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Abstract
Newcomb’s problem involves a decision-maker faced with a choice and a predictor 
forecasting this choice. The agents’ interaction seems to generate a choice dilemma 
once the decision-maker seeks to apply two basic principles of rational choice the-
ory (RCT): maximize expected utility (MEU); adopt the dominant strategy (ADS). 
We review unsuccessful attempts at pacifying the dilemma by excluding Newcomb’s 
problem as an RCT-application, by restricting MEU and ADS, and by allowing for 
backward causation. A probability approach shows that Newcomb’s original prob-
lem-formulation lacks causal information. This makes it impossible to specify the 
probability structure of Newcomb’s univocally. Once missing information is added, 
Newcomb’s problem and RCT re-align, thus explaining Newcomb’s problem as a 
seeming dilemma. Building on Wolpert and Benford (Synthese 190(9):1637–1646, 
2013), we supply additional details and offer a crucial correction to their formal 
proof.

Keywords  Newcomb’s problem · Decision-making · Bayesian network · Causality · 
Joint probability · Probability structure

“To judge what one must do to obtain a good or avoid an evil, it is necessary to 
consider not only the good and the evil in itself, but also the probability that it 
happens or does not happen; and to view geometrically the proportion that all 

these things have together.” (Arnauld and Nicole, 1662 [1996], The Port-Royal 
Logic).
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1  Introduction

Running parallel to the developing of mathematical logic in the mid-18th cen-
tury, the development of a normative decision-making theory that assists humans 
in choosing rationally traces to Bernoulli (1738[1954]). By the mid-20th century, 
von Neumann and Morgenstern (1944) and Savage (1954) had developed a proba-
bilistic version of rational choice theory (RCT) that is known as Bayesian decision 
theory (BDT). It generally concerns “how an agent ought to choose when faced with 
some decision problem” (Elliot 2019, p. 755). Given possible alternative actions, 
BDT provides models that express (combinations of) beliefs and desires in ways that 
guarantee a definite choice. This is known as BDT’s normalization property, or sim-
ply its normative property.1

Among the challenges posed to RCT and BDT, a problem raised first, at some 
point between 1960 and 1963, by the physicist William Newcomb has counted as 
a hard case (e.g., Nozick 1969; Gibbard and Harper 1978; Skyrms 1980; Lewis 
1981; Jeffrey 1983). Formalized by Nozick (1969), Newcomb’s problem (aka New-
comb’s paradox or dilemma) invokes an implausible interaction scenario where a 
rational choice seems impossible. Several scholars have suggested that the problem 
casts strong doubt on two basic rational choice principles: maximize expected utility 
(MEU-P), and adopt the dominant strategy (ADS-P). Brams (1975) observes that 
the conflict between MEU-P and ADS-P “is [at] the heart of the paradox” (ibid., 
599). Indeed, Newcomb’s problem is said to provide “[a] useful entry into the inad-
equacies of the current standard theory [of rational choice]” (Nozick 1993, p. 41).

We review several unsuccessful attempts at pacifying Newcomb’s dilemma by 
excluding it as an RCT application, by restricting MEU-P and ADS-P, and by allow-
ing for backward causation (Sects. 2 and 3). A probability approach shows conclu-
sively that Newcomb’s original problem-formulation lacks causal information, mak-
ing it impossible to specify the problem’s probability structure univocally (Sects. 4 
and 5). If causal information is added, Newcomb’s problem and RCT re-align. This 
shows that Newcomb’s problem is a seeming choice dilemma. To our best knowl-
edge, only Wolpert and Benford (2013) have pursued a probability approach to New-
comb’s problem. We supply additional details and offer a crucial correction to their 
formal proof.

2 � Newcomb’s problem as a rational choice dilemma

Suppose a being, let’s call it ‘the predictor’, forecasts your choices with great 
accuracy. You know that the predictor has never predicted your own past choices 
incorrectly. You also know that the predictor has often predicted other peoples’ 

1  BDT, as most philosophers today pursue it, is a normative theory. How agents in fact behave, whether 
under natural or in laboratory conditions, is of no immediate relevance. The issue is how agents ought 
to behave in view of risky decision. To this end, BDT’s models guide decisions by evaluating possible 
action-alternatives.
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choices correctly, many of whom are similar to you. Both assumptions together 
yield a prima facie sufficient reason that the predictor will almost certainly fore-
cast your own choice accurately when he offers to play the following game:

The predictor gives you a choice of selecting either one or both of two boxes. 
The transparent Box 1 contains 1,000 dollars; the opaque Box 2 contains either 
one million dollars or nothing. Which state obtains depends only on the predic-
tor’s forecast of your choice: if “choose both boxes” is predicted, then the predic-
tor leaves Box 2 empty; if “choose only Box 2” is predicted, then Box 2 holds one 
million dollars. What should you do? Should you “one-box” (Box 2) or “two-box” 
(Box 1 and Box 2)?

If your expected utility (eu) is the expected monetary value ($), i.e., if 
eu($n) = n, then Newcomb’s problem has the payoff matrix  in Table 1. Here, A1 
and A2 are your possible choice-actions, and S1 and S2 describe the state of each 
box.

“One-boxers” choose only Box 2 (e.g., Horgan 1981; Horwich 1985; Price 1986; 
Spohn 2012), because “two-boxing” provides strong evidence that Box 2 is empty 
(stipulated payoff: $1,000), whereas “one-boxing” provides strong evidence that 
Box  2 holds one million dollars. The evidence is strong because, by assumption, 
the probability is very high that the predictor forecasts your choice correctly. This 
means your choice and your payoff are highly correlated. The MEU-P thus dictates 
to choose only Box 2.

By contrast, “two-boxers” stress that Newcomb’s original problem-formulation 
states clearly that the predictor forecasts your choice action before you choose (Gib-
bard and Harper 1978; Lewis 1981; Jeffrey 1983; Fischer 1994). The moment you 
exercise your choice, therefore, neither choosing nor not choosing Box 1 can change 
the content of Box 2. Hence, choosing Box 1 in addition to Box 2 increases eu by 
$1,000. This means “two-boxing” dominates “one-boxing.” The ADS-P thus dic-
tates to choose both boxes.

Both options arise equally in Newcomb’s problem: “one-boxing” looks just as 
rational as “two-boxing.” Short of being able to reject the problem in a motivated 
way, Newcomb’s problem therefore appears as a rational choice dilemma. The chal-
lenge to BDT’s normalization property that the problem poses thus targets BDT’s 
normative center. Following formal demonstration, Priest (2002, p. 13) concluded 
(without irony) that “[w]e may now show that you ought to choose one box, and that 
you ought to choose both boxes,” because BDT predicts that choosing both boxes is 
the most rational choice, and that it isn’t. This conclusion is unacceptable, of course, 
yet both lines of reasoning it follows from are valid. Indeed, “[p]sychologically, 

Table 1   Game theoretic payoff 
matrix for Newcomb’s problem

S1 = Box 2 holds 
$1,000,000

S2 = Box 2 
holds $0

A1 = choose only Box 2 1,000,000 0
A2 = choose both boxes 1,001,000 1,000
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Newcomb’s problem is maddeningly paradoxical. Two deep-seated intuitions come 
head to head, and both refuse to budge” (Horgan 1981, p. 341).2

We first turn to eliminative approaches that argue Newcomb’s problem away.

3 � Eliminating Newcomb’s problem

3.1 � Problem rejection

Among those scholars who seek to reject Newcomb’s problem as a “goofball case,” 
Lewis (1979, p. 240; italics added) observes a tendency to “[…] not have, or […] 
not rely on, any intuitions about what is rational in goofball cases so unlike the deci-
sion problems of real life.” Rejecting intuition in such contexts, however, incurs sig-
nificant explanatory costs. For what counts why, and for whom, as a goofball case? 
A flat out rejection of Newcomb’s problem thus appears unprincipled. Incidentally, 
Jeffrey (1983, 1988, 1993) had initially accepted, yet later dismissed Newcomb’s as 
a well-formed problem (Jeffrey 2004, p. 113).

Principled rejections of Newcomb’s problem as a problem for RCT​ cite that 
“the circumstances which allegedly define Newcomb’s problem generate a previ-
ously unnoticed regress” (Maitzen and Wilson 2003, p. 152) such that “Newcomb’s 
problem is insoluble because it is ill-formed.” Similarly, “[w]hen we do understand 
[these circumstances] properly we recognize the logical incoherence of the problem 
and the pointlessness of the choice” (Slezak 2006, p. 295).

Of course, problem rejection is a far less plausible strategy if the alleged regress, 
or the alleged logical incoherence, are removed from in Newcomb’s problem. This 
is what the Gaifman–Koons paradox does (Gaifman 1983; Koons 1992). In a game 
that is structurally similar to Newcomb’s problem,

Adam is to play checkers against Adam* for the stake of 100 dollars. (In order 
to force a determinate outcome, assume that by not losing the game he will 
win the stake.) Before the game, Adam* tells Adam that he has decided to 
pay him [a bonus of] 1000 dollars if he, Adam, will behave during the game 
irrationally. How is Adam to behave? If he tries to ‘behave irrationally’ by 
playing a manifestly losing game, then, in view of his knowing that ‘irrational 
behavior’ will win him a much bigger sum than the 100 dollars he will lose 
[i.e., a 1000 dollars bonus minus his 100 dollars stake], his behavior becomes 
rational. But if, concluding that [given the expected bonus] playing to lose is 
rational, [so that by playing to lose] he plays to win then, again, this mode of 
behavior becomes rational if on its basis he stands to win the 1000 dollars. 
(Gaifman 1983, p. 150)

2  (1) The intuition that it is wrong to choose Box 1 and Box 2, given that your expected payoff is only 
$1,000, rather than choosing only Box 2, given that your expected payoff is $1 million. (2) The intuition 
that it is wrong to choose only Box 2, because your choice cannot affect its content (i.e., Box 2’s content 
does not dependent causally on your choice).
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So, if Adam plays an instance of a manifestly dominated strategy, S, and thus plays 
prima facie irrationally, then this nevertheless is rational qua Adam knowing that 
playing S will result in a total payoff of $1,000 − $100 = $900 (see Koons 1992, p. 
1). The Gaifman–Koons paradox thus removes the surreal nature of the “predic-
tor,” itself the target of easy criticism. There is no obvious regress either. The choice 
dilemma nevertheless seems to persist. Rather than reject Newcomb’s problem, 
another strategy is to clarify it.

3.2 � Problem clarification

One may study Newcomb’s problem as a logical paradox, as a (surreal) construction 
of possible worlds, as a conflict between RCT-principles, or as some other rational-
ity- concerning matter. In any case, if Newcomb’s problem is a genuine dilemma, 
then it must entail some deficiency about RCT and BDT. Starting with Nozick 
(1969), this possibility has engendered continued reflection about such fundamental 
questions as: ‘what is rationality?’, or ‘is a normative rational model/theory even 
possible?’ This, in turn, has promoted the constructive development of RCT. The 
main tasks are to explain how Newcomb’s choice dilemma arises and how to resolve 
it. Two common ways of addressing these tasks are to restrict the RCT-principles 
(3.2.1) and to specify the predictor’s forecasting accuracy (3.2.2). A less common 
way is to allow for backward causation (3.2.3).

3.2.1 � Restriction

Nozick (1969, p. 118; notation adapted) diagnoses the dilemma to arise from a con-
flict between the rationality principles ADS-P and MEU-P:

ADS-P: If there is a partition of states of the world relative to which action A1 
weakly dominates action A2, then the decision-making agent should perform A1 
rather than A2.
MEU-P: Among all available actions, the decision-making agent should perform 
the action that maximizes her expected utility (eu).

According to the standard model of calculating eu, the acts Ai (i = 1, 2, …, m – 1, m) 
are open to the decision-maker, and the possible states of the world Sj (j = 1, 2, …, 
n − 1, n) are mutually exclusive and jointly exhaustive (Jeffrey 1983 [1965]). Where 
Oij denotes the outcome of action Ai under state Sj, and for each Ai and each state 
Sj, if the decision-maker performs action Ai and state Sj obtains, then the expected 
utility of Ai, eu(Ai), is the product of the conditional probabilities, P(Sj|Ai), and the 
outcome’s utility, u(Oij):

In Newcomb’s problem, “two-boxing” (A2) dominates “one-boxing” (A1) rela-
tive to S1 and S2, because for any state, the payoff matrix (Table  1) promises an 

eu
(
Ai

)
=
∑

j

P
(
Sj|Ai

)
u
(
Oij

)
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additional $1,000. (Relative to the same state, the utility for the lower row in Table 1 
always exceeds the utility for the upper row.) ADS-P thus dictates “two-boxing.” Per 
the same payoff matrix, however, we find for A1 and A2 that eu(A1) = 1,000,000 and 
eu(A2) = 1,000. So, the eu-maximizing action is A1. Thus, MEU-P instead dictates 
“one-boxing.” This is where the apparent conflict lies.

Nozick (1969) observes (correctly) that,

[i]f the actions or decisions to do the actions do not affect, help bring about, 
influence, etc., which state obtains, then whatever the conditional probabilities 
[are] (so long as they do not indicate an influence), one should perform the 
dominant action. (Nozick 1969, p. 131f.)

As an application condition for ADS-P, therefore, if the states Sj are independent of 
the acts A1 and A2—i.e., if the conditional probabilities are P(Sj|A1) = P(Sj|A2)—and 
if the dominant action is available, then “one should choose the dominant action 
and ignore the conditional probabilities which do not indicate an influence” (Nozick 
1969, 133). In this causally independent version of Newcomb’s problem, ADS-P 
and MEU-P obviously are no longer in conflict. (We explore this option more fully 
in Sect. 4)

Following Nozick’s (1969) lead, Gibbard and Harper (1978) proposed a restricted 
version of ADS-P:

ADS-P*: If the states Sj are causally independent of the acts Ai, then ADS-P 
holds.

Unlike Jeffrey ([1965] 1983), Gibbard and Harper (1978) maintain that eu 
for Ai ought to be calculated such that P(Sj|Ai) is a counterfactual probability, 
P(Ai□ → Sj),3 rather than a conditional probability. (Lewis (1976) shows that 
P(Sj|Ai) = P(Ai□ → Sj) is not a logical truth.) Gibbard and Harper (1978) claim that 
ADS-P* eliminates the conflict between ADS-P and MEU-P, but state no supporting 
argument. To explain, when ADS-P* is read as an application condition for ADS-P, 
then ADS-P* demands that Sj is causally independent of Ai. So, if ADS-P* does not 
hold in Newcomb’s problem, then ADS-P does not hold either. Because this leaves 
MEU-P as the only applicable rational choice principle, a conflict cannot arise in 
the first place. Alternatively, if ADS-P* does hold—such that P(Ai□ → Sj) = P(Sj), 
where i, j = 1, 2—then one can set P(S1) = x, wherefore P(S2) = (1 − x). One now 
finds that:

eu(A1) = 1, 000, 000x + 0(1 − x), whereas

eu(A2) = 1, 001, 000x + 1, 000(1 − x).

3  Gibbard and Harper (1978, p. 125) formalize sentences expressing a counterfactual content of the form 
“If I were to do a, then c would happen” as ‘a□ → c’. This makes ‘P(a□ → c) the probabilistic version of 
the counterfactual conditional ‘a□ → c’.
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Clearly, since eu(A2) > eu(A1), MEU-P now dictates that the rational choice is to 
choose both boxes, just as ADS-P does. The conflict between ADS-P and MEU-P 
thus disappears.

In similar spirit, Horgan (1981, p. 348f.) distinguishes two versions of ADS-P*:

ADS-Pp: If the states Sj are probabilistically independent of the acts Ai, then 
ADS-P holds.
ADS-Pc: If the states Sj are counterfactually independent of the acts Ai, then 
ADS-P holds.

ADS-Pc is logically stronger than ADS-Pp, because counterfactual independence 
entails probabilistic independence, but not vice versa. Horgan (1981) determines eu 
from the conditional probability P(Sj|Ai) á la Jeffrey (1983), and maintains that “nei-
ther ADS-Pp nor ADS-Pc sanctions taking both boxes […]” (Horgan 1981, p. 349; 
notation adapted). So the dilemma again disappears insofar as Newcomb’s problem 
violates the application conditions of both ADS-Pp and ADS-Pc, because the states 
Sj (j = 1, 2) in Table 1 are neither probabilistically nor counterfactually independ-
ent of the acts Ai. A rational choice, therefore, can only rely on MEU-P. Hence, one 
ought to “two-box.”

3.2.2 � Forecasting accuracy

Brams (1975) takes the choice dilemma to arise because the payoff matrix (Table 1) 
is specified inappropriately. If Newcomb’s problem is reformulated “as a decision-
theoretic rather than as a game-theoretic problem,” then “the apparent inconsistency 
between the two [RCT-]principles disappears” (ibid., 599). In this case, the relevant 
states are not the contents of each box, but rather the predictor’s forecasting accu-
racy. With the predictor modelled as a proper game-player, the revised payoff matrix 
is given in Table 2 (cf. Table 1):

The conflict between ADS-P and MEU-P is now removed because the dominat-
ing action depends only on the forecasting accuracy. The boxes’ contents play no 
role. If the forecast is accurate, then “one-boxing” maximizes eu; if the forecast is 
inaccurate, then “two-boxing” maximizes eu. Because the predictor’s forecasting 
accuracy is a counterfactual probability ranging over 0 < P(Ai□ → Sj) < 1, in order to 
identify the rational choice, it suffices to specify a cut-off point, x. If x > 0.5005, one 
ought to “one-box;” if x < 0.5005 one ought to “two-box,” and if x = 0.5005, both 
actions make no difference to eu (Brams 1975, p. 600; Lewis 1979, p. 238f.; Ahmed 
2014, p. 113f.).

Table 2   Decision theoretic 
payoff matrix for Newcomb’s 
problem

S1 = the predictor 
forecasts accurately

S2 = the predictor 
forecasts inac-
curately

A1 = choose only Box 2 1,000,000 0
A2 = choose both boxes 1,000 1,001,000
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To see this, it suffices to vary the final decimal. Thus, suppose that x = 0.5006, 
and calculate eu as follows:

In this case, eu(A1) > eu(A2). By contrast, suppose that x = 0.5004, and calculate 
eu as:

In this case, eu(A1) < eu(A2).
Of course, the value of the cut-off point x varies with the actions’ payoffs. Given 

the payoffs are m = 1,000,000 and n = 1,000, x = 0.5005 is merely an instance of the 
schema:

To derive this schema, let Oij denote the outcome of action Ai under state Sj (e.g., 
O11 = A1&S1; see Sect. 3.2.1), and let m be the payoff of O11, let n be the payoff of 
O21, and let m + n be the payoff of O22, whereas the payoff of O12 is fixed as 0. One 
can now stipulate the eu-value of the focal actions as:

For the indifferent case, eu(A1) = eu(A2), we have it that mx = nx + m + n – (m + n)x,  
and hence find that mx = m + n – mx, wherefore

Though the dominating action does depend only on the forecasting accuracy, 
notice that Newcomb’s original problem-formulation fails to specify the forecasting 
accuracy numerically. That the predictor has in the past rarely forecasted choices 
inaccurately nevertheless warrants the assumption that the present forecast is almost 
certainly accurate. This suggests having almost full confidence, i.e., x ≫ 0.5005. The 
decision-theoretic payoff matrix (Table 2) thus makes one-boxing the best strategy 
to maximize eu.

3.2.3 � Backward causation

“One-boxing” thus depends on past evidence of the predictor’s forecasting accuracy. 
As the forecast occurs before the agent’s choice, however, “one-boxing” seems to 

eu(A1) = 1,000,000 × 0.5006 + 0 × 0.4994 = 500,600

eu(A2) = 1, 000 × 0.5006 + 1,001,000 × 0.4994 = 500,400

eu(A1) = 1,000,000 × 0.5004 + 0 × 0.4996 = 500,400

eu(A2) = 1, 000 × 0.5004 + 1,001,000 × 0.4996 = 500,600

x =
m + n

2m

eu(A1) = mx + 0(1 − x) = mx

eu(A2) = nx + (m + n)(1 − x) = nx + m + n − (m + n)x

x =
m + n

2m
.
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rely on backward causation. Otherwise, how could the choice at time ti+1 influence 
the predictor’s forecast at ti? Recognition of two problem versions—one allowing 
for backward causation, and one that doesn’t—provides another option of explaining 
why MEU-P and ADS-P seem to be in conflict.4 Sainsbury (2009) points out that,

[t]o the extent that we think of the case [Newcomb’s problem] as involving 
backward causation, we are tempted by MEU-P. To the extent that we think 
of it as excluding backward causation we are tempted by ADS-P. What strikes 
us as conflicting views of the same case are really [two incompatible] views of 
different cases. (Sainsbury 2009, p. 75; notation adapted)

Finding “that backward causation in this [human-related] sense is possible,” Schmidt 
(1998, p. 84), concludes that “the player should leave the $1000 on the table.” So, 
the player should “one-box,” as above.5 Slezak (2013, p. 3) observes that “Schmidt 
relies on an equivocation on the notion of [actual vs. perceived] causation to estab-
lish his central claim that backward causation may be involved.” Beyond committing 
a fallacy, moreover, what Schmidt (1998, p. 73) himself admits is a “strange but pos-
sible” scientific story relies on crucial assumptions that are very much unlike those 
underlying Newcomb’s original problem.

When Dummett (1954) initiated a philosophical debate on backward causation, 
he merely defended its metaphysical possibility. Flew (1954) and Black (1956) 
quickly argued against this. Of course, backward causation remains counterintui-
tive. Instead, the temporal succession of cause and effect reflects a “normal” causal 
understanding. Indeed, most approaches to causality today assume that causes pre-
cede their effects in time (Russo 2010). This echoes the Humean view that “[w]e 
may define a cause to be an object followed by another, and where all the objects, 
similar to the first, are followed by objects similar to the second,” which is to say 
that “[…] if the first object had not been, the second never had existed” (Hume, 
[1748] 2007, p. 56; italics added).

In the 1960s, physicists discussed the possibility of tachyons, hypothetical parti-
cles exceeding the speed of light. “If such particles existed, and no observation indi-
cates this, [then] they would by some observers according to the theory of relativity 
be seen as if they were going backward in time” (Faye 2019, p. 136; italics added). 
Inspired by backward causation, “some philosophers argue that a perfect predictor 
implies a time machine, since with such a machine causality is reversed” (Wolp-
ert and Benford 2013, p. 1639). Absent an actual time machine, of course, back-
ward causation is less than a live possibility, wherefore many reject this attempt at 

4  This option implies rejecting that Newcomb’s problem-formulation would already rule out backward 
causation by stipulation. When accepting this stipulation, of course, backward causation becomes a non-
starter (Maitzen and Wilson 2003; Slezak 2006).
5  Locke (1978, p. 18) maintains that backward causation is irrelevant: one ought to choose both boxes 
anyways. “[E]ven if reverse causation is involved […] the case for Choice Two (take both boxes) remains 
unaltered.” Gallois (1979, p. 49) criticizes this firmly: “Locke gives no good reason for thinking that the 
possibility of reverse causation is irrelevant to the problem posed by Newcomb; second the argument for 
taking both boxes is […] misconceived.”



5134	 Synthese (2021) 199:5125–5143

1 3

clarifying Newcomb’s problem. Mellor (1995, pp. 224–229) even rejects backward 
causation already on a prior grounds.

Since backward causation is at least as controversial as the character of New-
comb’s problem, whether the former helps clarify the latter is unclear. Decisively, 
however, backward causation introduces a causal loop into Newcomb’s problem. 
For this reason, Jeffrey (2004, p. 116) surmises that “Newcomb problems are like 
Escher’s famous staircase on which an unbroken ascent takes you back where you 
started.” Viewed from the predictor’s perspective, after all, if one accepts backward 
causation, then the predictor can in principle know, and thus forecast, how the agent 
chooses. (Think of the predictor as accessing a “magic mirror” that displays the 
agent’s future choice at the moment the predictor makes the forecast). Viewed from 
the agent’s perspective, by contrast, agents seeking to maximize eu cannot choose 
freely between “one-boxing” and “two-boxing,” because the only way of maximiz-
ing eu is “one-boxing.” In this sense, fatalism might seem to loom (see Faye 2018, 
2019). At any rate, insofar as allowing for backward causation reduces the agent’s 
choices to a single option, namely “one-boxing,” Newcomb’s problem would sim-
ply ceases to be a genuine decision problem. A fortiori, it would cease to be choice 
dilemma.

3.3 � Upshot

None of the forgoing attempts at pacifying Newcomb’s problem are particularly 
persuasive. Rejecting Newcomb’s problem as an RCT-application is unprincipled. 
Clarifying the problem by restricting the scope of the two RCT principles ultimately 
relies on reformulating Newcomb’s original problem as a distinct problem. So, what 
one treats no longer is Newcomb’s original problem. Finally, allowing for backward 
causation appears metaphysically dubious. This provides a sufficient reason to look 
for an alternative resolution of Newcomb’s problem in a probability approach.

4 � Probability structures

4.1 � Causal graphs

The causal relations in Newcomb’s original problem are not only formulated impre-
cisely, they are also mutually intertwined. The use of probabilities makes imprecise 
causal relations tolerable in principle. Indeed, modelling causal relations as proba-
bilistic relation seems natural to us. As Pearl (2009) points out,

causal utterances are often used in situations that are plagued with uncertainty. 
We say, for example, ‘reckless driving causes accidents’ […] Any theory of 
causality that aims at accommodating such utterances must therefore be cast 
in a language that distinguishes various shades of likelihood—namely, the lan-
guage of probabilities. (Pearl 2009, p. 1)
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An effective tool to probabilistically model causal relations are causal graphs. Bayes-
ian networks represent causal variables and their conditional dependences as directed 
acyclic graphs, “provid[ing] convenient means of expressing substantive assumptions; 
to facilitate economical representation of joint probability functions; and to facilitate 
efficient inferences from observations” (Pearl 2009, p. 13). A graph’s nodes represent 
variables, edges represent the causal relations between variables.

Corresponding to the decision-maker and the predictor agents in Newcomb’s 
problem are two game variables: ‘the predictor’s forecast’ and ‘the decision-maker’s 
choice’. Let ‘b1b2’ denote the prediction: ‘the decision-maker chooses both boxes’, 
and let ‘b2’ denote: ‘the decision-maker chooses only Box 2’. Moreover, let ‘B1B2’ 
denote the evidence report: ‘the decision-maker did choose both boxes;” and let ‘B2’ 
denote: ‘the decision-maker did choose only Box 2.’ The utility matrix and the prob-
ability matrix for Newcomb’s problem then are as in Tables 3 and 4. 

According to expected utility theory (von Neumann and Morgenstern 1944), and 
with ‘u’ standing for the utility function of the outcomes, ‘ � ’ for the set of states 
{S1, S2}, ‘ � ’ for the set of actions {A1, A2}, and with the variable C (for ‘choice’) as 
the element of � and the variable F (for ‘forecast’) as the element of � , we have it 
that C and F jointly determine eu of the decision-maker’s choice as follows:

eu(C) =
∑

[P(C,F) × u(C,F)] where C ∈ �, F ∈ �

Table 3   Utility matrix S1 = b2 S2 = b1b2

A1 = B2 1,000,000 0
A2 = B1B2 1,001,000 1,000

Table 4   Probability matrix S1 = b2 S2 = b1b2

A1 = B2 P( B2, b2) P(B2, b1b2)
A2 = B1B2 P(B1B2, b2) P(B1B2, b1b2)



5136	 Synthese (2021) 199:5125–5143

1 3

Given the matrixes in Tables 3 and 4, one calculates eu6 thus:

Determining eu in (1) and (1′) thus requires specifying the probability matrix, 
which then specifies the joint probability P(C,F). In standard probabilistic models, 
however, P(C,F) lacks a unique decomposition, and specific decompositions give 
rise to different rational choices. We now turn to this.

4.2 � Probability structure for “one‑boxing”

“One-boxers,” as we saw, treat ‘choose only Box  2’ as the sole rational choice. 
As we also saw, Nozick takes ADS-P to dictate this choice. Analysis of the joint 
probability shows that the decision-maker would in this case adopt the following 
decomposition:

We can now model the causal relations that (2) expresses as the Bayesian network 
in Fig. 1 (Li 2017). Variable C, the “parent node,” has probability P(C). Variable F, 
the “child node,” has probability P(F|C). The arrows between nodes C and F repre-
sents the dependence of F on C. In this way, P(C) and P(F|C) jointly determine the 
probability of the decision result, O, i.e. P(C)P(F|C).

(1)eu(A1) = 1, 000, 000
[
P
(
B2, b2

)]
+ 0

[
P
(
B2, b1b2

)]

(1′)eu(A2) = 1, 001, 000
[
P
(
B1B2, b2

)]
+ 1, 000

[
P
(
B1B2, b1b2

)]

(2)P(C,F) = P(C)P(F|C) IfP(C) = 0, thenP(C)P(F|C) = 0

Fig. 1   Bayesian network for 
“one-boxing” P(C) P(F|C)C

O

F

P(C)P(F|C)

6  Contrary to what Wolpert and Benford (2013, Sect. 2) claim, their formula (1) for eu breaks with the 
von Neumann-Morgenstern version of expected utility theory, making the calculation unnatural, too 
complicated if the forecasting accuracy falls below 100% (i.e., if p(F|C) ≠ 1), and generally hard to under-
stand. The issue is this: for decision problems whose probability matrix is given, Wolpert & Benford’s 
formula (1) states only the sum of the actions’ eu-values, whereas the eu-value for each individual action 
feeding into that sum remains opaque, and so fails to guide the decision. To see this, consider Jeffrey’s 
(1983, p. 8f) “nuclear disarmament” example, where the focal actions “arming” and “disarming” take 
the eu-values: eu(arming) = (−100) × 0.1 + 0×0.9 = −10; eu(disarming) = (−50) × 0.8 + 50 × 0.2 = −30. 
According to formula (1), we find (− 100) × 0.1 + 0×0.9 + (−50) × 0.8 + 50 × 0.2 = −40. However, − 40 is 
the sum of the eu-values for both actions. To a decision-maker seeking to maximize eu, therefore, this 
result is uninformative. By contrast, RCT demands that the agent maximize eu as follows: (1) calculate 
each action’s eu by using the states’ probability and the outcomes’ utility relative to the actions; (2) com-
pare all the eus to determine which one is the largest; (3) choose the action with the highest eu. Our own 
proof does exactly this.



5137

1 3

Synthese (2021) 199:5125–5143	

Here, P(F|C) quantifies the predictor’s forecasting accuracy.7 Crucially, “one-box-
ers” assume that the value of P(F|C) is large, because the decision-maker’s choice is 
predicted with high accuracy, i.e., a very good prediction algorithm is at hand. The 
predictor would thus treat P(F|C) as the Kronecker δ function:

This means that, at the child node F, given that P(C) ≠ 0, the predictor can 
assign the conditional probability P(F|C) arbitrarily. For all C such that P(C) ≠ 0, 
therefore, the decision-maker cannot affect the value of P(F|C). The one value the 
decision-maker can control is that of P(C) for node C. Properly understood, then, 
the decision-maker’s discretion in assigning P(C) presupposes the ability to choose 
freely at node C (cf. our Sect. 3.2.3)

Expressing the probability structure of “one-boxers” as a Bayesian network yields 
a crucial advantage. One can separate the aspects of the joint probability P(C,F) 
that the decision-maker determines, on one hand, from the aspects that the predictor 
determines, on the other. This defines the decision-maker’s strategic space as P(C), 
whereas the predictor’s strategic space is P(F|C). Because the decision-maker can 
affect only P(C), she can maximize eu in (4) or (4′) only by assigning an appropriate 
value to P(C). For the prediction algorithm describing the δ function, moreover, it 
holds in (4) and (4′) that P(b1b2|B1B2) = 1 and P(b2|B2) = 1, whereas P(b2|B1B2) = 0 
and P(b1b2|B2) = 0. Given this probability structure, the decision-maker’s eu now is:

According to the probability axioms, 0 ≤ P(B2) ≤ 1 and 0 ≤ P(B1B2) ≤ 1. In 
order to maximize eu, the decision-maker should therefore assign P(B1B2) = 0 and 
P(B2) = 1; for this maximizes eu(A1). Hence, she ought to choose A1, i.e., “one-box” 
in all cases.

(3)P(F|C) = �F,C ifF = C, then setP(F|C) = 1; otherwiseP(F|C) = 0

(4)
eu(A1) = 1, 000, 000

[
P
(
B2

)
P
(
b2|B2

)]
+ 0

[
P
(
B2

)
P
(
b1b2|B2

)]

= 1, 000, 000
[
P
(
B2

)]

(4′)

eu(A2) = 1, 001, 000
[
P
(
B1B2

)
P
(
b2|B1B2

)]

+ 1, 000
[
P
(
B1B2

)
P
(
b1b2|B1B2

)]

= 1, 000
[
P
(
B1B2

)]

Fig. 2   Bayesian network for 
“two-boxing” P(F)P(C|F) C

O

F

P(F)P(C|F)

7  ‘C’ denotes the decision-maker’s choice and ‘P(F|C)’ denotes the conditional probability of F given C. 
If the predictor’s forecast is very accuracy, then P(F|C) will be very close to 1.
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4.3 � Probability structure for “two‑boxing”

“Two-boxers” instead base the decision on MEU-P. Analysis of the joint probability 
shows that “two-boxers” presuppose an alternative decomposition of P(C,F):

The causal relations corresponding to this decomposition are modelled as the 
Bayesian network in Fig. 2 (Li 2017). Variable F, the “parent node,” has probability 
P(F), and variable C, the “child node,” has probability P(C|F).

“Two-boxers,” as we saw, assume that the decision-maker is ignorant of the pre-
dictor’s forecast, and that she exercises her choice after the predictor has forecasted 
it. The decision-maker can therefore assign any probability 0 ≤ h(C) ≤ 1 at the child 
node C, i.e., P(C|F) = h(C), where P(F) ≠ 0. After all, the predictor can assign any 
probability P(F) to the parent node F, but cannot affect the probability assignment 
P(C|F). By contrast, the decision-maker can assign any probability P(C|F) at the 
child node C, but cannot affect the probability assignment of the parent node F. 
“Two-boxers” therefore presuppose this decomposition of P(C,F):

Because 0 ≤ h(C) ≤ 1, one can set h(C) = P(C), and thus obtain:

Insofar as “two-boxers” assume that F and C are causally independent, it follows 
that P(F) directly affects not node C, but the decision result, O. Accordingly, one 
must replace the arrow leading from C to F in Fig.  2 with a new arrow (dashed) 
leading from F to O, yielding the network in Fig. 3.

Figure  3 shows that “two-boxers” treat Newcomb’s problem as a single-stage 
game, where P(C) is the decision-maker’s strategic space and P(F) is the predictor’s 
strategic space. In this probability structure, one calculates eu thus:

Accordingly, no matter which values the predictor has assigned to P(F), i.e. P(b2) 
in (8) and (8′), in order to maximize eu the decision-maker ought to set the probabil-
ity of ‘choose only Box 2’ to 0, i.e., P(B2) = 0, and set the probability of ‘choose both 
boxes’ to 1, i.e. P(B1B2) = 1. In all cases, then, “two-boxing” is the rational choice.

(5)P(C,F) = P(F)P(C|F) ifP(F) = 0, thenP(F)P(C|F) = 0

(6)P(C,F) = P(F)P(C|F) = P(F)h(C)

(7)P(C,F) = P(F)h(C) = P(F)P(C)

(8)
eu(A1) = 1, 000, 000

[
P
(
b2
)
P
(
B2

)]
+ 0

[
P
(
b1b2

)
P
(
B2

)]
= 1, 000, 000

[
P
(
b2
)
P
(
B2

)]

(8′)eu(A2) = 1, 001, 000
[
P
(
b2
)
P
(
B1B2

)]
+ 1, 000

[
P
(
b1b2

)
P
(
B1B2

)]

Fig. 3   Revised Bayesian net-
work for “two-boxing” P(C) C F P(F)

P(F)P(C)O
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5 � What dilemma?

A probabilistic approach suggests a specific reason why disagreement about the 
rational choice in Newcomb’s problem persists between “one-boxers” and “two-box-
ers”: each assigns a distinct probability structures, reflecting a distinct causal struc-
ture. A “one-boxer” treats the result of the prediction algorithm, P(F|C), as highly 
accurate, and views the choice, C, to depend probabilistically on the forecast, F. A 
“one-boxer’s” decision therefore must consider the forecast by conditionalizing on 
it. By contrast, a “two-boxer” treats the decision-maker’s choice as causally inde-
pendent of the forecast, which she can therefore ignore.

We can only agree with Wolpert and Benford (2013, p. 1642): “[t]he simple fact 
that those two decompositions differ is what underlies the resolution of the para-
dox.” Yet, which decomposition—thus which probability structure—one should 
adopt becomes a less pressing question, if one adopts just one structure. Indeed the 
(near-trivial) point is this: if one implicitly applies both decompositions at once, 
then one cannot expect one rational choice. Put more upbeat: if a rational choice 
seems impossible, check the available decompositions!

To appreciate this more fully, consider the difference in the probabilities that a 
“two-boxer” and a “one-boxer” assign arbitrarily. A “two-boxer” takes the deci-
sion-maker to assign P(C|F) arbitrarily; a “one-boxer” takes the predictor to assign 
P(F|C) arbitrarily. Each assignment is arbitrary, of course. In both cases, these 
assignments nevertheless affect the decision-maker’s probability structure, because 
“one-boxers” (see line 1, below) and “two-boxers” (see line 2) start from incompat-
ible assumptions regarding the joint probability P(C,F).

(1) and (2) together generate a contradiction, by lines (5) and (8′), as follows:

Because “two-boxers” commit to the choice and the forecast being causally inde-
pendent, P(C) does not matter to P(C|F), wherefore:

whereas “one-boxers” commit to the forecast predicting the choice very accurately, 
thus letting P(F) matter to P(F|C):

and since, by (4),

(1)P(C,F) = P(C) × P(F|C)
[
joint probability decomposition, "one-boxer”

]

(2)
P(C,F) = P(F) × P(C|F)

[
joint probability decomposition, }}two-boxer”

]

(3)P(C) × P(F|C) = P(F) × P(C|F) from (1)& (2), by identity

(4)P(F|C) = P(F) iff P(C|F) = P(C) from (3), by rearrangement

(5)P(C|F) = P(C)
[
the choice is causally independent of the forecast

]
,

(6)P(F|C) ≠ P(F)
[
the forecast is very accurate

]
,
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it follows, from (6) and (7), by modus tollens, that

and it thus follows, from (8), that

so that (5) and (8′) are contradictory. QED.
That “one-boxers” and “two-boxers” make incompatible assumption about the 

joint probability P(C,F) thus “creates” the dilemma that Newcomb’s problem was 
meant to be. To pacify the dilemma, it suffices to recognize that Newcomb’s prob-
lem is meaningful either as a “one-boxer” or as a “two-boxer” understands it. Each 
understanding entails a distinct decision-making schema with a distinct probability 
structure. Crucially, each schema leads to a rational choice in its own right: “two-
boxing” is consistent with ADS-P; “one-boxing” is consistent with MEU-P. The 
pragmatic fact thus emerges that “one-boxing” and “two-boxing” are incompatible 
actions that one cannot perform jointly at once.

This has implications for the eliminative approaches to Newcomb’s dilemma in 
Sect.  3, all of which question BDT’s normalization property. Similar approaches 
are reasonable only if one accepts Newcomb’s original problem-formulation. Con-
versely, treating the problem-formulation as underspecified—which it is—fails to let 
a well-defined dilemma arise. We already saw that Newcomb’s original problem-
formulation lacks causal information needed to fully specify the probability struc-
ture.8 Specifically, the original problem-formulation leaves the details of decompos-
ing the joint probability P(C, F) open. For this very reason, indeed, a probabilistic 
approach can in the first place show that Newcomb’s problem arises from conflicting 
probability structures based on mutually incompatible assumptions regarding P(C, 
F), themselves motivated by two different understanding of the problem’s causal 
structure.

A resolution of Newcomb’s problem thus arises from using the desirably clear 
language of probability to specify the causal structures the problem admits. In a sec-
ond step, opting for either this or that probability structure keeps the decision-maker 
from interpreting Newcomb’s problem as if it described two different games at once. 
Once specified, Newcomb’s problem admits of a single rational choice, because 
BDT “fully specifies the optimal decision for any properly specified single set of 

(7)P(C|F) = P(C) implies P(F|C) = P(F),

(8)P(C|F) ≠ P(C),

(8′)¬[P(C|F) = P(C)],

8  McKay (2004, p. 118) rightly remarks that “the right way to approach the Newcomb problem is to 
attempt to work out the underlying causal structure,” and that “the right choice depends on extra informa-
tion about the actions.” Although authors such as Levi (1975, 1982) and (Eells 1982) have sought to sup-
ply this structure, their approaches failed to supply extra information of the right kind (see Slezak 2006). 
Slezak (2006) himself sees “no grounds for insisting on a plausible causal structure for a science-fiction 
story” (ibid., 295) such as Newcomb’s, thus suspending the need to “wonder about how such a predictor 
could possibly accomplish his success” (ibid., 283) in the first place.
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conditional independencies” (Wolpert and Benford 2013, p. 1640). As the dilemma 
disappears, the rational choice thus (re-)appears.

Compared to eliminative approaches, the probabilistic approach to Newcomb’s 
problem offers key advantages. Since the need to change the problem-formulation 
disappears, what one treats in fact is Newcomb’s problem. This avoids negating 
the problem itself, and retains the normativity of BDT in guiding rational choices. 
Moreover, dubious concepts such as backward causation, or hypothetical devices 
such as a time machine, are not needed, thus respecting Occam’s razor. A fortiori, 
appealing to psychological mechanisms in rational decision-making seems entirely 
misplaced.

6 � Conclusion

Having reviewed the main approaches to Newcomb’s problem, we saw why it is 
not an RCT-dilemma that questions BDT’s normalization property. Specifically, it 
is false that Newcomb’s problem creates a conflict between the decision principles 
ADS-P and MEU-P. Instead, if a conflict arises, then it arises from assigning two 
different probability structures. Analyzing these structures showed that causal infor-
mation is missing in the original problem-formulation, and that adding this infor-
mation results in a RCT-solution to a choice dilemma that Newcomb’s problem is 
emphatically not. Rather, if Newcomb’s problem is specified fully, then calculating 
expected utility suffices to identify the rational choice.

The scholarly value of tackling Newcomb’s problems and its variants lies in the 
continuous development of BDT it has brought about. Yet this development has 
never deviated from the axiomatic model pioneered by Savage (1954). The rational-
ity assumption, as well as consideration of instrumental rationality, have remained 
BDT’s most important foundations. This continues to reflect Leibniz’s dream: 
“whenever controversies arise, there will be no need of more disputation than what 
occurs between two philosophers or calculators. It will be sufficient to pick up their 
pens, sit down at the desks and say to each other: let us calculate” (Leibniz 1688 
[2006], p. 266).
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