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Abstract
We use a deontic logic of collective agency to study reducibility questions about col-
lective agency and collective obligations. The logic that is at the basis of our study
is a multi-modal logic in the tradition of stit (‘sees to it that’) logics of agency. Our
full formal language has constants for collective and individual deontic admissibil-
ity, modalities for collective and individual agency, and modalities for collective and
individual obligations. We classify its twenty-seven sublanguages in terms of their
expressive power. This classification enables us to investigate reducibility relations
between collective deontic admissibility, collective agency, and collective obligations,
on the one hand, and individual deontic admissibility, individual agency, and individual
obligations, on the other.

Keywords Deontic logic · Collective admissibility · Collective agency · Collective
obligation · Expressivity · Bisimulation

1 Introduction

In the philosophy of the social sciences, individualism is the methodological precept
that any social phenomenon is ultimately to be explained in terms of the actions and
interactions of individuals. One of the central questions in the debate on individualism
is whether statements about collectives can be reduced to statements about individuals.
Does it hold that for every statement about collectives there is a logically equivalent
statement about individuals? In this paper, we use techniques frommodal logic to find
answers to specific reducibility questions, including: Does it hold that for every state-
ment about collective agency there is a logically equivalent statement about individual
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agency? Does it hold that for every statement about collective obligations there is a
logically equivalent statement about collective agency and individual obligations?

By way of a formal study of expressivity relations, we aim to assess which
sorts of reductionism about collective agency and collective obligations are tenable.
Accordingly, we rephrase the reducibility questions as questions of expressivity: Can
statements from a specific language that includes specific statements about collectives
be expressed with statements from another language? We follow standard practice in
modal logic and develop new notions of bisimulation to determine the answers to these
questions of expressivity.Doing so enables us to answer our reducibility questionswith
logical precision.

To answer our expressivity questions, we use a deontic logic of collective agency.
This multi-modal logic is a simplified and generalized version of Horty’s (1996, 2001)
deontic logic of agency.1 Alongside the usual sentential connectives and the universal
modality, our full formal language has constants for collective and individual deontic
admissibility, modalities for collective and individual agency, and modalities for col-
lective and individual obligations.2 Truth-conditions for the formulas of the full formal
language are specified in terms of deontic gamemodels (Tamminga andHindriks 2020
§ 3.2).

There are twenty-seven sublanguages of the full language, depending on (a)whether
constants for collective and/or individual deontic admissibility are excluded, (b)
whether modalities for collective and/or individual agency are excluded, and (c)
whether modalities for collective and/or individual obligations are excluded. Because
each of these three items gives rise to three possibilities, there are exactly twenty-
seven sublanguages. The main technical contribution of this paper consists in charting
this new territory and ordering these twenty-seven sublanguages in terms of their
expressive power.

Our paper is organized as follows. In Sect. 2, we first define the full language and
give truth-conditions for its formulas in terms of deontic game models. The twenty-
seven sublanguages are then defined. Next, we define the concept of expressivity and
give three criteria on expressivity that help to classify the twenty-seven sublanguages
in terms of their expressive power (Sect. 3).We chart the sublanguages that are equally
expressive in Sect. 4 and then give the full picture of the expressivity relations in Sect. 5.
Subsequently, we introduce a class of bisimulation relations between pointed deontic
game models and prove a Hennessy–Milner theorem for each of the twenty-seven
sublanguages (Sect. 6). In the following three sections, we prove that the full picture
of expressivity relations is accurate.We briefly discuss two assumptions on ourmodels

1 The deontic logic of collective agency is a logic in the tradition of stit (‘sees to it that’) logics of agency.
Seminal works include Kanger (1957), Pörn (1970), von Kutschera (1986), and Horty and Belnap (1995).
See Belnap et al. (2001) for a textbook presentation of stit logic. There are other formal accounts of agency
and normativity. Rather than using stit logic, Meyer (1988) and Segerberg (2012) use dynamic logic to
analyse individual actions and obligations. Czelakowski (2020) uses formal linguistics as a basis for a
deontic logic of consecutive individual actions.
2 On admissibility, seeArrow (1951, p. 429), Luce andRaiffa (1957, pp. 287 and 307), Savage (1972, p. 21),
and Kohlberg andMertens (1986, § 2.7.A). Horty (2001, p. 130) relies on collective deontic admissibility to
define group obligations, and Tamminga and Duijf use collective deontic admissibility to analyse collective
rationality (2017, pp. 200–201) and backward-looking collective moral responsibility (2017, § 6).
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and languages in Sect. 10. A short summary and some philosophical considerations
conclude the paper.

2 Languages and semantics

LetP be a fixed countable set of atomic propositions and letN be a fixed finite set of
individual agents that contains at least three elements. (We return to this assumption in
Sect. 10.) We use p and q as variables for atomic propositions, i , j , and k as variables
for individual agents, andF andG as variables for non-empty sets of individual agents.
We use −G to refer to the complement N−G. The full language L�G ,[G],(G) of our
deontic logic of collective agency contains (i) deontic admissibility constants of the
form “Group G of agents performs a deontically admissible group action” (formalized
as �G) and “Agent i performs a deontically admissible individual action” (formalized
as �i ). Moreover, it contains (ii) necessity statements of the form “It is settled true that
φ” (formalized as �φ), (iii) agentive statements of the form “Group G of agents sees
to it that φ” (formalized as [G]φ) and “Agent i sees to it that φ” (formalized as [i]φ),
and (iv) deontic statements of the form “Group G of agents ought to see to it that φ”
(formalized as (G)φ) and “Agent i ought to see to it that φ” (formalized as (i)φ). Its
Backus-Naur form is the following:

φ := p | �G | ¬φ | (φ ∧ φ) | �φ | [G]φ | (G)φ

where p ranges over P and G ranges over non-empty subsets of N .
The operators →, ↔, ♦, and 〈G〉 abbreviate the usual constructions. We leave out

brackets and braces if the omission does not give rise to ambiguities. Accordingly,
the formulas �i , [i]φ, and (i)φ are shorthand for the formulas �{i}, [{i}]φ, and ({i})φ,
respectively.

2.1 Deontic gamemodels

Truth-conditions for the formulas of L�G ,[G],(G) are specified in terms of deontic game
models. A deontic game model is a one-shot game in which each individual agent i
is assigned a non-empty and finite set Ai of available individual actions. The set AG
of group actions that are available to a non-empty set G of individual agents is given
by AG = ×i∈G Ai . The set A of action profiles equals the set AN of group actions
that are available to the grand coalition N of all individual agents and is given by
A = AN = ×i∈N Ai . The set of action profiles plays the role of the set of worlds
in possible-worlds models for standard deontic logic. A deontic ideality function d
assigns to each action profile a in A a value d(a) that is either 0 or 1. A valuation
function assigns to each atomic proposition p inP a set v(p) of action profiles where
p is true.3 Formally,

Definition 1 (Deontic Game Model) A deontic game model M is a quadruple
〈N , (Ai ), d, v〉 such that for each agent i in N it holds that Ai is a non-empty and

3 We adopt the notational conventions of Osborne and Rubinstein (1994, § 1.7).
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finite set of actions available to agent i , d : A → {0, 1} is a deontic ideality function
such that there is at least one a in A with d(a) = 1, and v : P → ℘(A) is a valuation
function.

To specify truth-conditions for deontic admissibility constants and for deontic state-
ments, we order the group actions that are available to any (possibly singleton) set G
of individual agents by way of a dominance relation:

Definition 2 (Weak Dominance) Let M = 〈N , (Ai ), d, v〉 be a deontic game model.
Let G ⊆ N be a non-empty set of individual agents. Let aG, bG ∈ AG . Then

aG 	M bG iff for all c−G ∈ A−G it holds that d(aG, c−G) ≥ d(bG, c−G).

Strong dominance is defined in terms of weak dominance: aG �M bG if and only if
aG 	M bG and bG �M aG .

A group action that is available to any (possibly singleton) set G of individual
agents is deontically admissible if and only if it is not strongly dominated by any of
G’s available group actions. Accordingly,

Definition 3 (Deontic Admissibility) Let M = 〈N , (Ai ), d, v〉 be a deontic game
model. Let G ⊆ N be a non-empty set of individual agents. Then the set of G’s
deontically admissible actions in M , denoted by AdmM (G), is given by

AdmM (G) = {aG ∈ AG : there is no bG ∈ AG such that bG �M aG}.

We can now specify the truth-conditions for the formulas of the full language
L�G ,[G],(G). (Note that by setting G = {i} we obtain the truth-conditions for the indi-
vidualistic formulas �i , [i]φ, and (i)φ.)

Definition 4 (Truth-Conditions) Let M = 〈N , (Ai ), d, v〉 be a deontic game model.
Let G ⊆ N be a non-empty set of individual agents. Let a ∈ A be an action profile.
Let p ∈ P be an atomic formula and let φ,ψ ∈ L�G ,[G],(G) be arbitrary formulas.
Then

(M, a) |� p iff a ∈ v(p)
(M, a) |� �G iff aG ∈ AdmM (G)

(M, a) |� ¬φ iff (M, a) 
|� φ

(M, a) |� φ ∧ ψ iff (M, a) |� φ and (M, a) |� ψ

(M, a) |� �φ iff (M, b) |� φ for all b ∈ A
(M, a) |� [G]φ iff (M, b) |� φ for all b ∈ A with bG = aG
(M, a) |� (G)φ iff (M, b) |� φ for all b ∈ A with bG ∈ AdmM (G).

Given a deontic game model M , we write M |� φ if for all action profiles a in A it
holds that (M, a) |� φ. A formula φ is valid (notation: |� φ) if for all deontic game
models M it holds that M |� φ.
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2.2 Twenty-seven sublanguages

The full language L�G ,[G],(G) of the deontic logic of collective agency contains con-
stants for collective and individual deontic admissibility, modalities for collective and
individual agency, and modalities for collective and individual obligations. Our basic
language is the standardmodal languageL built from the setP of atomic propositions,
using negation (¬), conjunction (∧), and the universal modality (�). (We return to
the assumption of including the universal modality in Sect. 10.) The sublanguages of
our full language are obtained from the basic language L by adding (a) either collec-
tive deontic admissibility constants, individual deontic admissibility constants, or no
deontic admissibility constants; (b) collective agency modalities, individual agency
modalities, or no agency modalities; and/or (c) collective obligation modalities, indi-
vidual obligation modalities, or no obligation modalities. This gives us twenty-seven
languages, ranging from L to L�G ,[G],(G). Their names are systematized as follows:
we use Lx,y,z with x ∈ {�G, �i , ε}, y ∈ {[G], [i], ε}, and z ∈ {(G), (i), ε}, where ε

represents the omission of the relevant constant or modality. Their Backus-Naur forms
are read off from their names. For instance, if x = �i , y = [G], and z = ε, we obtain
the language L�i ,[G]. Its Backus-Naur form is

φ := p | �i | ¬φ | (φ ∧ φ) | �φ | [G]φ

where p ranges overP, i ranges overN , and G ranges over non-empty subsets ofN .
We use L to refer to the set that consists of exactly all of our twenty-seven sublan-

guages. Truth-conditions for the formulas of any L∗ ∈ L are specified by Definition 4.
We now order the twenty-seven languages in L in terms of their expressive power.4

3 Expressivity

Let us first recall the concept of expressive power, as standardly used in modal logic.
We say that a formula ψ from language L∗∗ can be expressed in language L∗ if and
only if there is a φ in L∗ such that φ and ψ are logically equivalent. If every formula
from the language L∗∗ can be expressed in the language L∗, we say that L∗ is at least
as expressive as L∗∗. Formally,

Definition 5 Let L∗,L∗∗ ∈ L. Then L∗ is at least as expressive as L∗∗ (notation:
L∗ 	 L∗∗) if and only if for every ψ in L∗∗ there is a φ in L∗ such that |� ψ ↔ φ.

As usual,L∗ ≡ L∗∗ abbreviates the conjunction ofL∗ 	 L∗∗ andL∗∗ 	 L∗.Moreover,
L∗ � L∗∗ abbreviates the conjunction ofL∗ 	 L∗∗ andL∗∗ � L∗. Note thatL∗∗ � L∗

4 Other metalogical investigations of these languages are scarce. Xu (1998), Wansing (2006), and Balbiani
et al. (2008) prove completeness for L[i], and Murakami (2005) proves completeness for L[i],(i). Kooi
and Tamminga (2008) characterize the possibility of moral conflicts in L[G],(G). Balbiani et al. (2008) and
Herzig and Schwarzentruber (2008) study the complexity ofL[i], and the latter study also the complexity of
L[G]. Duijf et al. (ms.) define a newand stronger concept of inexpressivity based on nomological equivalence
and prove that there are no statements φ andψ inL�i ,[i] such that φ and �G are equivalent moduloψ (where
ψ specifies a set of individualistic background laws).
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if and only if there is a φ in L∗ such that for every ψ in L∗∗ it holds that 
|� ψ ↔ φ.
Accordingly, there is no formula in L∗∗ that is logically equivalent to φ.

To chart the expressivity landscape of our twenty-seven languages, we introduce
three criteria of expressive power. The first two criteria are straightforward. First,
consider the obvious inclusion criterion for L∗ 	 L∗∗:

Lemma 1 (Inclusion Criterion) Let L∗,L∗∗ ∈ L. Then

If L∗ ⊇ L∗∗, then L∗ 	 L∗∗.

Secondly, consider the transitivity criterion for L∗ � L∗∗. It follows from the
transitivity of 	:

Lemma 2 (Transitivity Criterion) Let L∗,L∗∗,L∗∗∗,L∗∗∗∗ ∈ L. Then

If L∗∗∗ � L∗∗∗∗ and L∗∗∗ 	 L∗ and L∗∗ 	 L∗∗∗∗, then L∗ � L∗∗.

The third criterion is a criterion for L∗ � L∗∗ that is defined in terms of pointed
deontic game models. The criterion applies if two pointed deontic game models val-
idate exactly the same formulas from L∗ but give different truth-values to a formula
from L∗∗. Any ordered pair (M, a) that consists of a deontic game model M and one
of its action profiles a is a pointed deontic game model. Two pointed deontic game
models are equivalent on L∗ if and only if they validate exactly the same formulas
from L∗:

Definition 6 (Equivalence on L∗) Let L∗ ∈ L. Let (M, a) and (M ′, a′) be pointed
deontic game models. Then (M, a) and (M ′, a′) are equivalent on L∗ (notation:
(M, a) ≡L∗ (M ′, a′)) iff for all φ ∈ L∗ it holds that (M, a) |� φ if and only if
(M ′, a′) |� φ.

We can now formulate the equivalence criterion for L∗ � L∗∗:

Lemma 3 (Equivalence Criterion) Let L∗,L∗∗ ∈ L. Let (M, a) and (M ′, a′) be
pointed deontic game models. Suppose (M, a) ≡L∗ (M ′, a′). Then

If (M, a) |� ψ and (M ′, a′) 
|� ψ for some ψ ∈ L∗∗, then L∗ � L∗∗.

Proof Assume (M, a) ≡L∗ (M ′, a′). Suppose (M, a) |� ψ and (M ′, a′) 
|� ψ for
some ψ ∈ L∗∗. Suppose L∗ 	 L∗∗. Because ψ ∈ L∗∗, there is a φ in L∗ such
that |� ψ ↔ φ. Then (M, a) |� φ and (M ′, a′) 
|� φ and φ ∈ L∗. Contradiction.
Therefore, L∗ � L∗∗. ��

The inclusion criterion, the transitivity criterion, and the equivalence criterion help
to classify the twenty-seven sublanguages of L�G ,[G],(G) in terms of their expressive
power. We start with the sublanguages that have precisely the same expressive power.
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4 Equally expressive sublanguages

Any obligation modality can be given an Andersonian–Kangerian definition in terms
of the universal modality and the relevant deontic admissibility constant:

Lemma 4 Let G ⊆ N be a non-empty set of individual agents. Let φ ∈ L�G ,[G],(G).
Then

|� (G)φ ↔ �(�G → φ).

The Andersonian–Kangerian definitions of obligation modalities are central to the
proofs that some of the sublanguages of L�G ,[G],(G) are equally expressive.

Lemma 5 Let x ∈ {�G, �i , ε}, y ∈ {[G], [i], ε}, and z ∈ {(G), (i), ε}. Then

(i) L�G ,y,z 	 Lx,y,(G)

(ii) L�G ,y,z 	 Lx,y,(i)

(iii) L�i ,y,z 	 L�i ,y,(i)

(iv) L�i ,y,z 	 Ly,(i).

Proof (i) We show that for every ψ ∈ Lx,y,(G) there is a φ ∈ L�G ,y,z such that
|� ψ ↔ φ by structural induction on ψ .

Basis: we check cases ψ = p, ψ = �i (if x = �i ), and ψ = �G (if x = �G).
Because all of them are also elements of L�G ,y,z , there is a φ ∈ L�G ,y,z such that
|� ψ ↔ φ.

Induction Hypothesis: for all χ ∈ Lx,y,(G) with fewer operators than ψ there is a
φχ ∈ L�G ,y,z such that |� χ ↔ φχ .

Induction Step: we check case ψ = (G)χ . By Lemma 4, |� (G)χ ↔ �(�G → χ).
By the Induction Hypothesis, there is a φχ ∈ L�G ,y,z such that |� χ ↔ φχ . Hence,
|� (G)χ ↔ �(�G → φχ). Note that �(�G → φχ) ∈ L�G ,y,z . Hence, there is a
φ ∈ L�G ,y,z such that |� ψ ↔ φ.

The other cases are similar.
(ii), (iii), and (iv) are proved analogously. ��

Theorem 1 Each of the following holds:

(i) L�G ,[G] ≡ L�G ,[G],(i) ≡ L�G ,[G],(G)

(ii) L�G ,[i] ≡ L�G ,[i],(i) ≡ L�G ,[i],(G)

(iii) L�G ≡ L�G ,(i) ≡ L�G ,(G)

(iv) L�i ,[G] ≡ L�i ,[G],(i)
(v) L�i ,[i] ≡ L�i ,[i],(i)
(vi) L�i ≡ L�i ,(i).

Proof (i) By Lemma 5(ii), we have L�G ,[G] 	 L�G ,[G],(i). By the inclusion criterion, it
holds thatL�G ,[G],(i) 	 L�G ,[G]. Hence,L�G ,[G] ≡ L�G ,[G],(i). ByLemma5(i), we have
L�G ,[G] 	 L�G ,[G],(G). By the inclusion criterion, it holds that L�G ,[G],(G) 	 L�G ,[G].
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L G ,[G]

L
i,[G],(G) L[G],(G)

L
i,[G] L[G],(i)

L G ,[i] L[G]

L
i,[i],(G) L[i],(G)

L
i,[i] L[i],(i)

L G L[i]

L
i,(G) L(G)

L
i

L(i)

L

Fig. 1 Expressivity relations between the eighteen languages

Hence, L�G ,[G] ≡ L�G ,[G],(G). The transitivity of 	 gives us L�G ,[G] ≡ L�G ,[G],(i) ≡
L�G ,[G],(G).

Claims (ii) through (vi) are proved analogously. ��

Because our focus is on charting the expressivity relations between our twenty-
seven sublanguages, we refer to any class of equally expressive languages by the
language in that class with the shortest name. Hence, we use the six languages in the
first column in Theorem 1 to refer to the six classes of equally expressive languages
that were identified in this theorem. Accordingly, L�G ,[G] refers to the class of the
languages in L that are equally expressive as the full language L�G ,[G],(G).

5 The full picture of the expressivity relations

The eighteen sublanguages that remain to be classified are the six languages of
the first column of Theorem 1 and the sublanguages in L that were not mentioned
in this theorem. No two of these eighteen sublanguages are equally expressive. If we
represent L∗ � L∗∗ by an arrow from L∗ to L∗∗, the expressivity relations between
the eighteen languages can be pictured as in Fig. 1.

Accordingly, L�G ,[G] is the most expressive language inL and L is the least expres-
sive language in L. To prove that this picture adequately represents the expressivity
relations among the eighteen sublanguages, we think of the picture as a three-
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dimensional prism and decompose it in the left front face (Fig. 2), the right front
face (Fig. 9), and the horizontals (Fig. 10).

6 Bisimulations and Hennessy–Milner theorems

To prove that some sublanguageL∗ is not at least as expressive as another sublanguage
L∗∗, we apply the equivalence criterion to specific pairs of pointed deontic game
models. The equivalence criterion can only be applied if the pointed deontic game
models in the pair areL∗-equivalent. To prove that they areL∗-equivalent, we develop
a suitable concept ofL∗-bisimulation and show that the two languages areL∗-bisimilar.
All of this is standard practice in modal logic.5

AnL∗-bisimulation between two pointed deontic gamemodels (M, a) and (M ′, a′)
is a relation R ⊆ A × A′ linking the models’ action profiles that satisfies a specific
set of structural conditions associated with the logical operators in L∗. For every
language L∗ in Lwe present such a set of structural conditions on R that characterizes
L∗-equivalence. Accordingly, for every language L∗ in L we show that two given
pointed deontic game models are L∗-bisimilar if and only if they are L∗-equivalent.
Such theorems are known as Hennessy–Milner theorems. We prove a general claim
that summarizes the Hennessy–Milner theorems for all sublanguages in L (Theorem
2). To establish this general claim, we use a technique from Van Benthem et al. (2017,
§ 3) and first prove a general lemma on sublanguages in L. (Note that this technique
is also called upon in our proof of the general claim itself.)

Lemma 6 Let L∗ ∈ L. Let M = 〈N , (Ai ), d, v〉 and M ′ = 〈N , (A′
i ), d

′, v′〉 be
deontic game models. Let b ∈ A and b′ ∈ A′. If (M, b) ≡L∗ (M ′, b′), then for every
c ∈ A there is a c′ ∈ A′ such that (M, c) ≡L∗ (M ′, c′).

Proof Assume (M, b) ≡L∗ (M ′, b′). Take an arbitrary c ∈ A. For every d ∈ A, let
φc,d = p ∨ ¬p if (M, c) ≡L∗ (M, d); otherwise, let φc,d = ψ for some ψ ∈ L∗
for which it holds that (M, c) |� ψ and (M, d) 
|� ψ . Let φc = ∧

d∈A φc,d . The
finiteness of A ensures that φc is well defined. Note that (†) for every d ∈ A it holds
that if (M, d) |� φc, then (M, c) ≡L∗ (M, d).

Because (M, c) |� φc, it holds that (M, b) |� ♦φc. By our assumption, (M ′, b′) |�
♦φc. Then there is a c′ ∈ A′ such that (M ′, c′) |� φc. Suppose (M, c) 
≡L∗ (M ′, c′).
Then there is a χ ∈ L∗ such that (M, c) |� χ and (M ′, c′) 
|� χ . Then (M ′, c′) |�
φc∧¬χ and hence (M ′, b′) |� ♦(φc∧¬χ). By our assumption, (M, b) |� ♦(φc∧¬χ).
Then there is a d ∈ A such that (M, d) |� φc∧¬χ . By (†), the first conjunct entails that
(M, c) ≡L∗ (M, d). However, we have (M, c) |� χ and (M, d) 
|� χ . Contradiction.
Hence, (M, c) ≡L∗ (M ′, c′). Therefore, because c ∈ A was arbitrary, for every c ∈ A
there is a c′ ∈ A′ such that (M, c) ≡L∗ (M ′, c′). ��

We now present a list of nine structural conditions on relations R that link the action
profiles of two given deontic game models. Each of the twenty-seven languages in L
is assigned a specific subset of these nine structural conditions. Because all of these

5 Blackburn et al. (2001, § 2.2) provide a textbook presentation of bisimulation in modal logic.
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subsets include at least three basic structural conditions, we set these three conditions
apart. The relations that satisfy them are basic bisimulations:

Definition 7 Let M = 〈N , (Ai ), d, v〉 and M ′ = 〈N , (A′
i ), d

′, v′〉 be deontic game
models. A relation R ⊆ A×A′ is a basic bisimulation betweenM andM ′ if R satisfies
each of the following clauses:

(i) for all (b, b′) ∈ R and all p ∈ P it holds that b ∈ v(p) iff b′ ∈ v′(p)
(ii) for all b ∈ A there is a b′ ∈ A′ such that (b, b′) ∈ R
(iii) for all b′ ∈ A′ there is a b ∈ A such that (b, b′) ∈ R.

The other six structural conditions on relations R are specified as follows:

Definition 8 Let M = 〈N , (Ai ), d, v〉 and M ′ = 〈N , (A′
i ), d

′, v′〉 be deontic game
models. Let R ⊆ A× A′ be a relation between M and M ′. The six optional structural
conditions on R are the following:

C�G :

for all (b, b′) ∈ R and all non-empty G ⊆ N it holds that bG ∈ AdmM (G) iff
b′
G ∈ AdmM ′(G)

C�i :

for all (b, b′) ∈ R and all i ∈ N it holds that bi ∈ AdmM (i) iff b′
i ∈ AdmM ′(i)

C[G]:

(i) for all (b, b′) ∈ R and all c ∈ A and all non-empty G ⊆ N it holds that if
bG = cG , then there is a c′ ∈ A′ such that b′

G = c′
G and (c, c′) ∈ R

(ii) for all (b, b′) ∈ R and all c′ ∈ A′ and all non-empty G ⊆ N it holds that if
b′
G = c′

G , then there is a c ∈ A such that bG = cG and (c, c′) ∈ R

C[i]:

(i) for all (b, b′) ∈ R and all c ∈ A and all i ∈ N it holds that if bi = ci , then
there is a c′ ∈ A′ such that b′

i = c′
i and (c, c′) ∈ R

(ii) for all (b, b′) ∈ R and all c′ ∈ A′ and all i ∈ N it holds that if b′
i = c′

i , then
there is a c ∈ A such that bi = ci and (c, c′) ∈ R

C(G):

(i) for all c ∈ A and all non-empty G ⊆ N it holds that if cG ∈ AdmM (G), then
there is a c′ ∈ A′ such that c′

G ∈ AdmM ′(G) and (c, c′) ∈ R
(ii) for all c′ ∈ A′ and all non-empty G ⊆ N it holds that if c′

G ∈ AdmM ′(G), then
there is a c ∈ A such that cG ∈ AdmM (G) and (c, c′) ∈ R

C(i):

(i) for all c ∈ A and all i ∈ N it holds that if ci ∈ AdmM (i), then there is a c′ ∈ A′
such that c′

i ∈ AdmM ′(i) and (c, c′) ∈ R
(ii) for all c′ ∈ A′ and all i ∈ N it holds that if c′

i ∈ AdmM ′(i), then there is a
c ∈ A such that ci ∈ AdmM (i) and (c, c′) ∈ R.
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Each of the twenty-seven sublanguages inL is assigned a specific subset of these six
structural conditions in the following way (Cε is the empty condition that is satisfied
trivially):

Definition 9 Let M = 〈N , (Ai ), d, v〉 and M ′ = 〈N , (A′
i ), d

′, v′〉 be deontic game
models. Let x ∈ {�G, �i , ε}, y ∈ {[G], [i], ε}, and z ∈ {(G), (i), ε}. A relation R ⊆
A × A′ is an Lx,y,z-bisimulation between M and M ′ if R is a basic bisimulation that
satisfies conditions Cx , Cy , and Cz .

Consequently, an L-bisimulation is just a basic bisimulation, and an L�i ,[G]-
bisimulation is a basic bisimulation that also satisfies conditions C�i and C[G]. We
write (M, a) �Lx,y,z (M ′, a′) if there is an Lx,y,z-bisimulation R between M and M ′
such that (a, a′) ∈ R.

We can now establish our general claim:

Theorem 2 (Hennessy–Milner) LetL∗ ∈ L. Then for all pointed deontic gamemodels
(M, a) and (M ′, a′) it holds that (M, a) �L∗ (M ′, a′) if and only if (M, a) ≡L∗
(M ′, a′).

Proof Although the general claim is in fact a conjunction of claims on twenty-seven
individual cases, the proofs of all these claims are very similar. Because the left-to-right
direction is always proved by a straightforward structural induction on φ, we omit it
here. As for the right-to-left direction, we will only give a full proof for the case where
L∗ = L�G ,[G],(G). Suppose (M, a) ≡L�G ,[G],(G)

(M ′, a′). Let R = {(b, b′) ∈ A × A′ :
(M, b) ≡L�G ,[G],(G)

(M ′, b′)}. We prove that R is an L�G ,[G],(G)-bisimulation between

M and M ′. We first show that R is a basic bisimulation. Clause (i) of Definition 7
follows from the definition of R. Clauses (ii) and (iii) of Definition 7 follow from
Lemma 6. Hence, R is a basic bisimulation. Next, we show that R satisfies conditions
C�G , C[G], and C(G).

C�G : Take an arbitrary (b, b′) ∈ R and an arbitrary non-emptyG ⊆ N . Suppose bG ∈
AdmM (G). Then (M, b) |� �G . By the definition of R, we have (M ′, b′) |� �G .
Hence, b′

G ∈ AdmM ′(G). The proof of the converse is analogous.
C[G]: We prove clause (i) of condition C[G]. Take an arbitrary pair (b, b′) ∈ R, an

arbitrary c ∈ A, and an arbitrary non-empty G ⊆ N . Suppose bG = cG . Define
φc as in the proof of Lemma 6. Then (M, c) |� φc. Because bG = cG , it
follows that (M, b) |� 〈G〉φc. By supposition and the definition of R, it must
be that (M ′, b′) |� 〈G〉φc. Then there is a c′ ∈ A′ such that b′

G = c′
G and

M ′, c′ |� φc. By the same reasoning as in the proof of Lemma 6, it must be
that (M, c) ≡L�G ,[G],(G)

(M ′, c′). Hence (c, c′) ∈ R. Because (b, b′) and c and

G were arbitrary, for all (b, b′) ∈ R and all c ∈ A and all non-empty G ⊆ N it
holds that if bG = cG , then there is a c

′ ∈ A′ such that b′
G = c′

G and (c, c′) ∈ R.
The proof of clause (ii) of condition C[G] is analogous.

C(G): We prove clause (i) of condition C(G). Take an arbitrary c ∈ A and an arbi-
trary non-empty G ⊆ N . Suppose cG ∈ AdmM (G). Define φc as in the proof
of Lemma 6. Then (M, c) |� φc. Hence, (M, c) 
|� (G)¬φc and therefore
(M, a) 
|� (G)¬φc. By supposition, it must be that (M ′, a′) 
|� (G)¬φc. Then
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Fig. 2 The left front face expressivity relations

there is a c′ ∈ A′ such that c′
G ∈ AdmM ′(G) and (M ′, c′) |� φc. By the same rea-

soning as in the proof of Lemma 6, it must be that (M, c) ≡L�G ,[G],(G)
(M ′, c′).

Hence, (c, c′) ∈ R. Because c and G were arbitrary, for all c ∈ A and all G ∈ N
it holds that if cG ∈ AdmM (G), then there is a c′ ∈ A′ such that c′

G ∈ AdmM ′(G)

and (c, c′) ∈ R. The proof of clause (ii) of condition C(G) is analogous.

Hence, R is an L�G ,[G],(G)-bisimulation between M and M ′. Because (a, a′) ∈ R, we
conclude that (M, a) �L�G ,[G],(G)

(M ′, a′).
The proofs of the other twenty-six cases are simple variations of the above proof.

Consider the language Lx,y,z . If x = �i , y = [i], or z = (i), then replace each
occurrence of G in the corresponding part of the above proof with i . If x = ε, y = ε,
or z = ε, then leave out the corresponding part of the above proof. ��

7 The left front face

To chart the expressivity relations among the twelve sublanguages of the left front face
of the full expressivity picture (Fig. 2), it suffices to prove five theorems. Using these
five theorems, the inclusion criterion, the transitivity criterion and Lemma 5(i), we can
easily find the expressivity relations between every pair from the twelve sublanguages
of Fig. 2. The labels of the arrows in Fig. 2 indicate the theorem that can be used to
establish the corresponding expressivity relation. The five theorems are the following:
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Fig. 3 Deontic game model M1 aj bj
ai 1/p 1/p
bi 1/p 1

ak

aj bj
ai 1/p 1
bi 1 1

bk

Fig. 4 Deontic game model M ′
1 aj bj

ai 1/p 1
bi 1 1/p

ak

(i) L�G ,[i] � L[G] (Theorem 3)
(ii) L�G � L[i] (Theorem 4)
(iii) L�i ,[G],(G) � L�G (Theorem 5)
(iv) L�i ,[G] � L�i ,(G) (Theorem 6)
(v) L[G] � L�i (Theorem 7).

Theorem 3 L�G ,[i] � L[G].

Proof Because N contains at least three elements, there are i, j, k ∈ N such that
i 
= j and j 
= k and i 
= k. We define two pointed deontic game models that
are L�G ,[i]-bisimilar (and hence validate exactly the same L�G ,[i]-formulas) but give
different truth-values to the L[G]-formula [i, k]p.

Let M1 = 〈N , (Ai ), d, v〉 be such that Ai = {ai , bi } and A j = {a j , b j } and
Ak = {ak, bk} and Al = {al} for all l ∈ N − {i, j, k}. The set A of action pro-
files is ×i∈N Ai . (Note that A−{i, j,k} = {a−{i, j,k}}.) Let d(c) = 1 for all c ∈ A.
Lastly, let v(p) = {(ai , a j , ak, a−{i, j,k}), (ai , a j , bk, a−{i, j,k}), (ai , b j , ak, a−{i, j,k}),
(bi , a j , ak, a−{i, j,k})} and let v(q) = ∅ for all q ∈ P−{p}. Model M1 can be pictured
as in Fig. 3 (the group action a−{i, j,k} is not represented).

Let M ′
1 = 〈N , (A′

i ), d
′, v′〉 be such that A′

i = {a′
i , b

′
i } and A′

j = {a′
j , b

′
j } and

A′
k = {a′

k} and A′
l = {a′

l} for all l ∈ N − {i, j, k}. The set A′ of action profiles is
×i∈N A′

i . (Note that A′−{i, j,k} = {a′−{i, j,k}}.) Let d ′(c′) = 1 for all c′ ∈ A′. Lastly,
let v′(p) = {(a′

i , a
′
j , a

′
k, a

′−{i, j,k}), (b′
i , b

′
j , a

′
k, a

′−{i, j,k})} and v′(q) = ∅ for all q ∈
P − {q}. Model M ′

1 can be pictured as in Fig. 4 (the group action a′−{i, j,k} is not
represented).

Let R = {(c, c′) ∈ A × A′ : c ∈ v(p) iff c′ ∈ v′(p)}. Because for all
non-empty G ⊆ N it holds that M1 |� �G and M ′

1 |� �G , the relation R sat-
isfies bisimulation condition C�G . For every i ∈ N and every c ∈ A there are
c∗−i , c

∗∗−i ∈ A−i such that (ci , c
∗−i ) ∈ v(p) and (ci , c

∗∗−i ) /∈ v(p). Likewise, for every
i ∈ N and every c′ ∈ A′ there are c′′−i , c

′′′−i ∈ A′−i such that (c′
i , c

′′−i ) ∈ v(p)
and (c′

i , c
′′′−i ) /∈ v(p). From these observations, it follows that R satisfies bisimu-

lation condition C[i]. Therefore, R is an L�G ,[i]-bisimulation between M1 and M ′
1.

Hence, (M1, (ai , a j , ak, a−{i, j,k})) �L�G ,[i] (M ′
1, (a

′
i , a

′
j , a

′
k, a

′−{i, j,k})). By Theo-

rem 2, we obtain (M1, (ai , a j , ak, a−{i, j,k})) ≡L�G ,[i] (M ′
1, (a

′
i , a

′
j , a

′
k, a

′−{i, j,k})).
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Fig. 5 Deontic game models
M2 (left) and M ′

2 (right) aj
ai 1/p
bi 1

a′
j b′

j

a′
i 1/p 1
b′
i 1 1/p

However, note that it holds that (M1, (ai , a j , ak, a−{i, j,k})) |� [i, k]p and also that
(M ′

1, (a
′
i , a

′
j , a

′
k, a

′−{i, j,k})) 
|� [i, k]p. By Lemma 3, L�G ,[i] � L[G]. ��

Theorem 4 L�G � L[i].

Proof Because N contains at least two elements, there are i, j ∈ N such that i 
= j .
We define two pointed deontic gamemodels that areL�G -bisimilar (and hence validate
exactly the sameL�G -formulas) but give different truth-values to theL[i]-formula [i]p.

Let M2 = 〈N , (Ai ), d, v〉 be such that Ai = {ai , bi } and A j = {a j } and Ak = {ak}
for all k ∈ N − {i}. The set A of action profiles is ×i∈N Ai . (Note that A−{i, j} =
{a−{i, j}}.) Let d(c) = 1 for all c ∈ A. Lastly, let v(p) = {(ai , a j , a−{i, j})} and
v(q) = ∅ for all q ∈ P − {p}. Model M2 can be pictured as in Fig. 5 (left; the group
action a−{i, j} is not represented).

Let M ′
2 = 〈N , (A′

i ), d
′, v′〉 be such that A′

i = {a′
i , b

′
i } and A′

j = {a′
j , b

′
j } and

A′
k = {a′

k} for all k ∈ N − {i, j}. The set A′ of action profiles is ×i∈N A′
i . (Note

that A′−{i, j} = {a′−{i, j}}.) Let d ′(c′) = 1 for all c′ ∈ A′. Lastly, let v′(p) =
{(a′

i , a
′
j , a

′−{i, j}), (b′
i , b

′
j , a

′−{i, j})} and v′(q) = ∅ for all q ∈ P − {p}. Model M ′
2

can be pictured as in Fig. 5 (right; the group action a′−{i, j} is not represented).
Let R = {(c, c′) ∈ A × A′ : c ∈ v(p) iff c′ ∈ v′(p)}. It is easy to check that

R is an L�G -bisimulation between M2 and M ′
2. Hence, (M2, (ai , a j , a−{i, j})) �L�G

(M ′
2, (a

′
i , a

′
j , a

′−{i, j})). By Theorem 2, it must be that (M2, (ai , a j , a−{i, j})) ≡L�G
(M ′

2, (a
′
i , a

′
j , a

′−{i, j})). However, observe that (M2, (ai , a j , a−{i, j})) |� [i]p and
(M ′

2, (a
′
i , a

′
j , a

′−{i, j})) 
|� [i]p. By Lemma 3, it must be that L�G � L[i]. ��

Theorem 5 L�i ,[G],(G) � L�G .

Proof Because N contains at least two elements, there are i, j ∈ N such that i 
= j .
We define two pointed deontic game models that are L�i ,[G],(G)-bisimilar (and hence
validate exactly the same L�i ,[G],(G)-formulas) but give different truth-values to the
L�G -formula �{i, j}.

Let M3 = 〈N , (Ai ), d, v〉 be such that Ai = {ai } and A j = {a j } and Ak = {ak}
for all k ∈ N − {i, j}. The set A of action profiles is ×i∈N Ai . (Note that A−{i, j} =
{a−{i, j}}.) Let d(ai , a j , a−{i, j}) = 1. Lastly, let v(p) = ∅ for all p ∈ P. Model M3
can be pictured as in Fig. 6 (left; the group action a−{i, j} is not represented).

Let M ′
3 = 〈N , (A′

i ), d
′, v〉 be such that A′

i = {a′
i , b

′
i } and A′

j = {a′
j , b

′
j } and A′

k =
{a′

k} for all k ∈ N−{i, j}. The set A′ of action profiles is×i∈N A′
i . (Note that A

′−{i, j} =
{a′−{i, j}}.) Let d ′(a′

i , b
′
j , a

′−{i, j}) = d ′(b′
i , a

′
j , a

′−{i, j}) = 1 and d ′(a′
i , a

′
j , a

′−{i, j}) =
d ′(b′

i , b
′
j , a

′−{i, j}) = 0. Lastly, let v(p) = ∅ for all p ∈ P. Model M ′
3 can be pictured

as in Fig. 6 (right; the group action a′−{i, j} is not represented).
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Fig. 6 Deontic game models
M3 (left) and M ′

3 (right) aj
ai 1

a′
j b′

j

a′
i 0 1
b′
i 1 0

Fig. 7 Deontic game models
M4 (left) and M ′

4 (right) aj bj
ai 1/p 0
bi 0 1/p

a′
j b′

j

a′
i 0/p 1
b′
i 1 0/p

Let R = A × A′. It is easy to check that R is an L�i ,[G],(G)-bisimulation between
M3 and M ′

3. Hence, (M3, (ai , a j , a−{i, j})) �L�i ,[G],(G)
(M ′

3, (a
′
i , a

′
j , a

′−{i, j})). By
Theorem 2, it must be that (M3, (ai , a j , a−{i, j})) ≡L�i ,[G],(G)

(M ′
3, (a

′
i , a

′
j , a

′−{i, j})).
However, observe that (M3, (ai , a j , a−{i, j})) |� �{i, j} and (M ′

3, (a
′
i , a

′
j , a

′−{i, j})) 
|�
�{i, j}. By Lemma 3, L�i ,[G],(G) � L�G . ��
Theorem 6 L�i ,[G] � L�i ,(G).

Proof BecauseN contains at least twoelements, there are i, j ∈ N such that i 
= j .We
define two pointed deontic game models that are L�i ,[G]-bisimilar (and hence validate
exactly the sameL�i ,[G]-formulas) but give different truth-values to theL�i ,(G)-formula
(i, j)p.

Let M4 = 〈N , (Ai ), d, v〉 be such that Ai = {ai , bi } and A j = {a j , b j } and
Ak = {ak} for all k ∈ N − {i, j}. The set A of action profiles is ×i∈N Ai .
(Note that A−{i, j} = {a−{i, j}}.) Let d(ai , a j , a−{i, j}) = d(bi , b j , a−{i, j}) = 1 and
d(ai , b j , a−{i, j}) = d(bi , a j , a−{i, j}) = 0. Lastly, let v(p) = {(ai , a j , a−{i, j}),
(bi , b j , a−{i, j})} and v(q) = ∅ for all q ∈ P − {p}. Model M4 can be pictured
as in Fig. 7 (left; the group action a−{i, j} is not represented).

Let M ′
4 = 〈N , (A′

i ), d
′, v′〉 be such that A′

i = {a′
i , b

′
i } and A′

j = {a′
j , b

′
j } and A′

k =
{a′

k} for all k ∈ N−{i, j}. The set A′ of action profiles is×i∈N A′
i . (Note that A

′−{i, j} =
{a′−{i, j}}.) Let d ′(a′

i , b
′
j , a

′−{i, j}) = d ′(b′
i , a

′
j , a

′−{i, j}) = 1 and d ′(a′
i , a

′
j , a

′−{i, j}) =
d ′(b′

i , b
′
j , a

′−{i, j}) = 0. Lastly, let v′(p) = {(a′
i , a

′
j , a

′−{i, j}), (b′
i , b

′
j , a

′−{i, j})} and
v′(q) = ∅ for all q ∈ P−{p}. Model M ′

4 can be pictured as in Fig. 7 (right; the group
action a′−{i, j} is not represented).

Let R = {(c, c′) ∈ A × A′ : c ∈ v(p) iff c′ ∈ v′(p)}. It is easy to check that R is
an L�i ,[G]-bisimulation between M4 and M ′

4. Hence, (M4, (ai , a j , a−{i, j})) �L�i ,[G]
(M ′

4, (a
′
i , a

′
j , a

′−{i, j})). By Theorem 2, it must be that (M4, (ai , a j , a−{i, j})) ≡L�i ,[G]
(M ′

4, (a
′
i , a

′
j , a

′−{i, j})). However, observe that (M4, (ai , a j , a−{i, j})) |� (i, j)p and
(M ′

4, (a
′
i , a

′
j , a

′−{i, j})) 
|� (i, j)p. By Lemma 3, L�i ,[G] � L�i ,(G). ��
Theorem 7 L[G] � L�i .

Proof Because N contains at least two elements, there are i, j ∈ N such that i 
= j .
We define two pointed deontic gamemodels that areL[G]-bisimilar (and hence validate
exactly the same L[G]-formulas) but give different truth-values to the L�i -formula �i .
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Fig. 8 Deontic game models
M5 (left) and M ′

5 (right) aj
ai 1
bi 1/p

a′
j

a′
i 0
b′
i 1/p

Let M5 = 〈N , (Ai ), d, v〉 be such that Ai = {ai , bi } and A j = {a j } and Ak = {ak}
for all k ∈ N − {i, j}. The set A of action profiles is ×i∈N Ai . (Note that A−{i, j} =
{a−{i, j}}.) Let d(c) = 1 for all c ∈ A. Lastly, let v(p) = {(bi , a j , a−{i, j})} and
v(q) = ∅ for all q ∈ P − {p}. Model M5 can be pictured as in Fig. 8 (left; the group
action a−{i, j} is not represented).

Let M ′
5 = 〈N , (A′

i ), d
′, v′〉 be such that A′

i = {a′
i , b

′
i } and A′

j = {a′
j } and A′

k =
{a′

k} for all k ∈ N − {i, j}. The set A′ of action profiles is ×i∈N A′
i . (Note that

A′−{i, j} = {a′−{i, j}}.) Let d ′(a′
i , a

′
j , a

′−{i, j}) = 0 and d ′(b′
i , a

′
j , a

′−{i, j}) = 1. Lastly,
let v′(p) = {(b′

i , a
′
j , a

′−{i, j})} and v′(q) = ∅ for all q ∈ P − {p}. Model M ′
5 can be

pictured as in Fig. 8 (right; the group action a′−{i, j} is not represented).
Let R = {(c, c′) ∈ A × A′ : c ∈ v(p) iff c′ ∈ v′(p)}. It is easy to check that

R is an L[G]-bisimulation between M5 and M ′
5. Hence, (M5, (ai , a j , a−{i, j})) �L[G]

(M ′
5, (a

′
i , a

′
j , a

′−{i, j})). By Theorem 2, it must be that (M5, (ai , a j , a−{i, j})) ≡L[G]
(M ′

5, (a
′
i , a

′
j , a

′−{i, j})). However, observe that (M5, (ai , a j , a−{i, j})) |� �i and
(M ′

5, (a
′
i , a

′
j , a

′−{i, j})) 
|� �i . By Lemma 3, L[G] � L�i . ��

8 The right front face

To chart the expressivity relations among the nine sublanguages of the right front face
of the full expressivity picture (Fig. 9), it suffices to prove four theorems. Using these
four theorems, the inclusion criterion, and the transitivity criterion, we can easily find
the expressivity relations between every pair from the nine sublanguages in Fig. 9.
The labels of the arrows in Fig. 9 indicate which theorem must be used to establish
the corresponding expressivity relation. The four theorems are the following:

(i) L[i],(G) � L[G] (Theorem 8)
(ii) L(G) � L[i] (Theorem 9)
(iii) L[G] � L(i) (Theorem 10)
(iv) L[G],(i) � L(G) (Theorem 11).

Theorem 8 L[i],(G) � L[G].

Proof By Lemma 5(i), it holds that L�G ,[i] 	 L[i],(G). Theorem 3 states that L�G ,[i] �
L[G]. By the transitivity criterion, L[i],(G) � L[G]. ��
Theorem 9 L(G) � L[i].

Proof By Lemma 5(i), it holds that L�G 	 L(G). Theorem 4 states that L�G � L[i].
By the transitivity criterion, L(G) � L[i]. ��
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L[G],(G)

L[G],(i)

L[G]

L[i],(G)

L[i],(i)

L[i]

L(G)

L(i)

L

11

8
10

11

9
10

8

8

11

10

9

9

Fig. 9 The right front face expressivity relations

Theorem 10 L[G] � L(i).

Proof Consider models M5 and M ′
5 from the proof of Theorem 7. Recall that

(M5, (ai , a j , a−{i, j})) �L[G] (M ′
5, (a

′
i , a

′
j , a

′−{i, j})). However, observe that (M5,

(ai , a j , a−{i, j})) 
|� (i)p and (M ′
5, (a

′
i , a

′
j , a

′−{i, j})) |� (i)p. By Lemma 3, L[G] �
L(i). ��
Theorem 11 L[G],(i) � L(G).

Proof Consider models M4 and M ′
4 from the proof of Theorem 6. Let R = {(c, c′) ∈

A× A′ : c ∈ v(p) iff c′ ∈ v′(p)}. It is easy to check that R is an L[G],(i)-bisimulation
between M4 and M ′

4. Hence, (M4, (ai , a j , a−{i, j})) �L[G],(i) (M ′
4, (a

′
i , a

′
j , a

′−{i, j})).
By Theorem 2, it must be that (M4, (ai , a j , a−{i, j})) ≡L[G],(i) (M ′

4, (a
′
i , a

′
j , a

′−{i, j})).
However, observe that (M4, (ai , a j , a−{i, j})) |� (i, j)p and (M ′

4, (a
′
i , a

′
j , a

′−{i, j})) 
|�
(i, j)p. By Lemma 3, L[G],(i) � L(G). ��

9 The horizontals

To chart the six horizontal expressivity relations among the twelve sublanguages of
Fig. 10, it suffices to prove one theorem. Using this theorem, the inclusion criterion,
the transitivity criterion and Lemma 5(iv), we can easily prove the six horizontal
expressivity relations. The theorem we need is the following:

Theorem 12 L[G],(G) � L�i .
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L
i,[G],(G) L[G],(G)

L
i,[G] L[G],(i)

L
i,[i],(G) L[i],(G)

L
i,[i] L[i],(i)

L
i,(G) L(G)

L
i

L(i)

Fig. 10 The horizontal expressivity relations

Fig. 11 Deontic game models
M6 (left) and M ′

6 (right) aj
ai 1

a′
j b′

j

a′
i 1 0
b′
i 0 0

Proof Because N contains at least two elements, there are i, j ∈ N such that i 
= j .
We define two pointed deontic game models that are L[G],(G)-bisimilar (and hence
validate exactly the same L[G],(G)-formulas) but give different truth-values to the L�i -
formula �i .

Let M6 = 〈N , (Ai ), d, v〉 be such that Ai = {ai } and A j = {a j } and Ak = {ak}
for all k ∈ N − {i, j}. The set A of action profiles is ×i∈N Ai . (Note that A−{i, j} =
{a−{i, j}}.) Let d(ai , a j , a−{i, j}) = 1. Lastly, let v(p) = ∅ for all p ∈ P. Model M6
can be pictured as in Fig. 11 (left; the group action a−{i, j} is not represented).

Let M ′
6 = 〈N , (A′

i ), d
′, v〉 be such that A′

i = {a′
i , b

′
i } and A′

j = {a′
j , b

′
j } and A′

k =
{a′

k} for all k ∈ N−{i, j}. The set A′ of action profiles is×i∈N A′
i . (Note that A

′−{i, j} =
{a′−{i, j}}.) Let d ′(a′

i , a
′
j , a

′−{i, j}) = 1 and d ′(a′
i , b

′
j , a

′−{i, j}) = d ′(b′
i , a

′
j , a

′−{i, j}) =
d ′(b′

i , b
′
j , a

′−{i, j}) = 0. Lastly, let v(p) = ∅ for all p ∈ P. Model M ′
6 can be pictured

as in Fig. 11 (right; the group action a′−{i, j} is not represented).
Let R = A × A′. It is easy to check that R is an L(G),[G]-bisimulation between

M6 and M ′
6. Hence, (M6, (ai , a j , a−{i, j})) �L(G),[G] (M ′

6, (b
′
i , b

′
j , a

′−{i, j})). By Theo-
rem2, itmust be that (M6, (ai , a j , a−{i, j})) ≡L(G),[G] (M ′

6, (b
′
i , b

′
j , a

′−{i, j})). However,
observe that (M6, (ai , a j , a−{i, j})) |� �i and (M ′

6, (b
′
i , b

′
j , a

′−{i, j})) 
|� �i . By
Lemma 3, L(G),[G] � L�i . ��
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10 Weaker assumptions onmodels and languages

Before concluding the paper, we briefly discuss two assumptions on our models and
languages: (a) the assumption that N is a fixed finite set of individual agents that
contains at least three elements, and (b) the assumption that each sublanguage in
L includes the universal modality. How would the expressivity relations be affected
if we were to weaken these assumptions? (Because these assumptions are not cen-
tral to the philosophical debate on reductionism in the social sciences, the following
considerations are largely technical in nature.)

Throughout the paper, we assumed that N is a fixed finite set of individual agents
that contains at least three elements. Note that only Theorems 3 and 8 rely on the
assumption that N contains at least three agents. There are two cases to consider:

(i) If N were to contain exactly one agent, then the full language would not contain
statements about (non-singleton) groups. Consequently,wewould need to consider
only eight sublanguages. The expressivity relations for these eight languages are
given by the subfigure of Fig. 1 that contains only those languages inL that exclude
collective admissibility constants, modalities for collective agency, and modalities
for collective obligations.

(ii) If N were to contain exactly two agents, then the only statements about (non-
singleton) groupswould be of the form �N , [N ]φ, and (N )φ. Note that ourmodels
validate [N ]φ ↔ φ. Consequently (and unlike the case whereN contains at least
three agents), for every languageL∗ inL it holds thatL∗ is equally expressive as the
language L∗∗ that is obtained from L∗ by adding modalities for collective agency.
Hence, under these circumstances, modalities for collective agency could be added
without an increase of expressive power. Our results concerning the sublanguages
that exclude modalities for collective agency rely only on the assumption that
N contains at least two agents, and hence the expressivity relations among these
sublanguages are given by Fig. 1.

Finally, each sublanguage in L includes the universal modality. What can we say
about the expressivity relations between languages that exclude the universal modal-
ity? Note that because N contains at least two distinct individual agents i and j , our
models validate �φ ↔ [i][ j]φ. Accordingly, in each language in L that has modal-
ities for individual agency, the universal modality is definable in terms of modalities
for individual agency. (Note that for every language L∗ in L it holds that if L∗ has
modalities for collective agency, then L∗ has also modalities for individual agency.)
Hence, in each language in L that has modalities for individual agency, the universal
modality could be left out without losing expressive power. This does not hold true
for those languages in L that lack modalities for individual agency. These languages
lose expressive power if the universal modality is left out. As a consequence, some
expressivity relations no longer obtain: in languages in L without modalities for indi-
vidual agency and without the universal modality, modalities for obligations cannot
be defined in terms of the universal modality and the relevant deontic admissibility
constant.
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11 Conclusion

Weclassified the twenty-seven sublanguages inL in terms of their expressive power. To
achieve this classification, we first proved twenty-seven Hennessy–Milner theorems:
for every languageL∗ inL it holds that two pointed deontic gamemodels are equivalent
on L∗ if and only if there is a bisimulation relation between the two pointed models
that satisfies a set of structural conditions that are specific toL∗. The Hennessy–Milner
theorems are central to our proofs that a given sublanguage is strictly more expressive
than another.

The expressivity landscape we charted in this paper strongly suggests that the
answers to the two philosophical questions in the introduction are negative. Because
L[G] � L[i] and L(G) � L[G],(i), there are statements about collective agency that are
not logically equivalent to any statement about individual agency, and there are state-
ments about collective obligations that are not logically equivalent to any statement
about collective agency and individual obligations. Naturally, these are not the only
reducibility questions that are answered by our current study. For example, because
L(G) � L[i] and L[G] � L[i],(G), there are statements about collective obligations that
are not logically equivalent to any statement about individual agency, and there are
statements about collective agency that are not logically equivalent to any statement
about individual agency and collective obligations.

Have we refuted reductionism about collective agency and collective obligations?
No, we have not. Our main philosophical contribution to the debate on reduction-
ism about collective agency and collective obligations is methodological: our study
indicates that logical methods can be used to find precise answers to the questions
we raised in the introduction. To vindicate reductionism, the philosophical interpre-
tation of our logical results must be contested. This can be done in various ways. For
instance, the modelling considerations that lie at the basis of our semantics might be
criticized. The reductionist might specify alternative models and/or truth-conditions
for statements about collective and individual deontic admissibility, statements about
collective and individual agency, and statements about collective and individual obli-
gations. Then, she might prove that her alternative modelling supports reductionism
about collective agency and collective obligations. Our methodological contribution
therefore highlights the fruitfulness of logical methods for the study of reductionism
in the philosophy of the social sciences.
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