ ©(A1, . . . An)’, ‘0 ∈ ©(A1, . . . An)’,
‘©(A1, . . . An) = {1}’ or ‘©(A1, . . . An) = {0}’ to give the evaluation conditions for
any n-nary connective ©.)

Again, note that the Dunn semantics does not amount to the formally trivial replace-
ment of F by {0}, I by ∅, and T by {1}; the predication of such values for formulas
has been modified as follows: instead of the requisites of truth-functionality and three-
values—i.e. to each formula there is one and only one of the three truth values assigned
to it—we have relational assignments of just two truth values given in terms of∈ in the
positive and negative Dunn conditions, which allows for formulas which have neither
the value true nor the value false assigned to them.

Thus, under the Dunn semantics, R3V is not three-valued; there are only two truth
values, those in the set {1, 0}. What one gets are three admissible valuations on those
two truth values:

– A formula may be assigned just 1: 1 ∈ i(A) and 0 /∈ i(A), represented by ‘{1}’;
– A formula may be assigned just 0: 0 ∈ i(A) and 1 /∈ i(A), represented by ‘{0}’;
– A formula may be assigned neither 1 nor 0: 1 /∈ i(A) and 0 /∈ i(A), represented
by ‘∅’.

Finally, the truth tables rewritten would look as follows:

Conjunction and disjunction

A B A ∧ B A ∨ B
{1} {1} {1} {1}
{1} ∅ ∅ {1}
{1} {0} {0} {1}
∅ {1} ∅ {1}
∅ ∅ ∅ ∅

∅ {0} {0} ∅

{0} {1} {0} {1}
{0} ∅ {0} ∅

{0} {0} {0} {0}
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Negations

Cyclical Diametrical Complete

A ∼ A ¬A A
{1} ∅ {0} ∅

∅ {0} ∅ {1}
{0} {1} {1} {1}

Implications

Standard Alternative Quasi-implication

A B A ⊃ B A → B A � B
{1} {1} {1} {1} {1}
{1} ∅ ∅ {0} ∅

{1} {0} {0} {0} {0}
∅ {1} {1} {1} ∅

∅ ∅ {1} {1} ∅

∅ {0} ∅ {1} ∅

{0} {1} {1} {1} ∅

{0} ∅ {1} {1} ∅

{0} {0} {1} {1} ∅

Equivalences

Standard Alternative

A B A ≡ B A ↔ B
{1} {1} {1} {1}
{1} ∅ ∅ {0}
{1} {0} {0} {0}
∅ {1} ∅ {0}
∅ ∅ {1} {1}
∅ {0} ∅ {0}
{0} {1} {0} {0}
{0} ∅ ∅ {0}
{0} {0} {1} {1}

Thus, note that Reichenbach’s R3V can be presented as (Strong) Kleene K3 with
a two-valued relational semantics—consider the fragment {¬,∧,∨}—expanded with
five new connectives, two negations and three implications5, whose truth and falsity
conditions are as follows:
1 ∈ i(∼ A) iff 0 ∈ i(A)

0 ∈ i(∼ A) iff 1 /∈ i(A) and 0 /∈ i(A)

1 ∈ i(A) iff 1 /∈ i(A)

0 ∈ i(A) iff 1 ∈ i(A) and 0 ∈ i(A)

1 ∈ i(A ⊃ B) iff 0 ∈ i(A) or 0 /∈ i(B)

0 ∈ i(A ⊃ B) iff 1 ∈ i(A) and 1 /∈ i(B)

1 ∈ i(A → B) iff 1 /∈ i(A) or 1 ∈ i(B)

5 Or as an expansion of Ł3, if standard implication is included among the primitive connectives, with two
more negations and two more implications.

123



Synthese (2021) 199:11821–11845 11835

0 ∈ i(A → B) iff 1 ∈ i(A) and 1 /∈ i(B)

1 ∈ i(A � B) iff 1 ∈ i(A) and 1 ∈ i(B)

0 ∈ i(A � B) iff 1 ∈ i(A) and 0 ∈ i(B)

(As we have seen, the equivalences are defined with the vocabulary already available.)
In the next section we explore whether this new presentation helps in addressing

some of the old misgivings about the formal features of R3V.

4 A new glance at the objections against R3V

Philosophers of science raised several objections against Reichenbach’s logic R3V.
These may be summarized as follows:

O1) Feyerabend’s: Reichenbach’s move to render statements of causal anomalies
unassertable in the object language of quantum mechanics is a move that makes
refuting instances of the theory of quantummechanics unassertable (Nilson 1979,
p. 441; Feyerabend 2012).

O2) Suppes’: it seems that R3V has little to do with the underlying logic required
for quantum mechanical probability spaces; moreover, what he calls the logic for
quantummechanic events is not truth-functional, while Reichenbach’s logic is so
(Patrick 2012b, a).

O3) Strauss and Gardner’s: some causal anomalies are avoided, but others are not
(e.g. Schrödinger’s cat and theEinstein-Podolsky-Rosen paradox) (Gardner 1972;
Strauss 1971).

This kind of objections questions the suitability of R3V as a logic to work in
quantum mechanics. Addressing them would imply to take a stance in a variety of
issues that go beyond the scope of the paper, and we leave them for another occasion.6

There are other criticisms, directed not towards the applicability of R3V in its
intended domain, but rather towards its formal features. For example, according to
Hempel and Nagel, Reichenbach has not given sufficient indication of how we are to
understand the various truth values in R3V—see for example (Hempel 1945; Nagel
1946; Nilson 1979, pp. 442–443). In particular, they claim that

HN1. “Truth” in a two-valued language does not mean the same as “truth” in a three-
valued language.

HN2. Conditions underwhich a statement is true, false or indeterminate are left unspec-
ified.

HN3. “Indeterminate” means the same as “meaningless”.
HN4. Certain statements in R3V claimed by Reichenbach to make the same assertion,

in fact do not do so. Hempel argues that if two sentences state the same fact,
they must have identical truth tables, but the truth tables for ∼ A and ¬A are
different and yet Reichenbach tells us both of them state “A is false”.

HN5. Reichenbach’s attempt to move certain statements ordinarily made meta-
linguistically into the object language of quantum mechanics does not work.
Besides the case for ∼ A and ¬A not stating the same, Hempel is worried about

6 For some replies to the objections above, sympathetic to Reichenbach’s project, see Nilson (1979).
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the non-standard nature of the “if then” relation used in U∨ ∼U →∼∼V and
thinks that the Rule of Complementarity should be stated in the meta-language.

Van Fraassen has also objected that Reichenbach’s Rule of Complementarity is
satisfied by certain parameters which are not incompatible (Van Fraassen 2012), so
the object language formula U∨ ∼U →∼∼V is not enough, in his view, to capture
the phenomena of complementarity; moreover, this rule may be expressed through a
single connective � (Van Fraassen’s “apple” connective) such that A �B if and only
if A∨ ∼ A →∼∼ B, where

A �B {1} ∅ {0}
{1} {0} {1} {0}
∅ {1} {1} {1}
{0} {0} {1} {0}

which makes Van Fraassen’s criticism evident.7 Van Fraassen shows that there are
models where the formula U∨ ∼ U →∼∼ V (or U �V ) is true, but where their
corresponding quantities u and v commute, i.e. [u, v] = 0. To see this, let Q be the
operator for the x-coordinate position of a system, Q′ be the y-coordinate position
operator, and P be the x-coordinate momentum operator. Suppose Qx = r x and
Q′x = r ′x , i.e. the x-coordinate position operator applied to a state vector x results
in the eigenvalue r (similarly for Q′ and r ′). Then the proposition U (q ′, r ′), i.e. “the
y-coordinate position magnitude has eigenvalue r ′” is true and V (p, r ′′), i.e. “the x-
coordinate momentummagnitude has eigenvalue r ′′” is indeterminate, whenceU∨ ∼
U →∼∼V (orU �V ) is true. However, [q ′, p] = 0 even though [q, p] �= 0, i.e. while
by Heisenberg’s Uncertainty Principle, the x-coordinate position magnitude q does
not commute with the x-coordinate momentum magnitude p, still the y-coordinate
position magnitude q ′ commutes with the x-coordinate momentum magnitude p.

The latter argument is used to suggest that Reichenbach’s Rule of Complementarity
will not work when stated as an object language formula, and so that the only hope is
to resort to other formulation in the meta-language. We will return to this a bit later,
but notice that Van Fraassen’s argument only proves that

U∨ ∼U →∼∼V � [u, v] �= 0

Let us start with Hempel’s and Nagel’s objections. Regarding HN1, we can say that
“truth” doesmean the same in classical logic and in R3V: the set of truth values in each
case is the same, {1, 0}, and truth is the same element in both. There is nonetheless
a difference in how we treat the predicate is true (“truth” as a predicate of formulas)
in Reichenbach’s logic, which our Dunn-style semantics makes clear. A functional
semantics like the one Hempel and Nagel had in mind predicates truth of a formula

7 The truth and falsity conditions for the apple connective are as follows:
1 ∈ i(A �B) iff 1 /∈ i(A) and 0 /∈ i(A), or 1 /∈ i(B) and 0 /∈ i(B)

0 ∈ i(A �B) iff 1 ∈ i(A) or 0 ∈ i(A), and 1 ∈ i(B) or 0 ∈ i(B)
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A exactly when there is a function i such that i(A) = 1, i.e. predication of truth
happens via the identity relation with the element 1 of {1, 0}. However, in a relational
semantics like the Dunn-style semantics we give here, predication of truth happens
via the membership relation, i.e. 1 ∈ i(A). Thus, even when the semantics for two
logics have the same set of truth values, {1, 0}, a difference in the predication of truth
values would allow for truth-value gluts—the assignation of both truth and falsity—or
gaps—the assignation of neither truth nor falsity. This is what happens in R3V.

HN2 is difficult to assess. Reichenbach thought that his truth tables specified every
truth, indeterminacy and falsity conditions for propositions in general—see Nilson
(1979), p. 443, and we think he is right. If the demand was to give truth, indeterminacy
and falsity conditions for atomic propositions, in the sense that they say when an
atomic proposition get each of the valuations, instead of simply stating that it can get
one of them, the demand is simply too high to meet not only for R3V, but for any
formal semantics.

Regarding HN3, the claim is not true. We have seen that R3V is an expansion of
K3 and the additional admissible valuation is not to be understood as “meaningless”;
it is rather “neither true nor false”. Besides the Dunn reconstruction above, there is
one more consideration for us to entertain to show why we should not think of the
additional assignment as meaninglessness. It is customary to think of meaninglessness
as infectious: an assignment m is infectious if and only if i(k(A1, . . . , An)) = m, for
every Ai and n-ary connective k, whenever i(A j ) = m, for some A j , with 1 ≤ i ≤
j ≤ n. (“One bad apple spoils the whole barrel”, as the saying goes.) This is not the
case in R3V. A quick inspection on the tables reveals that there are connectives whose
evaluation is not ∅ when some of its components gets ∅.8

The fourth objection is a bit more pressing, but still not compelling. What Reichen-
bach seems to have in mind when he says that both ∼ A and ¬A state that A is false
is the following:

• A is false iff ∼ A (is true)
• A is false iff ¬A (is true)

Moreover, “Both ∼ A and ¬A state that A is false”, Reichenbach’s claim, is not
the same as “∼ A and ¬A state the same fact”, which is Hempel’s reconstruction of
Reichenbach’s claim. To see this more clearly, suppose that

(a) A and B state the same fact
means

(b) A and B have exactly the same evaluations
as it is suggested by a reviewer. Nonetheless, (b) in general is not equivalent to

(c) A and B have exactly the same truth conditions
because in non-classical contexts the truth conditions do not determine by them-
selves the falsity conditions too. Therefore, without further argument, there is no
need to accept Hempel’s (stronger) claim as equivalent to Reichenbach’s.9

8 For more on meaninglessness—or “nonsense”—and infectious logics, see Ferguson (2017), Ch. 2.
9 Note that A has different truth conditions: if A is true, A is untrue, although not necessarily false.
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Hardegree (1979), pp. 501–503 has come up with a solution to the objection by
adding to R3V the unary connectives T, I and F for “…is true”, “…is indeterminate”
and “…is false”, respectively, with the following truth tables:

A TA IA FA

{1} {1} {0} {0}
∅ {0} {1} {0}
{0} {0} {0} {1}

Nonetheless, in our opinion, this move makes no improvement with respect to
Reichenbach’s negations10, because its truth condition

• A is false iff FA (is true)

is the same that of ∼ A and ¬A. There is nonetheless one sense in which FA would
be a negation more acceptable to Hempel: its falsity condition is Boolean, in the sense
that the falsity of FA is determined not by the truth of A but by its non-falsity.11

HN5 and Van Fraassen’s objection are very similar, so we will address them jointly.
Van Fraassen (2012), p. 586 observes that the formulas U∨ ∼U →∼∼V and U �V
belong in the object language but fail to capture the incompatibility relation of comple-
mentarity, and suggests, verymuch in linewithHempel’s own remarks, a reformulation
of the rule in terms of (semantic) entailment thus: wheneverU and V are incompatible,

U∨ ∼U �∼∼V

Van Fraassen also thinks that R3V must rely on special rules governing the incompat-
ibility relation, such as the following generalized form of Disjunctive Syllogism (or
Gamma Rule): where C is incompatible with B,

A ∨ B, C � A

However, we believe that the latter formulation of theRule ofComplementaritymay
be stated more carefully. Nilson (1979), p. 446 shows that Reichenbach’s formulation
of the rule (when carefully stated, i.e. “if U and V are non-commutative entities, then
U∨ ∼U →∼∼V ”) strictly speaking belongs to the meta-language and involves both
the alternative implication → and the standard (i.e. two-valued) meta-linguistic “if
then” relation sought by Hempel. A rule like

[u, v] �= 0 � (U∨ ∼U ) →∼∼V

10 Although it produces some nice properties: The set of connectives of R3V’s plus the Hardegree con-
nectives is functionally complete, as a reviewer correctly notes.
11 Note however that a full Boolean negation, i.e. a connective N with the following truth and falsity
conditions
1 ∈ i(NA) iff 1 /∈ i(A)

0 ∈ i(NA) iff 0 /∈ i(A)

is not expressible in R3V, even if expanded with the Hardegree connectives: if A is neither true nor false,
NA would be both true and false, which is not an admissible evaluation in this context.
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where u and v are non-commuting quantities, i.e. [u, v] �= 0, might be the correct
statement of the Rule of Complementarity, for it would state that every model where u
and v are non-commuting quantities is a model where the object language implication
U∨ ∼U →∼∼ V holds. This strategy accepts Van Fraassen’s criticism of the sole
implication U∨ ∼ U →∼∼ V in the object language (or the formula U �V for
that matter) not being able to capture appropriately those models (and only those)
which involve non-commuting quantities, but recasts Van Fraassen’s meta-language
formulation of the rule in a way that does not deviate too much from Reichenbach’s
ideas.

Although the issue is complicated and probably the best route to handle it is moving
Complementarity to the meta-language as suggested by Hempel, Van Fraassen and
Nilson, we just want to mention that working in the object language is not a complete
dead end. One can add to the language a new complementarity connective that captures
the intuition that, for A and B to be complementary, one of them (but not both) has to
be either true or false:

A �∗B {1} ∅ {0}
{1} {0} {1} {0}
∅ {1} {0} {1}
{0} {0} {1} {0}

Moreover, there are other connectives that can be considered to express certain
facts. Adding the Hardegree unary connectives or the just mentioned complementar-
ity connective would enrich the expressivity of R3V. Moreover, there are a number
of other conditionals that can be taken into account. For example, the extensional
conditional, with the following evaluation conditions
1 ∈ i(A →e B) iff 0 ∈ i(A) or 1 ∈ i(B)

0 ∈ i(A →e B) iff 1 ∈ i(A) and 0 ∈ i(B)

and which is already definable in the language of R3V—in fact, already in that of
K3—as ¬A ∨ B. A more systematic treatment of the conditionals that can be added
to, or defined in, R3V, is left for further work.

5 R3V and contra-classical logics

Until very recently, most of the more well-known non-classical logics—constructive
logics, relevance logics, paraconsistent logics, and so on—were subclassical, i.e. all
their valid arguments are classically valid, but not all classically valid arguments are
valid in them. More generally, and formally, let L be the base language of a logic
L—thought of as a collection of valid arguments, and Con(L) the collection of its
connectives. Then, a logic L* is sub-L if

• L∗ ⊆ L
• L* ⊂ L
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• for any © ∈ Con(L), the interpretation of © in L, iL(©(A1, . . . , An)), entails (in
L) the interpretation for © in L*

But some non-classical logics are contra-classical. This means that, in them there
are valid arguments that are invalid in classical logic over the same kind of underlying
language. Again more generally and formally, a logic L* is contra-L if

• L∗ ⊆ L
• L* � L
• for any © ∈ Con(L), the interpretation of © in L, iL(©(A1, . . . , An)), entails (in

L) either the truth or the falsity condition for © in L*

Parenthetical remark. Humberstone (2000) requires profoundness, i.e. that a contra-
classical logic is non-translatable into a fragment of classical logic, to avoid cases
were an intended connective —say, an implication— is really another connective in
disguise—say, a biconditional.We take that as an excessive demand, though. Our third
condition is there to ensure some commonality of meaning suitable to our purposes
between the connectives of classical logic and those of a contra-classical logic, but not
as our final word on the topic on the meaning of connectives in contra-classical logics.
They bring even more perplexities than the more common non-classical logics, but
discussing themwould lead us too far from our actual topic. (For defenses of ideas akin
to our assumption regarding connectives, see Hjortland (2014)) and Estrada-González
(2020).

Given that, in classical logic, for any A, 1 ∈ i(A) iff 0 /∈ i(A) and 0 ∈ i(A) iff
1 /∈ i(A), it is straightforward to verify that the evaluation conditions for negation in
classical logic imply the truth conditions for ¬A and A in R3V, and that those of the
conditional imply both truth an falsity conditions for A ⊃ B and A → B, and the
falsity condition for A � B. (Conjunction and disjunction are even easier cases.) End
of remark.

An example of contra-classical logic is Aristotelian logic. Aristotelian logic and its
medieval successors have two central parts: one of them is the theory of oppositions
and the other is syllogistic.12 Nowadays, the most natural translation of the syllogistic
forms into classical logic is as follows:

Medieval mnemonics English-with-variables First-order language
SaP All Ss are Ps ∀x(Sx → Px)
SeP No Ss are Ps ∼ ∃x(Sx ∧ Px)
Si P Some Ss are Ps ∃x(Sx ∧ Px)
SoP Some Ss are not Ps ∃x(Sx∧ ∼ Px)

Given this translation, syllogistic gives verdicts concerning the validity of some
syllogisms that are inconsistent with classical logic. Consider the argument forms
called by the medievals Darapti and Camestros, which are, respectively:

All Bs are Cs All Cs are Bs
All Bs are As No As are Bs

Hence some As are Cs Hence some As are not Cs

12 This is not the place to even start giving the basics of Aristotelian and medieval logics. Here we will
assume the reader’s familiarity with the theory of oppositions and syllogistic. Since there are several good
starting points on the topic, we recommend George (2004) almost randomly.
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Both of these are valid syllogisms. Both are invalid in classical logic. Hence, syl-
logistic is contra-classical.13

We mentioned syllogistic only to show a well-known example of a contra-classical
logic, that cannot be dismissed as an eccentricity derived from a too mathematical
approach to logic. Having said that, we will restrict ourselves to zero-order logics;
here are two examples of contra-classical logics developed during the 20th and 21st
centuries that will be useful in what follows:
Connexive logics (McCall 2012; Wansing 2020; Wansing et al. 2016) logics such that
∼(A →∼ A) Aristotle’s Thesis
∼(∼ A → A) Variant of Aristotle’s Thesis
(A → B) →∼(A →∼ B) Boethius’ Thesis
(A →∼ B) →∼(A → B) Variant of Boethius’ Thesis
are logically valid, and, furthermore,
(A → B) → (B → A) Symmetry of implication
is not valid.

Actually, connexive implication is motivated in McCall (1966) by reproducing in
a first-order language all valid moods of Aristotle’s syllogistic.

The name ‘connexive logic’ suggests that systems of connexive logic are motivated
by some ideas about coherence or connection between premises and conclusions of
valid inferences or between formulas of a certain shape, and in that general, intuitive
sense, they are closely related to relevance logics; see for example Routley (1978).
Other motivations for connexive logic include subjunctive and causal conditionals,
because it seems that ‘If an object is dropped, it will not hit the floor’ contradicts ‘If
an object is dropped, it will hit the floor’. On this, see McCall (2014).
Abelian logic (Meyer and Slaney 1989, 2002): logics containing the following axiom
schema:
((A → B) → B) → A Axiom of Relativity

In spite of being a classical contingency, the Axiom of Relativity is closely related
to the double negation schema. Remember that negation can usually be defined as
follows:

¬A =de f A → ⊥

where the nullary connective⊥ stands, as usual, for an arbitrary falsehood. The double
negation schema can thereby be reformulated in the following way:

(Double negation schema) ((A → ⊥) → ⊥) → A

Meyer and Slaney point out that negation can be generalized if an arbitrary propo-
sition, and not only a falsehood, is put in the consequent of the definiens. To this effect,
Meyer and Slaney say that “[l]ogic should be in the business of telling us what follows
from what, and not of advising us as to which propositions are despised and rejected.
Is there a proposition so true that it logically cannot be taken as f [the value false] for
some purposes? Our Modest Proposal is that there is not” (Meyer and Slaney 1989, p.

13 Whether Aristotle held that Camestros is valid is a moot point, but it certainly was regarded as valid in
medieval syllogistic.
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252). Then, the motivation to define a relative negation in this fashion is precisely that,
in principle, any proposition can play the logical role of a falsehood.14 Thus, putting
B uniformly instead of ⊥ in the Double negation schema, one gets Relativity.

No contra-classical logics are subclassical, even if they can be built upon some
subclassical logics. As we have seen, R3V is built upon K3 by adding some further
negations and conditionals. In what follows, we will briefly show how the fragments
{∼}, {�}, {�,−} and {�,→} of R3V give rise to contra-classicality. However, before
we proceed, an important note is in order. In their standard formulations reproduced
above, the contra-classical schemas do not contain different kinds of negations or
conditionals: we will allow different occurrences of negations or conditionals to be
replaced by actual different negations and conditionals, though.15

Cyclical negation Typically, a triple negation is inter-derivable with a single negation,
but in R3V a triple cyclical negation of A, ∼∼∼ A, is inter-derivable with the non-
negated A.

Given this result, one may wonder whether cyclical negation is a negation at all.
This question has already been raised inOmori andWansing (2018) for demi-negation,
a connective δ such that δδA is inter-derivable with N A, with N an already acceptable
negation, like diametrical negation.

In Omori and Wansing (2018), the authors show that there is at least one sense
of ‘negation’ in which demi-negation—in the particular logic they study, Kamide’s
CP—is a negation, namely, because it satisfies some minimal requirements for any
negation �A in a logic L, such as

– There are formulas A and B such that A �L �A and �B �L B;
– � expresses a semantic opposition between truth and falsity, such as “�A is true
iff A is false”, or “�A is false iff A is true”;

It can be easily verified that cyclical negation satisfies these requirements as well.
This does not mean that the issue is settled, but merely that the negational character
of cyclical negation is not as hopeless as it seemed at first sight because of its contra-
classicality.
Quasi-implication Both (A � B) � A and (A � B) � B are valid in R3V, which
may cast doubt on the conditionality of Reichenbach’s quasi-implication. Recall the
evaluation conditions for A � B:
1 ∈ i(A � B) if and only if 1 ∈ i(A) and 1 ∈ i(B)

0 ∈ i(A � B) if and only if 1 ∈ i(A) and 0 ∈ i(B)

that is, it has the typical truth condition of a conjunction and the typical falsity condition
of a conditional. Then one may wonder whether quasi-implication is not rather a
conjunction, and actually therewouldbe some reasons to think this is the case.Consider
a conjunction with its usual truth and falsity conditions:

14 At an algebraic level, Meyer and Slaney’s main concern was that the relevance logic R seemed suitable
to be interpreted with groups, but that was not the case. With the Relativity axiom on top of RW, it is
possible to understand negation as a complement and this allows to interpret the resulting logic A using
Abelian groups.
15 This is not so uncommon, at least in connexive logic, where the main conditional in Boethius’ Theses
has been replaced by thematerial conditional, whereas the inner ones are distinctive connexive conditionals.
For a brief but illuminating discussion on the topic of contra-classical theses with different conditionals,
see Kapsner and Omori (2020). See also Nicolás-Francisco (2020).
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1 ∈ i(A ∧ B) if and only if 1 ∈ i(A) and 1 ∈ i(B)

0 ∈ i(A ∧ B) if and only if 0 ∈ i(A) or 0 ∈ i(B)

If, moreover, logical consequence is defined as
(T-consequence) � � A if and only if 1 ∈ i(A) whenever for every B

such that B ∈ �, 1 ∈ i(B)

then A � B �� A∧ B, and this seems evidence enough to hold that quasi-implication
is a conjunction and not a conditional. Moreover, as we have seen, both (A � B) � A
and (A � B) � B, on the one hand, and (A ∧ B) � A and (A ∧ B) � B hold; but
(A � B) � A and (A � B) � B, and (A ∧ B) � A and (A ∧ B) � B do not
hold. This strongly suggests that quasi-implication is not a conditional at all, and the
alleged failure of Simplification is simply due to the fact that the quasi-implication is
just another conjunction.

In fact, Egré et al. (2021) have shown that quasi-implication belongs to a family
of intended conditionals > such that, with T-consequence will fail at least one of the
following:

– Detachment, A, A > B � B
– Self-identity, � A > A
– Non-symmetry (A > B � B > A) or Non-entailment of conjunction (A > B �

A ∧ B).

Nonetheless, they have also shown that quasi-implication plus TT-consequence,
that is

(TT-consequence) � � A if and only if 0 /∈ i(A) whenever for every B
such that B ∈ �, 0 /∈ i(B)

satisfies Self-identity, Non-symmetry and Non-entailment of conjunction, although
it still fails to validate Detachment. Let us grant for the sake of the argument that
Detachment is so central to conditionality that if a connective satisfies a bunch of
other conditional-ish properties but it fails to validate Detachment, it is not really a
conditional.

This result for quasi-implication resembles the situation of the conditional in
González-Asenjo’s/Priest’sLP—which is likeK3, with the exception that the admissi-
ble valuations are i(A) = {1}, i(A) = {1, 0} and i(A) = {0}. Beall has stressed several
times (see for example Beall 2011, 2015) that even if Detachment is invalid for the
conditional in LP, it is default valid in the sense that A, A → B � B∨(A∧¬A) holds,
that is, either Detachment holds or the antecedent is a formula with the value {1, 0},
which arguably is not the case in most situations. The second disjunct internalizes in
the conclusion, so to speak, the structure of valuations into the object language. In the
case of quasi-implication, the admissible valuations are given by P(V ) \ {1, 0}, and
one actually has that A, A � B � B ∨ ¬(A ∨ ¬A) holds, that is, either Detachment
holds or the antecedent has the value ∅.
Quasi-implication and negations The fragments {�,∼} and {�,−} are contra-
classical as well. To wit, consider that the following version of Aristotle’s Thesis,
(A � NA), with N ∈ {∼,−}, is a valid schema. Moreover, N ∼ (A �∼ A), again
with N ∈ {∼,−} is a valid schema. Variations of Boethius’ Theses are left to the
reader.
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Implications Finally, the fragment {�,→} is contra-classical too. Within it, one can
get the following version of Relativity: ((A � B) � B) → A.

6 Conclusions

In this paper we tried to show that, in relating it to certain contemporary tools and
discussions in logic, Reichenbach’s logic exhibits many interesting features, and even
new responses to someof the old objections can be attempted.After revisitingReichen-
bach’s three-valued logic (R3V) and its underlying motivations, we gave a Dunn-style
semantics for it, that is, a semantics based on independent, relational truth and falsity
conditions for the connectives. Then we reconstructed some of the objections raised
against the formal features of Reichenbach’s logic, and showed how the presentation
of R3V in terms of Dunn semantics helps in addressing some of these worries. Finally,
we established some connections between R3V and some contra-classical logics. We
hope that this contributes to renew the interest in a logic that is not so arcane as it can
seem at first sight.
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