
Vol.:(0123456789)

Synthese (2021) 199:11397–11421
https://doi.org/10.1007/s11229-021-03295-1

1 3

ORIGINAL RESEARCH

Perceptual justification in the Bayesian brain: 
a foundherentist account

Paweł Gładziejewski1 

Received: 8 March 2021 / Accepted: 30 June 2021 / Published online: 19 July 2021 
© The Author(s) 2021

Abstract
In this paper, I use the predictive processing (PP) theory of perception to tackle the 
question of how perceptual states can be rationally involved in cognition by justi-
fying other mental states. I put forward two claims regarding the epistemological 
implications of PP. First, perceptual states can confer justification on other men-
tal states because the perceptual states are themselves rationally acquired. Second, 
despite being inferentially justified rather than epistemically basic, perceptual states 
can still be epistemically responsive to the mind-independent world. My main goal 
is to elucidate the epistemology of perception already implicit in PP. But I also hope 
to show how it is possible to peacefully combine central tenets of foundationalist 
and coherentist accounts of the rational powers of perception while avoiding the 
well-recognized pitfalls of either.

Keywords Bayesian brain · Coherentism · Epistemic justification · 
Foundationalism · Perceptual justification · Predictive processing

1 Introduction

Philosophers sometimes posit that we need to carefully distinguish the causes of our 
beliefs from the reasons for our beliefs (Davidson, 1986; McDowell, 1996; Sellars, 
1956). Acting as a reason means playing a normative role: some mental states serve 
as reasons for other mental states by epistemically justifying or warranting those 
states. However, nothing counts as a reason for a mental state simply by being caus-
ally involved in producing that state. And the empirical sciences of cognition, the 
story goes, only have a purely causal story to tell. For example, in the case of percep-
tion, cognitive (neuro) science uncovers the causal transactions that lead from physi-
cal energies impinging on the sensory apparatus to perceptual states representing 
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the external environment, which in turn causally shape beliefs. It seems that a causal 
story like this by itself cannot solve the problem of how perceptual states could play 
a rational role.

Intriguingly, a particular development in scientific theorizing about causal mech-
anisms of perception seems to blur the reason/cause divide. According to the pre-
dictive processing (PP) account that I have in mind, perceiving involves inverting a 
generative model of the environment to estimate the most likely causes of sensory 
stimulation. This inversion is achieved by minimizing the prediction error or the dis-
crepancy between estimate-based predictions and the actual sensory stimulation.

Proponents of PP usually posit it as a mechanistic or process-level theory that 
aims to reveal the causal mechanisms responsible for perception (Badcock et  al., 
2019; Hohwy, 2018). However, the ways in which proponents of PP sometimes 
describe these mechanisms are rich in epistemically normative notions and ideas. 
Perhaps most relevant here is the idea that perception is unconscious inference in 
which the brain performs approximate Bayesian updating to make sense of the envi-
ronment. That is, the causal transactions that output perceptual states conform to a 
normative rule of statistical inference. In fact, some PP-based explanations of cog-
nitive phenomena constitute rational reconstructions of sorts: they purport to show 
that the brain solves perceptual problems in a way that conforms to the way it should 
solve those problems if it were a probabilistically rational system (see Hohwy, Roep-
storff, Friston 2008).

The purpose of this paper is to argue that PP indeed comes with a built-in nor-
mative account of the rational powers of perception that is both original and philo-
sophically valuable. It is original because it is neither foundationalist nor coherent-
ist, but rather combines central tenets of both positions to yield a particular variant 
of hybrid or ‘foundherentist’ view (for earlier expositions of this sort of intermediate 
position, see: Gupta, 2006; Haack, 1993; I follow Haack in using the term ‘found-
herentism’). It is philosophically valuable because it addresses two major problems 
that have plagued traditional accounts of perceptual justification.

The first problem relates to the question of how perceptual states acquire their 
ability to confer justification on other mental states. Here, the background idea is 
that epistemic justification is transferred from one mental state to another via the 
inferential links between respective states or their contents. On a familiar founda-
tionalist picture, this inferential chain terminates in perceptual states, which act as 
‘unjustified justifiers,’ that is, have the ability to confer justification on other states 
without requiring to be themselves inferentially justified. But a dilemma can be 
raised here (BonJour, 1985; Sellars, 1956). If perceptual states are considered rep-
resentational or contentful in a way that allows them to inferentially transmit their 
justification to beliefs, then they are precisely the sort of states that require to be 
inferentially justified by other, antecedent representational states. This conclusion, 
however, would be at odds with the very idea of foundationalism. If we instead treat 
perceptual states as contentless raw feels or mere sensory registrations, then even if 
they can causally shape beliefs, it is hard to see how they could feature in inferential, 
justification-conferring relations with representational states.

The second problem about perceptual justification arises if we abandon foun-
dationalism and instead settle on a view that perceptual states draw their power 
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to justify from the fact that they themselves are inferentially justified. In particu-
lar, on such a coherentist picture, perceptual states can be regarded as justified in 
virtue of participating in a broader coherent system of inferentially linked states. 
For example, percepts could be ‘cognitively spontaneous’ beliefs (BonJour, 1985). 
Although exogenously caused rather than arrived at through inference, such beliefs 
are inferentially justified by other beliefs belonging to a wider coherent set (e.g., 
meta-beliefs about what the content of the relevant belief is, about the relevant belief 
being cognitively spontaneous, about the conditions in which the relevant belief is 
formed, and about how reliable the perceptual apparatus is when producing cog-
nitively spontaneous beliefs with such contents in such conditions). This is where 
the problem I have in mind—the ‘input’ problem—arises. How can mere coherence 
among mental states make those states epistemically responsive to how things really 
are in the mind-independent world? Traditionally, it was perception that was thought 
to act as an epistemic interface of this sort. However, on the coherentist view, the 
justification of perceptual states, just like the justification of beliefs, is a matter of 
purely internal relations among mental states. To put this in different terms: since 
there could be many alternative, equally coherent but mutually incompatible sets of 
beliefs which include cognitively spontaneous beliefs (BonJour, 1997), it is hard to 
see how perception could be truth-conductive just in virtue of featuring in a coherent 
system.

I will argue that the PP’s nuanced view of how perceptual states are formed 
accounts for perceptual justification in a way that addresses both those problems. 
It answers the question of where the rational power of perception originates along 
the coherentist lines. That is, percepts can justify other mental states because they 
acquire a positive epistemic status (justification) in virtue of having a rational etiol-
ogy of their own. Simultaneously, the input problem is dealt with by pointing to how 
sensory signals constrain perceptual inference. Although sensory signals are mere 
registrations devoid of intentional content, they embody a statistical structure that—
when properly hooked to a wider Bayesian machinery—drives perceptual inferences 
to produce accurate representations of the environment.

The discussion is structured as follows. In Sect. 2, I briefly discuss the PP account 
of perception, focusing on the notion of perception as approximate Bayesian infer-
ence. In Sect. 3, I discuss how perceptual estimates of the environment owe their 
positive epistemic status to their rational etiology. In Sect. 4, I supplement this pic-
ture with a (quasi-)foundationalist element, focusing on the evidential role of statis-
tical patterns in the sensory signal. In Sect. 5, I use the notion of epistemic conver-
gence to outline how perception could generate justification that is unconditional or 
absolute. I briefly conclude in Sect. 6.

2  Perception, Bayes, and predictive processing

PP is founded on an idea that perceiving amounts to unconsciously inferring hidden 
worldly causes of sensory stimulation (for extensive discussions, see Bogacz, 2017; 
Clark, 2013b, 2016; Friston, 2005, 2010; Hohwy, 2013, 2020; Rao, Ballard, 1999; 
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for major historical precursors, see Gregory, 1980; Helmholtz, 1855; Peirce, 1934, 
CP-5.181; the particular version of PP that I employ in the present article originates 
from Friston, 2005). The causes are considered ‘hidden’ because the causal struc-
ture affecting the organism’s sensory apparatus cannot be directly ‘read off’ from the 
sensory stimulation. Sensory states are underdetermined by their external causes: 
multiple different causes could produce the same sensory effect, and the same cause 
can produce many distinct sensory effects depending on circumstances. In fact, in 
most natural circumstances, the flow of sensory input is produced by multiple inter-
acting causes, and there are many alternative ways of ‘unmixing’ the input to pro-
duce a perception of a scene.

According to PP, to deal with sensory ambiguity, the brain or the perceptual sys-
tem attempts to infer the causes of sensory stimulation in a way that approximately 
conforms to Bayes rule:

The idea, then, is that a particular hypothesis (about the causes of sensory stimu-
lation) is selected from some hypothesis space H in a way that maximizes posterior 
probability p(h|d) . The posterior probability measures how likely a hypothesis is 
to be true, given the sensory data. Computing the posterior requires combining the 
prior belief about the probability of the hypothesis being true, p(h) , and the likeli-
hood p(d|h) which measures how likely the data is, given the hypothesis.

However, calculating the probability of the evidence itself—p(d) in the right-hand 
side denominator above—is intractable for a hypothesis space of non-trivial size. Real-
istically, then, a biological system can at most approximate exact Bayesian inference.

In PP, the central theoretical posit for explaining how this approximation pro-
ceeds is the generative model. The proposal is that the brain’s feedback or top-
down synaptic connections implement a statistical model of the environment. The 
model is ‘generative’ because it aims to capture how the sensory input depends on 
the causal structure that generates it. Formally, the generative model constitutes a 
Bayesian network that encodes joint probability distribution p(h, d) where h stands 
for hypotheses about the distal causes of the sensory input and d stands for the sen-
sory input. Nodes comprising this network encode the hidden causes, and the edges 
capture the statistical dependencies between those causes and between the causes 
and their sensory effects.

With the generative model of the environment in hand, approximating the poste-
rior becomes achievable using variational inference instead of exact inference. An 
initial guess is made about the true posterior distribution, denoted q(h) . This guess 
is then iteratively updated to bring it ever closer to the true posterior, i.e., the pos-
terior probability that exact Bayesian inference would yield, under the generative 
model. Formally, this is equivalent to minimizing the Kullback–Leibler divergence 
(KL-divergence) between the estimated and the true posterior, which is a measure of 
the difference between those two distributions.

Here, however, another complication emerges. The KL-divergence cannot be 
directly estimated (after all, the brain or the perceptual system cannot ‘know’ in 

p(h|d) =
p(d|h)p(h)

p(d)
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advance what the true posterior is to compare it to the approximate posterior). Still, 
the KL-divergence can be indirectly minimized through minimizing another quan-
tity, known as variational free energy (VFE, denoted below as F):

The lower the VFE, the lower the KL-divergence between the true and approxi-
mate posterior. Crucially, the right-hand side of the above equation only includes the 
‘guess,’ denoted by q(h) , and the internally-encoded generative model, denoted by 
p(h, d). This means that approximating the posterior can be indirectly achieved by 
computing over quantities accessible for the brain or the organism ‘from the inside’ 
(this will become relevant later).

The notion of prediction error minimization aims to capture how neural informa-
tion processing mechanisms perform variational inference. Notice that the genera-
tive model is equal to the product of a prior distribution over the hypotheses and the 
likelihood distribution expressing the probability of obtaining the data, given the 
hypotheses:

As such, the generative model can be used to simulate the flow of sensory input 
through drawing ‘fictive’ samples: one takes the most likely hypothesis from the 
prior distribution and then, using the likelihood distribution, generates mock input 
that is most likely under this hypothesis (Greshman, 2019).

In perception, these fictive samples—implemented as top-down ‘prediction’ sig-
nals – are compared to actual sensory samples obtained by interacting with the envi-
ronment. Prediction error measures the difference between the sensory input and the 
internal predictions (we can regard prediction error as equivalent to variational free 
energy). The signal conveying the prediction error is propagated bottom-up, which 
in turn drives the adjustment of perceptual hypotheses or estimates.1 Over short 
timescales, this process entails inverting the generative model to yield an approxi-
mate posterior, given current sensory data. This is perceptual inference. Over longer 
timescales, the generative model’s parameters can be optimized (through gradient 
descent on the prediction error) so that the model becomes increasingly effective 
at reducing average prediction error, calculated over many instances of perceptual 
inference. This is perceptual learning.

Heuristically, the reasoning behind all this is the following. Imagine building a sta-
tistical model of your environment by engaging in exact Bayesian inference. You start 
with some priors (perhaps initially set at random), then sample data, calculate the pos-
teriors to accommodate the samples as they come in, and, through conditionalization, 

F =
∑

h∈H

q(h) log
q(h)

p(h, d)

p(h, d) = p(d|h)p(h)

1 Throughout this paper, I employ the terms ‘perceptual state’, ‘perceptual representation’, ‘perceptual 
hypothesis’ and ‘perceptual estimate’ interchangeably. I also take it that perceptual experiences are, sim-
ply, conscious perceptual states. However, I do not take the perceptual state’s being conscious as either 
necessary or sufficient for it to be epistemically appraisable or to play a justificatory role (see Berger 
et al., 2018).
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iteratively use the posteriors to update your priors. Over time, this process should 
allow you to develop a model that is increasingly better at minimizing the prediction 
error: new data should be more and more predictable, given your updated priors. The 
crux of PP lies in the idea that a biological system performs approximate Bayesian 
inference, so to speak, by flipping the exact Bayesian inference: ‘It is reasonable to 
turn around the observation that inference leads to less prediction error, and say that, 
if a system is somehow able to continuously minimise prediction error, then the sys-
tem will approximate Bayesian inference’ (Hohwy, 2020, p. 3).

The remainder of this paper will focus on the epistemological consequences of 
the notion that approximate Bayesian inference underlies perception. Before I move 
on, however, let me briefly discuss three other central tenets of PP to make the expo-
sition of the theory more comprehensive.

First, PP postulates that the generative model is hierarchically structured, reflect-
ing the nested causal structure producing the sensory data. Lower levels predict 
the flow of rapidly changing regularities in sensory input (e.g., edges in the visual 
field), while higher levels predict increasingly invariant patterns which emerge 
over longer timescales (e.g., objects in space and time). An exemplary three-level 
generative model may be expressed as p

(
h1, h2, h3, d

)
 , with h1–h3 correspond-

ing to distinct inferential levels, and can be thus decomposed into the product: 
p
(
d|h1

)
p
(
h1|h2

)
p
(
h2|h3

)
p
(
h3
)
.

Second, PP postulates the existence of a mechanism that regulates the degree to 
which perceptual inference relies on the antecedent assumptions versus the need to 
fit incoming data. In particular, the brain or perceptual system is thought to actively 
estimate the precision of the input signals (precision is an inverse of variance, effec-
tively tracking the credibility of the input). Estimations of precision regulate the 
weight given to the prediction error signals in perceptual inference, with perceptual 
inference becoming more reliant on priors when input is estimated as noisy. In PP, 
precision estimation is postulated as an explanation of attention.

Third, the notion of prediction error minimization can be extended to encompass 
motor control (see Friston, 2010; Smith, Friston, Whyte, preprint). The resulting the-
ory, dubbed ‘Active Inference,’ is premised on a notion that along with priors about 
the causes of sensory stimulation, the generative model encodes priors about ‘poli-
cies’ or ways in which an organism expects itself to act. This way, action becomes 
an attempt to bring the world in line with predictions, thus minimizing prediction 
error minimization. One interesting corollary of the mathematics used to express 
Active Inference is that organisms acting to minimize prediction error should some-
times engage in ‘epistemic’ active inference, actively exploring their environments 
to reduce uncertainty about the causal structure producing the sensory signal.2

2 It needs to be noted that with the introduction of Active Inference, the philosophical interpretation of 
the resulting theory arguably changes. This shift puts into question whether the theory can be applied to 
epistemological issues along the lines I advertise in the present paper. In particular, forceful arguments 
have been put forward for the claim that Active Inference is best read along enactivist rather than rep-
resentationalist and inferentialist lines (c.f. Bruineberg et  al., 2016; Ramstead et  al., 2019). Moreover, 
instrumentalist reading of the generative models in Active Inference has been proposed, construing them 
as a tools for scientifically modeling the organism and its behavior, rather than as a brain-implemented 
representational structures (van Es 2020). I will have to set these issue aside here. It may be worthwhile 
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3  Predictive processing and the rationality of perception

In this section, I lay out a thoroughly inferentialist reading of perceptual justification 
under PP. In Sect. 3.1, I introduce the view that perceptual inferences confer epis-
temic justification on resulting perceptual states. In Sect. 3.2, I argue that perceptual 
justification is conditional, i.e., relativized to the rational standing of the generative 
model, and that PP’s coherentist story cannot be turned foundationalist by appeal to 
the reliable acquisition of perceptual priors.

3.1  Predictive processing involves inferential justification of perceptual states

The preceding discussion established that perception, according to PP, is inferen-
tial in the sense that the causal transitions involved in turning raw sensory data into 
perceptual states representing the environment conform to a normative, rational rule 
of inference. As stated in the previous section, the causal processes that output per-
ceptual states do not comply with exact Bayesian inference. For example, percep-
tion on the PP view need not involve a step in which the marginal probability of 
sensory evidence, p(d) , is computed. Still, per what the Bayes rule prescribes, to 
arrive at a perceptual hypothesis, the brain or perceptual system relies on predictions 
drawn from the prior and the prior likelihood distributions encoded in the generative 
model. Although the resulting perceptual state, produced by minimizing prediction 
error, can initially ‘wobble around,’ deviating from the true posterior (see Bogacz, 
2017; Hohwy, 2017), it is bound to eventually converge on a value that is close (to 
some approximation) to the true posterior. Even if the overlap between Bayesian 
inference and the approximation realized by the causal mechanisms of perception is 
not perfect, it seems non-trivial enough to render perception genuinely Bayesian.3

3 Note that there on a liberal usage of the term, for an algorithm to ‘approximate’ Bayesian inference, 
it is sufficient that this algorithm reliably produces output states that match the ones that exact Bayesian 
inference would output (given certain priors). On this approach, Bayesian inference could in principle 
be approximated by using a look-up table (see Maloney & Mamassian, 2009). Arguably, more than a 
simple table-lookup is required for a process to count as inferential, so the output-matching approach 
allows for non-inferential processes to count as approximating Bayesian inference. It is important, then, 
to stress that the notion of ‘approximating’ Bayes at use in this paper is not this liberal. In particular, on 
the present view, the process by which the outputs (i.e. approximated posteriors) are generated mim-
ics certain crucial aspects of exact Bayesian inference. Most importantly, the present view assumes that 
that to compute posteriors, the brain uses as input the prior and likelihood distributions encoded in the 
generative model. Error-minimization is what drives the input–output transitions, enabling them to reli-
ably match the transitions that exact Bayesian inference would produce. Furthermore, by virtue of operat-
ing on a Bayesian network, the processes underlying perception exhibit systematicity and productivity 
(for extensive discussions, see Clark, 2013a; Gładziejewski, forthcoming-a; Kiefer, 2017, 2019), features 
often taken as hallmarks of inference. In sum, it is reasonable to claim that in PP, Bayesian inference is 
approximated with a genuinely inferential process.

to add, however, that some authors working at the forefront of Active-Inference-based modeling have 
argued that there is still some room for (inferentially-updated) internal representations within this frame-
work (see Constant et al., 2020; Ramstead et al., 2020).

Footnote 2 (continued)



11404 Synthese (2021) 199:11397–11421

1 3

A natural construal of perception from this point of view is in terms of inference 
to the best explanation (Hohwy, 2013). As the sensory apparatus registers streams 
of data, there will be multiple alternative ways of explaining or interpreting the data 
in terms of their distal causes. Maximizing the posterior probability of hypotheses 
is a strategy for finding a unique interpretation (explanatory hypothesis), among 
many possible, which is most likely true or accurate, given the generative model. 
But posterior probability can also be interpreted as a measure of the inferential fit 
or coherence between a candidate perceptual hypothesis and the priors4 encoded in 
the generative model. Thus, constituting the best hypothesis or explanation means 
counting as such in light of the strength of the inferential connections to the anteced-
ent model.5

As a toy example, take a simple, non-technical PP-based attempt to explain bin-
ocular rivalry (Hohwy et al., 2008). Two different pictures (say, a face and a house) 
are shown to each eye of the subject. Instead of subjectively perceiving a fusion of a 
face and a house (a face-house hypothesis), subjects report alternating between expe-
riencing a face and a house. PP’s explanation of this effect points to the inferential 
links between the three alternative hypotheses and the prior assumptions (combined 
with other considerations that aim to explain why the visual system never eventu-
ally decides on a single stable interpretation of the input). Although the face-house 
hypothesis fits the sensory evidence best (its likelihood is high), the visual system is 
described as assigning significantly lower prior unconditional probability to encoun-
tering face-houses as compared to either faces or houses. Binocular rivalry, on this 
proposal, stems from the brain’s attempt to keep its perceptual hypotheses coherent 
with antecedent assumptions about what sorts of objects are most likely to cause 
sensory states.

I propose that the notion that perception is inferential in this way—that it relies 
on antecedent mental states to produce a perceptual state, in a way that accords to 
a normative rule of inference—is epistemologically relevant (see also Clark, 2018; 
Ghijsen, 2018; Munton, 2018; Vance, 2015). My overall point can be captured in 
four interrelated claims.

First, in virtue of their rational etiology, perceptual states count as bearers of epis-
temic value (for a seminal defense of the view that the mental processes underly-
ing the formation of perceptual states render those states epistemically appraisable, 
see Siegel, 2017). Perceptual states are evaluable as justified (or unjustified) in light 
of their inferential connections to prior assumptions on which they are based. Of 
course, those prior assumptions, encoded in the generative model, may not corre-
spond to personal-level beliefs, and the perceptual inferences are not consciously 

4 In the remainder of this paper, I use the term ’prior’ to denote both the prior distribution and the prior 
likelihood distribution.
5 Kiefer (2017) proposes a different way of capturing the role of coherence in perception on the PP view. 
He focuses on how perception, in PP as well as computationally related schemes, involves a more global 
representational shift. This shift involves not only the formation of a perceptual hypothesis, but also a 
global change in a whole model comprised of inferentially linked hypotheses, such that the coherence of 
this model is maintained against sensory perturbations. I take Kiefer’s proposal to be compatible with the 
present approach.
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accessible for the subject nor under the voluntary control of the subject. Despite 
those facts, I take perceptual inferences in PP to be truth-preserving transitions 
between representational states (see also Kiefer, 2017). These inferences can endow 
perceptual states with epistemic justification because they are similar enough to 
other unconscious, non-voluntary inferences that we take for granted as underlying 
justification transfer (Ghijsen, 2018; Siegel, 2017; see also Carter et al. 2020).6

Second, perceptual states’ epistemic standing originates from their inferen-
tial relations to antecedent states instead of being merely modulated by them. On 
the latter, modulatory approach, perceptual states are said to enjoy some degree of 
justification regardless of their inferential connections to other mental states, and 
only then can inferences either downgrade or upgrade this original standing (see 
Siegel, 2017). On the PP view, however, inferences are inherently involved in form-
ing perceptions. If the constitutive function of perception is to represent the mind-
independent world rather than merely register physical energies impinging on the 
sensory apparatus (Burge, 2010), then, in PP, this job is done by inferring the causes 
of sensory states. Relatedly, if perception solves the underdetermination problem 
mentioned earlier, then, on the PP view, the problem is solved through inference. 
Because of how pervasive the role of inference in perception is, according to PP, it 
is reasonable to see it as a source of epistemic justification rather than a modifier of 
non-inferential justification (see also Ghijsen, 2018; Jenkin, 2020; Vance, 2015).

Third, because perceptual inferences comply with a rational rule of inference, 
the epistemic status of resulting perceptual states is positive. Perceptual states are 

6 Some readers may still raise concern that I am too quick to count subpersonal priors as epistemically 
evaluable and capable of featuring in rational processes. Perhaps genuine epistemic evaluability resides 
exclusively at the personal level. Addressing this worry fully requires a paper of its own (see Carter, 
Rupert 2020 for an excellent discussion). But let me sketch out what I take to be a plausible line of argu-
ment. The question we should ask is: What features do personal-level states (and processes operating on 
them) have, such that having such features renders those states/processes epistemically evaluable and dis-
tinguishes them from subpersonal states/processes. Some of the plausible candidates involve conscious 
accessibility or the fact that subjects enjoy voluntary control over their personal-level states. However, as 
stated in the main text, it seems that epistemically evaluable personal-level states/processes sometimes—
perhaps oftenrun unconsciously and beyond the voluntary control of the subject (see Jenkin, 2020; Siegel 
2017). Arguably, then, the fact that subpersonal priors and inf—erences over them are unconscious and 
not voluntarily controlled does not automatically exclude them from the domain of epistemic evaluabil-
ity. Another plausible view may posit that personal-level states are epistemically evaluable in virtue of 
being revisable in light of evidence or reasons. But as will transpire in Sect. 5, on the PP approach, sub-
personal priors are also rationally adjustable in light of contrary (sensory) evidence. Yet another option 
would be to claim that what makes personal-level states special with respect to having epistemic import 
is that they are involved in action guidance. However, when combined with Active Inference, PP views 
action as a sort of prediction error minimization, which is guided (more or less directly) by subpersonal 
policy priors (for philosophically-oriented treatments of action and decision making in PP/AI, see Smith, 
Ramstead, Kiefer, preprint; Tate, 2019). I hope that these remarks show that plausible candidates for 
features that endow mental states with epistemic status either turn out not to be necessary for having 
epistemic status (conscious accessibility, voluntary control) or are in fact shared between personal-level 
states and subpersonal priors (reason responsiveness, action guidance). Hence, treating subpersonal pri-
ors as bearers of epistemic import is not as hopeless as it may seem at first—in fact, I think that the bur-
den of proof is on the proponents of the epistemic-evaluability-on-personal-level-only view. I thank an 
anonymous reviewer for pressing me on this point.
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justified in light of the antecedent assumptions (the generative model) on which they 
are based.7 In the next subsection, I will add a crucial caveat to this claim.

Fourth, given that perceptual states count as bearers of a positive justificational 
status, they can, in principle, transfer this status to other mental states, like beliefs. 
This effectively answers the question of how perceptual states acquire their ability to 
confer justification on other mental states.8

3.2  In predictive processing, perceptual justification is conditional

The inferentialist/coherentist view just depicted puts, or so it seems, a substantial 
limitation on the rational powers of perception. We, or at least those of us who 
subscribe to PP, need to forgo the traditional empiricist hope that perception could 
directly acquaint the perceiver with a set of pristine, non-inferentially justified prop-
ositions. Instead, perceptual justification is conditional (Gupta, 2006). Formally, this 
idea has already been implicitly conveyed in the equation for variational free energy 
(VFE) introduced in Sect.  2. Inferring a posterior involves searching the space of 
hypotheses in the generative model for one that (best) minimizes the VFE. This 
effectively means comparing one representation, that is, the candidate perceptual 
estimate, to another representation, that is, the model of the causal structure of the 
environment (see also Constant et al. 2020; Kiefer et al. 2017). In other words, infer-
ring the best causal explanation for the current sensory input means inferring the 
best explanation relative to the generative model brought to bear on interpreting this 
input.

Philosophically, the upshot is that the rational standing of perceptual states is 
conditional on the rational standing of the generative model. Perceptual states are 
justified conditional on the justification of the prior assumptions on which they are 
based.

For illustration, consider two perceivers, A and B, who harbor generative mod-
els which differ significantly with respect to priors that enable the extraction of 
shape information from information regarding illumination. In particular, A’s model 
ascribes the highest prior probability to there being a single source of illumination 
located above the perceiver, and B’s model ascribes the highest prior probability to 

7 This point invites a question about whether PP is compatible – and if so, then how – with the idea that 
perceptual inference sometimes downgrades the epistemic standing of perceptual states (Siegel, 2017). 
An interesting route to addressing this issue lies in PP-based models of psychopathologies, which explain 
perceptual disturbances (like hallucinations in schizophrenia) in terms of disturbances of Bayesian updat-
ing (see Adams et al. 2013; Fletcher et al. 2009). But can neurotypical Bayesian brains also undergo per-
ceptual downgrade? This is a subject that requires a separate treatment, so I have to set it aside here (for 
an interesting take, see Clark, 2018).
8 The crucial assumption here is, of course, that perceptual states are capable of engaging in inferential 
(justification-transmitting) relations with those other mental states. Here, I will not discuss at length how 
this can be achieved. But suffice it to say that in the hierarchical scheme that PP postulates, estimates at 
higher levels of the generative model minimize the prediction error with respect to lower-level hypoth-
eses situated closer to the sensory periphery. Thus, the justification transfer from lower (perceptual) to 
higher (cognitive) levels is approximately Bayesian (see Brössel, 2017 for an account of how justification 
transfer from perception to belief could work in a broadly Bayesian cognitive system).
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there being a single source of illumination placed below the perceiver. A and B are 
shown an image of a round object illuminated towards its upper side and gradually 
shaded towards its bottom part. Given some further assumptions that I leave out here 
for simplicity, upon being presented such image, A perceives as of a convex shape, 
and B perceives as of a concave shape (if we permit chickens to count as perceivers 
in this scenario, then Hersherberger 1970 describes an attempt to induce it experi-
mentally). Both percepts result from a rational process and are thus conditionally 
justified. Their justification is conditional on the justification of the prior assump-
tions regarding, among other things, the most likely location of the light source. 
Note, however, that based on their perceptual states alone, the two perceivers are 
incapable of finding a neutral common ground to decide which perception (or the 
perceptual belief based on it) is justified in some absolute, unconditional sense.

I think that these considerations rule out the possibility of reconciling the PP’s 
account of perceptual justification with pure or non-hybrid foundationalism that 
relies on unjustified justifiers. Consider an intriguing attempt, due to Ghijsen (2018), 
to turn PP’s view of perception foundationalist after all. Although Ghijsen agrees 
that perceptual states owe their justification to their inferential connections with pri-
ors, he claims that it is priors themselves that terminate the chain of inferential jus-
tification. On his proposal, the priors obtain their ability to affect perceptual states’ 
epistemic status not by being inferred from other states but by virtue of the reliable 
causal chains (leading to the world itself) through which they are acquired.

I do not intend to deny that priors are reliably acquired, but I doubt that say-
ing that they are acquired non-inferentially gives justice to PP. One of PP’s interest-
ing tenets is its use of ‘empirical Bayes’ to propose that a large chunk of the prior 
knowledge is bootstrapped from raw sensory data during development (see Clark, 
2013a, 2013b; Hohwy, 2020). Given an initial generative model (which may even 
start with parameters set at random), posteriors arrived at through perceptual infer-
ence can incrementally shape priors for future iterations of inference. The rate of 
revision, initially rapid, can slow down as the priors are increasingly more grounded 
in learning history. The point is that acquiring and adjusting priors, just like per-
ceptual inference, is a matter of minimizing the prediction error (see Bogacz, 2017; 
Friston, 2005). The difference lies in the timescale: perceptual inference involves 
finding the approximate posterior, given the generative model, while learning or 
adjusting the priors involves gradually optimizing the parameters of the generative 
model over multiple instances of perceptual inference. I will revisit the idea that the 
generative model is (at least in part) inferred from sensory data in Sect. 5. For now, 
suffice it to say that priors are inferentially acquired and adjusted.9

This unrelenting inferentialism still applies (contra Ghijsen, 2018, p. 16) if we 
decide to bracket out the history of learning and restrict the source of justification 
of perceptual states to priors that are operative in a single episode of perceptual 

9 PP leaves room for the possibility that at least some of the priors used in perception may be innate. 
But note that PP view allows that such innate priors can be maintained or adjusted through iterations of 
perceptual inference, so that at least their maintenance/adjustment is inferential (I will come back to this 
in Sect. 5).
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inference. In realistic scenarios, perceiving involves unmixing complex sensory 
input to reveal multiple interacting hidden causes that jointly comprise a dynamic 
scene (say, a rooster chasing a cat). The flow of the sensory signal depends, in part, 
on how those causes interact with each other. In the generative model, these sorts 
of interactions are encoded as conditional dependencies between variables encoding 
the hidden states. Thus, perception of a dynamic scene at time t is inferred from a 
representation of an immediately preceding world state at t-1, adjusting, of course, 
for the prediction error coming from the lower level(s). As a result, the choice of 
which priors are brought to bear on the interpretation of the current sensory input at 
least partially depends on their inferential connections to other priors (arguably, in 
dreams and imagery, these types of dependencies are the only drivers of state transi-
tions within the generative model; see Hobson et al., 2014 Williams, 2020). Percep-
tual justification, in PP, is inferential all the way.

4  Sensory states and the input problem

In this section, I introduce a (quasi-)foundationalist element to the account to show 
how it can solve the input problem mentioned in the introduction. In Sect.  4.1, I 
posit that the statistical structure of the sensory signal, when appropriately con-
nected to the inferential machinery of the generative model, allows perceptual states 
to be produced in a truth-conductive manner. In Sect. 4.2, I clarify the epistemologi-
cal commitments of my proposal by discussing a PP-inspired variant of the new evil 
demon scenario.

4.1  Sensory receptivity solves the input problem

Let me now turn to the second issue regarding perceptual justification mentioned 
in the introduction—the input problem. How could inferentially derived percepts 
remain responsive, in some epistemologically relevant sense, to a mind-independent 
world? The idea that perceptual states are selected so as to remain coherent with the 
preexisting model does not, by itself, establish how they can also be truth-conduc-
tive. In Kantian terms, the story so far focused on the ‘spontaneous,’ constructive 
aspect of perception. Here, I will discuss a ‘receptive’ aspect of perception that puts 
some external constraint on how perceptual states are produced, enabling perception 
to reveal reality.

In PP, this receptive side of perception is found, I want to claim, at the very bot-
tom of the inferential hierarchy, that is, at the level of streams of raw data produced 
by the world at the organism’s sensory boundary. I propose that sensory states are 
not representational and, as such, cannot (hence, do not) engage in inferential rela-
tions with representational states. Nonetheless, they still play a quasi-foundational 
evidential role in perception in a way that effectively solves the input problem. Now, 
I will unpack this idea.

By saying that sensory states are not representations, I mean that they are not the 
sort of states to which we could justifiably attribute content or accuracy conditions. 
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They are mere registrations of physical energies affecting the organism rather than 
representations of the distal causes of the stimulation (Burge, 2010). Take the visual 
modality, where the sensory states consist in activations of photosensitive cells in 
the retina. These states do not have the prototypical features of representations. For 
example, they seem incapable of misrepresenting anything. Even though retinal reg-
istrations can be noisy (say, on a foggy day) and thus mislead perceptual inference, 
it would be presumably mistaken to claim that the retina itself misrepresents. The 
representational error lies in perceptual estimates of the environment rather than in 
the sensory input itself. Furthermore, sensory states do not serve the roles of rep-
resentations in the cognitive system. For example, photoreceptor activations do not 
allow off-line or stimulus-free processing that is often associated with representa-
tions. They react to the world, but do not stan-in for (parts of) it, like representations 
do. Of course, one might note that sensory states still meet the conditions of serving 
as receptors, in that their biological proper function is to reliably react to states of 
the environment. But it has been forcefully argued that serving as a receptor in a 
cognitive system is not sufficient for serving as a representation (Ramsey, 2007). 
Although sensory states are (as I clarify below) rich in information precisely in vir-
tue of acting as receptors, this information is best construed in terms of raw streams 
of bits – to be interpreted in terms of their distal causes by the generative model 
– rather than as contentful states or states with accuracy conditions.

Importantly, sensory states exhibit receptivity, understood in a broadly Kantian 
sense as a passive capacity to be affected by things. Because they are not representa-
tional, they are pure or theory-neutral with respect to the generative model. Sensory 
states depend on what the worldly causes are, not on what they are represented or 
inferred to be. Mathematically, the dependence of sensory states on their worldly 
causes can be captured in the following equation (Friston, 2005; Wiese, 2017):

Here, s denotes sensory states, rendering them as a function of their worldly 
causes, expressed as g(c) , plus random noise, denoted � . The functional dependence 
can also be described as a ‘generative process,’ where the ‘true’ causal structure of 
the world produces sensory states (Smith, Friston, Whyte, preprint).10

s = g(c) + �

10 As pointed out to me by an anonymous reviewer, the claim regarding the receptivity of the senses 
requires certain qualifications. First, there is a sense in which the sensory signal does depend on the 
generative model. Simply, how a person samples her environment – where she directs her eyeballs or 
how she explores the immediate surroundings with touch receptors—is often driven by the model-
derived estimates of the causes of sensory states (see e.g. Friston, Adams, Perrinet, Brakspear (2012) for 
an Active Inference model of how people visually sample an image with saccadic movements under an 
assumption that the object depicted is a face; see also Lupyan, 2017). However, this sort of dependence 
of the sensory signal on the generative model does not endanger the claim that the latter is pure or pas-
sive in the relevant sense. After all, once the perceiver has decided to actively sample the environment in 
a particular way, it is no longer up to the her what signal will be received by her sensorium— it depends 
on the external causes themselves. Second, it may be said that certain ‘predictions’ about the environ-
ment are already present at the level of sensory systems, simply in virtue of the fact that those systems 
embody certain feedforward biases. For example, the on/off receptive fields of ganglion cells in the retina 
can be said to ‘predict’ that local patches of natural images are uniform in light intensity, such that the 
firing a ganglion cells encodes a prediction error with respect to this prediction (Srinivasan, Laughlin, 
Dubs, 1982). However, I think that these sorts of feedforward biases are best seen as non-representa-
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From this perspective, we can construe the brain or the perceptual system as 
attempting to predict the flow of sensory states, s , by reconstructing, to some bio-
logically affordable level of approximation, g(c) in an internal generative model 
(accounting, through estimations of precision, for context-dependent degrees of 
noise). This is achieved through repeated trial-and-error in which the generative 
model is gradually optimized with respect to its ability to predict s , as measured by 
the long-term, average prediction error. Note that it is ultimately s itself that serves 
as a ‘tribunal’ against which the generative model is tested. In this sense, the sen-
sory states serve as an evidential basis for the generative model. This procedure is 
truth-conductive – with some restrictions to be discussed in the following subsection 
– because the model’s ability to predict s depends on the degree to which it recapitu-
lates the causal structure (the generative process) that produces s.11

Another way to spell out this idea is by saying that sensory states embody (but 
not: represent) statistical patterns or correlations12 that systematically depend on the 
causal structure that produces them. PP postulates that the brain uses unsupervised 
learning algorithm(s) to extract information about the causal structure producing 
the input from those very statistical patterns. The loss function in perceptual learn-
ing (and inference) is specified by the average prediction error, which is ultimately 
determined by the difference between internal predictions and the patterns in the 
input itself. This way, again, it is relative to the raw sensory patterns that the genera-
tive model is evaluated and corrected.

To illustrate this with an example, consider object perception under PP. Let us 
start with an assumption that perceiving objects involves a binding process, whereby 
an unorganized set of features (e.g., shapes, colors, textures, movement) is inte-
grated to yield a representation of a unified object that has those features (Treisman, 
1996). In PP, as well as in Bayesian approaches more generally, this binding process 
is modeled as causal inference (c.f. Hohwy, 2013; Parise et al., 2012; Shams, Bei-
erholm, 2010; Wiese, 2018). What we experience as objects are entities inferred as 
common causes that produce and sustain sensory patterns.

Take, then, a complex visual sensory pattern comprised of: (1) a sequence of col-
linear edges that close in to form a shape that is retained over time, (2) a uniform 
color patch, (3) the fact that the initial position and the motion of the color patch 
overlaps with the initial position and the motion the sequence of edges.13 Given that 

Footnote 10 (continued)
tionally attuned to environment statistics, rather than as representations (Gładziejewski, forthcoming-a). 
Hence, I do not think it is fair to conclude that the senses are theory-laden in an epistemically relevant 
sense or that they store ‘unjustified justifiers’.
11 The somewhat vague term ‘recapitulation’ can be clarified by appeal to the notion of structural simi-
larity between the relational organization of the generative model and the causal structure generating the 
sensory signal (Gładziejewski 2015; Kiefer, Hohwy, 2017).
12 The existence sensory patterns is mathematically grounded in their compressibility, that is, in the pos-
sibility of expressing those patterns using fewer bits of information (Dennett, 1991). In PP, the generative 
model can be seen as a sparse (compressed) encoding of the sensory patterns.
13 In reality, moving ‘edges’ or ‘color patches’ correspond not to sensory states as such (here, retinal 
activations) but to perceptual estimates formed at low level(s) of the generative model. Edge-talk and 
color-talk I employ here is a shorthand for talking about actual sensory patterns (for example, ‘edges’ 
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a stable pattern such as this is unlikely to emerge randomly, it may be inferred as 
being generated and sustained by a single external object in the environment – a 
common cause underlying the pattern. From the common-cause explanation, further 
predictions can be derived about how the pattern should evolve: (1) manipulating 
the object (the purported common cause) should result in a correlated change of 
elements of the pattern; (2) the elements of the pattern should turn out mutually sta-
tistically independent, conditioned on the common cause (e.g., given the position of 
the object, the position of shape gives no additional information about the position 
of the color patch). These predictions can be put to the test through active inference, 
that is, by acting on the external causal structure to induce a stream of sensory data 
and computing the prediction error. Crucially, the sensory signal’s statistical struc-
ture plays an evidential role here by either conforming to the common-cause percep-
tual estimate or by disconfirming it.

Admittedly, treating non-representational things (like sensory states on the pre-
sent view) as evidence may strike some readers as implausible.14 However, I think 
that on a closer look, this position is more natural than it initially appears. Behind 
my proposal is the idea that ‘evidence’ is a functional notion. Consider the eviden-
tial value of registrations made by scientific apparatuses, like the fMRI machinery 
reacting to electromagnetic waves caused by the changing spins of protons in hydro-
gen atoms that comprise water molecules present in the brain, or a telescope regis-
tering streams of radio waves generated by astronomical sources. Considered sepa-
rately, these registrations are just events in worldly causal chains. However, they can 
become evidence for someone if they participate in a larger cognitive or epistemic 
economy. For a human equipped with a theory or an interpretative scheme, the exist-
ence of these registrations can serve as evidence with respect to hypotheses about 
the workings of the brain or the existence of distant supernovae (these hypotheses 
can be also thought of as candidate abductive explanations of registrations). The 
registrations constitute evidence in virtue of their use or functional role. Serving this 
role in a larger system does not require them to be representational: it is the explana-
tory hypotheses that represent the world, not the registrations themselves. Crucially, 
I think that a non-representational registration can play this sort of evidential role 
in a larger economy that does not involve a full-blown human being as the inter-
preter. In PP, the patterns received by the senses allow the generative model to infer 
their external causes. No homunculus is required to interpret the registration, but 
the functional role of the registration is similar enough to the scientific case to still 
count as evidential.

To summarize, two features underly the epistemic role of the sensory states in 
PP. First, sensory states are non-representational, passive registrations of physical 
energies impinging on the sensory apparatus. In virtue of being such registrations, 
they embody statistical patterns which are generated by the external causal structure, 

may correspond to sequences of activations of on/off retinal ganglion cells, while ‘colors’ may corre-
spond to patterns of activations of red-, green-, and blue-sensitive cones).

Footnote 13 (continued)

14 I thank two anonymous reviewers for urging me to address this issue.
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thus encoding (non-semantic) information about the latter. Second, although the 
sensory states do not furnish the mind with epistemically basic representations, 
their epistemic role in perception is still recognizably foundational in spirit: they 
serve as a theory-neutral tribunal for generative models (and perceptual estimates 
drawn from them). Of course, their ability to play this role is necessarily dependent 
on them being appropriately connected to the larger Bayesian machinery. Without 
the generative model, sensory states are causal registrations with no epistemological 
significance. With the generative model in place, they become a source of sensory 
evidence, making the model epistemically responsive to the world. This is how PP 
solves the input problem.

5  Predictive processing, the nature of epistemic justification, 
and the new evil demon

To further clarify my proposal, let me set it against a backdrop of a wider discus-
sion regarding the very nature of epistemic justification. One might argue that by 
invoking the sensory signal to address the input problem, I thereby introduce an 
externalist or reliabilist thread (see Goldman, 2008; Lyons, 2009) to a story that has 
thus far relied on a broadly internalist notion of epistemic justification.15 It is easy 
to interpret my proposal as simply pointing to sensory states as intermediaries that 
establish a reliable causal chain connecting internal models and perceptual estimates 
to the states of the environment. However, the view on offer here is more subtle and 
remains in line with the internalist view of epistemic justification even after the sen-
sory states enter the picture. The idea is that the sensory input’s role lies not simply 
in truth-conductive causal mediation but in the evidential or support relation holding 
between the statistical patterns that arise at the sensorium and the generative mod-
els used to predict those patterns.

To see this, consider the following variant of the ‘new evil demon’ scenario 
(Cohen, 1984). Imagine you have an epistemic twin. Throughout her life, she under-
goes the same series of mental states and processes as you. She is indistinguish-
able from you in terms of epistemically relevant processes, like reasoning, memory-
based belief formation, all the way to perception. If perception works in accordance 
to PP, this means that your twin receives a stream of sensory input identical to the 
one you receive, performs Bayesian perceptual inferences based on this input, form-
ing the same perceptual hypotheses as you, and over time learns a generative model 
of her (purported) causal milieu that is exactly like the model that your brain har-
bors. The difference between you and your epistemic twin consists in the twin being 
systematically misled by an evil demon who intentionally conceals the truth from 
her. There is thus no reliable causal chain that connects, via the senses, her percep-
tual states to their external causes.

15 The account so far relied on an internalist view of epistemic justification at least in the sense that it 
postulated that features internal to the cognitive life of the perceiver, such as the generative model, deter-
mine the epistemic standing of perceptual states (see Conee et al. 2001).
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Because the streams of sensory data the demon feeds to your twin embody the same 
statistical patterns, and because she updates her perceptual states and, over time, her 
generative model in a Bayes-rational manner just like you, the twin’s perceptual states 
are rationally acquired, just like yours. Given all available sensory evidence, your twin’s 
perceptions are as epistemically justified as yours, and so their rational involvement in 
her cognitive life matches the rational involvement of your perceptions. Focusing on 
the sensory states: whatever evidential value the sensory patterns have in your case, 
they have the same evidential value in the case of your epistemic twin. Thus, sensory 
states can bear evidential value even if the perceptions and internal models based on 
them are systematically off-track with respect to reality. Truth-conduciveness or reli-
ability is not a necessary condition on the sensory states’ having evidential value.

Importantly, the point here is not to altogether detach perceptual justification from 
truth. A much more reasonable conclusion to draw from the PP-inspired new evil 
demon case is to say that it puts a limit on the degree to which perceptual justification 
can be a guide to truth.

Consider a class of ‘normal’ scenarios, where a perceiver inhabits a world con-
strued as a complex causal structure, such that the patterns that arise at her sensorium 
are directly sampled from this structure. By definition, normal scenarios involve no 
demonic mischief. In normal scenarios, the perceiver should, through long-term pre-
diction error minimization, form a generative model that recapitulates (to some relevant 
degree of approximation) the external causal structure, whatever it may be. As a result, 
the perceiver should produce largely accurate perceptual estimates. As long as one 
finds oneself in a normal scenario, perception is truth-conductive on the PP view. How-
ever, normal scenarios do not exhaust the range of possible causal structures underly-
ing sensory input. In particular, there may be ‘devious’ causation of the input, where 
the sensory patterns are intentionally produced so as to deceive the perceiver regarding 
the actual causes of her input. My claim, then, is that perception allows perceivers to 
rationally select, in a truth-conductive way, a model that best explains the patterns in 
their sensory input under an assumption that a normal scenario holds. However, per-
ception is ill-suited to allow perceivers to establish whether the latter assumption is 
true, that is, whether the causal structure producing the input is devious or normal.

So perceptual justification is a guide to truth, albeit within limits. These limits 
presumably overlap with the range of truths that can be accessed – in an informa-
tion-processing sense, which may not involve conscious access – from the ‘animal’s 
point of view’ (Eliasmith, 2005), that is, given only the internal model and the sen-
sory states. This conclusion should not be seen as surprising, as it simply restates a 
claim that borders on a truism: one is unable to refute skepticism by appealing to the 
deliverances of the senses.

6  Unconditional perceptual justification through epistemic 
convergence

In Sect.  , I stated that in PP, perceptual states are justified conditionally, as their 
justification depends on the justificational status of the generative model on which 
they are based (see also Gupta, 2006). This implies that if the model itself lacks 
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appropriate rational standing or justification, then the justification of resulting per-
ceptual states is significantly undermined. The rational powers of perception turn 
out to be seriously limited. Is there a way for perceptual justification to go beyond 
this limit? Can the view defended in this paper allow perceivers to at least some-
times undergo perceptual states whose justification is, in some sense, absolute or 
unconditional? If what we perceive is molded by our antecedent models, how could 
two subjects with significantly different models ever rationally settle their disputes 
by appealing to a common perceptual ground?

The crucial jigsaw for solving this issue lies, I want to argue, in perceptual learn-
ing. Although in PP, perception relies on priors encoded in the generative model, it 
is by no means destined to dogmatically stick to a given set of priors in a self-con-
firming inferential loop. Instead, priors themselves are open to revision in light of 
incoming sensory evidence. A substantial body of computational modeling work on 
hierarchical Bayesian models has established that overpriors—abstract priors stored 
at high levels of the generative whose job is to constrain the space of hypotheses 
available at the lower levels—can be induced, in an unsupervised way, from raw 
sensory data (c.f. Tenenbaum et al., 2011; for extensive philosophical discussions of 
Bayesian accounts of learning, see also Clark, 2013a; Colombo, 2018). Within the 
conceptual framework of PP, learning priors consist of tuning the generative model 
parameters through gradient descent on long-term, average prediction error (see 
Friston, 2005; Bogacz, 2017). Hence, the idea of rationality of perception applies to 
learning priors just as well as it applies to inferring posteriors, given priors.

Importantly, for the overall claim about the revisability of priors to hold, no com-
mitment is required to a strong view that (all) priors are bootstrapped from blank 
states. Even under the assumption that at least some priors are innate or unlearned in 
some sense, we should still expect those priors to be open to adjustment in light of 
contrary sensory evidence, and we should expect them to be maintained only under 
the condition that they survive empirical testing. So even if some priors do not origi-
nate from a rational process, they can at least be rationally adjusted or maintained 
in light of incoming sensory evidence, such that the very fact that a subject sus-
tains those priors is explained by a rational process that is answerable to sensory 
evidence.

There is substantial empirical support for the notion that perceptual priors are 
malleable in light of sensory evidence. To mention a couple of examples: (1) the 
light-from-above prior that underlies the extraction of shape from shading (see the 
example from Sect. 3.2) can be modified through exposing subjects to visual stim-
uli paired with haptic feedback (Adams, Graf, Ernst, 2004); (2) the prior expecta-
tion that perceived objects are stationary or move at slow speeds (Weiss, Simon-
celli, Adelson, 2002) can be modified by exposing subjects, repeatedly over a couple 
training days, to a stimulus containing fast-moving lines (Sotiropoulos et al., 2011); 
(3) the prior that relates the perceived weight of an object to its size can be adjusted 
through repeated training consisting of lifting blocks whose weight is inversely cor-
related with their volume (Flanagan, Bittner, Johansson, 2008).

How do all these considerations allow us to address the question of unconditional 
perceptual justification? To see this, we may need to suspend intuitions inherited 
from traditional foundationalist empiricism (if we have such). Instead of treating 
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unconditionally justified percepts as starting points in a chain of justification, per-
haps we should treat them as arising at the limit of an extended rational learning 
process. The crux of this approach has been famously captured by Peirce:

Different minds may set out with the most antagonistic views, but the progress 
of investigation carries them by a force outside of themselves to one and the 
same conclusion. This activity of thought by which we are carried, not where 
we wish, but to a fore-ordained goal, is like the operation of destiny. No modi-
fication of the point of view taken, no selection of other facts for study, no 
natural bent of mind even, can enable a man to escape the predestinate opin-
ion. This great law is embodied in the conception of truth and reality. (Peirce, 
1878/2011, p. 63)

The idea, then, is that a prolonged rational inquiry, where the subject gradually 
modifies her beliefs in light of incoming evidence, should eventually converge on a 
certain set of beliefs. Once learned, these beliefs can no longer be revised by future 
evidence. And when exposed to a common pool of evidence (e.g., series of observa-
tions), distinct rational learners should eventually converge on those beliefs regard-
less of the differences in their starting assumptions. On this broadly Peircean pic-
ture, then, unconditionally justified beliefs are beliefs that constitute the endpoints 
of epistemic convergence (for an ingenious treatment of epistemic convergence to 
which the present proposal owes a lot, see Gupta, 2006). Importantly, the very idea 
of epistemic convergence is consistent with Bayesian statistics and Bayesian episte-
mology (for useful discussions, see Hawthorne, 2018; Hutteger 2015). Very roughly, 
Bayesian learners that update their priors in light (common) evidence are expected 
to eventually converge on a common set of priors, such that any initial differences 
between them vanish in the long run.

We may now see how the notion of epistemic convergence can find a local appli-
cation in theorizing about perception. Regardless of whether inquiry at large epis-
temically converges to some ultimate endpoint, it is not unreasonable to claim that 
the perceptual systems—as long as they work in accordance to PP—undergo at least 
partial convergence over developmental timescales. That is, at least some percep-
tual priors may be such that: (1) over individual development, once those priors are 
learned, they remain stable in light of future sensory evidence, under the assumption 
that the relevant environmental statistics remain stable (alternatively: the priors in 
question are innate but adjustable during development, such that they are either sta-
ble in light of sensory evidence, or gradually adjusted during development until they 
reach a point where they remain stable in light of new sensory evidence); (2) distinct 
subjects, even if they initially differ, eventually converge on those priors as long as 
they sample sensory states from a common environment.16

16 By ‘common environment,’ I mean here that distinct subjects inhabit learning environments that are 
identical or closely similar with respect to statistics that drive the learning or adjustment of the prior in 
question (in the case of the light-from-above prior, these would be environments which are the same or 
closely similar with respect to the average number of light sources and their average position(s) relative 
to the perceiver).
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Let us now revisit perceivers A and B from Sect. 3.2, who differ with respect to 
the light-from-above prior. Upon registering an image of a round object illuminated 
towards its upper side and gradually shaded towards its bottom part, A forms a per-
ception as of a convex shape, and B forms a perception as of a concave shape. As 
already stated, both percepts are conditionally justified, that is, justified relative to 
the generative models that A and B harbor, respectively. However, with the notion of 
epistemic convergence in hand, we may see how one of them may be uncondition-
ally justified. Assuming that A and B inhabit a common world like ours, we may 
suppose that A’s prior expectation of a singular source of light placed above is epis-
temically convergent (unless experimentally tinkered with on purpose, as in: Adams, 
Graf, Ernst 2004). It is A, and not B, that is unconditionally justified (or: just right) 
in her perception of the object as convex. Furthermore, under the assumption that 
A’s light-from-above prior is epistemically convergent, B should be able to adjust 
her prior when continually exposed to sensory evidence until she eventually agrees 
with A.17 Consequently, perception is never epistemically trapped in an antecedent 
model but is epistemically responsive, over time, to the way things are.

Of course, my overall point here may generalize to other priors. These may 
include, for example, overpriors that structure the way humans, from about the age 
of eighteen to twenty-four months onwards (Piaget, 1954), parse their perceptual 
world into ordinary objects like cats and chairs (Gładziejewski, forthcoming-b).

To summarize this, I propose that perceptual states can be unconditionally justi-
fied to the degree to which they are inferred from perceptual priors on which per-
ceptual learning epistemically convergences. ‘Unconditional’ justification does not 
mean here that the perceptual state is non-inferentially justified. Rather, the point 
is that it is inferred from prior assumptions that constitute endpoints of rational 
learning.18

17 The idea of B being able to update her prior over time is not mere speculation, as empirical evidence 
suggests that, in humans, the light-from-above prior undergoes calibration in early development, until it 
converges to a certain value, remaining stable during adulthood (Stone 2011; Thomas, Nardini, Mare-
schal 2010).
18 Two additional clarifications may be in order here (both invited by an anonymous reviewer, to whom 
I am grateful). First, it may seem too strong to say that a perceiver is unconditionally justified in her 
perception only under the condition that she bases her percept on a convergent prior(s). I think this issue 
could be fixed by allowing a graded notion of unconditional justification, where a subject is uncondition-
ally justified in her perception to the degree to which the priors she uses to infer her estimates match the 
values of convergent priors (that is, how ‘close’ her internal model is to the model on which rational 
learning converges). So, a perceiver could be more or less unconditionally justified in her perception 
depending on how close the values of her priors are to the values of convergent priors, and only reach 
full unconditional justification when relying on convergent priors. Of course, additional work would need 
to be done to fully elucidate this graded notion of unconditional justification. Second, the present pro-
posal does not rule out the possibility that there are priors on which perceptual systems of distinct per-
ceivers fail to ever converge. An anonymous reviewer points out that the persistent perceptual disagree-
ment about “The Dress” image (which some people perceive as black and blue, and some as white and 
gold) may be due to distinct people relying on different and non-converging perceptual priors. However, 
although the present proposal certainly leaves open the possibility that priors sometimes fail to converge 
(and thus fail to generate unconditional justification), I take this to be a feature of the view on offer here, 
and not necessarily a bug. Furthermore, I suspect that genuine failure of convergence is not common 
enough to raise serious danger of skepticism about perceptual justification. In The Dress example, the 
lack of convergence may be caused by the fact that ambient lightning statistics differ for perceivers of 
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7  Conclusion

Whether perception is a matter of prediction error minimization is far from settled, 
and doubts have been recently raised about the empirical merits of PP, as well as 
about whether the theory can be derived from first principles, as some of its advo-
cates maintain (Litwin & Miłkowski, 2020; Williams, preprint). However, if per-
ception is prediction error minimization (or is underpinned by some other, suffi-
ciently similar type of Bayesian processing),19 then, I argued, this fact would shed 
light on its rational involvement in cognition. On the proposed interpretation, per-
ception’s rational power lies neither in furnishing the mind with pristine representa-
tions whose justification is immediate or given, nor is it solely a matter of internal 
coherence among representational states. Instead, in PP, the architecture of percep-
tual justification is foundherentist. In line with coherentism, perceptual states have a 
(Bayes-)rational etiology and are constructed so as to cohere with a larger inferential 
structure of the generative model. This way, they obtain their ability to confer justifi-
cation on other mental states. But, in keeping with the spirit of foundationalism, the 
inferential machinery of perception is constrained from outside by the patterns that 
arise at the sensory boundary, making perceptual states epistemically responsive to 
worldly states of affairs. Against the notion that an insurmountable gulf separates 
reasons from causes, here is a thoroughly causal story that allows perception to act 
as a provider of reasons.
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different circadian types (Wallisch, 2017). That is, somewhat surprisingly, the lack of convergence in 
this case may be explained by the fact that the ‘common environment’ condition is not met among all 
perceivers – some draw their priors from daylight conditions, and others adjust their priors to artificial 
ambient illumination.

Footnote 18 (continued)

19 Although the focus in this paper is on PP, perhaps my proposal paper may also capture, at least par-
tially, the epistemology of perception inherent to ‘Bayesian brain’ views more generally (c.f. Pouget, 
Beck, Ji Ma, Latham, 2013; Rescorla, 2021), as well as to control-theoretic accounts grounded in notions 
of forward models and Kalman filtering (see Grush, 2004; Rao, 1999).
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