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Abstract Amalgamating evidence from heterogeneous sources and across levels of
inquiry is becoming increasingly important in many pure and applied sciences. This
special issue provides a forum for researchers from diverse scientific and philosophi-
cal perspectives to discuss evidence amalgamation, its methodologies, its history, its
pitfalls, and its potential. We situate the contributions therein within six themes from
the broad literature on this subject: the variety-of-evidence thesis, the philosophy of
meta-analysis, the role of robustness/sensitivity analysis for evidence amalgamation,
its bearing on questions of extrapolation and external validity of experiments, its con-
nection with theory development, and its interface with causal inference, especially
regarding causal theories of cancer.
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1 Introduction

The amalgamation of evidence from different models, scales, and types of data con-
tinues to be central in diverse sciences such as biology, ecology, medicine, sociology,
geography, climate science, and economics. When access to phenomena of interest
is incomplete, piecemeal, indirect, or mediated by substantial auxiliary assumptions,
it is not always obvious in what manner scientists can justifiably decide how their
total evidence comparatively supports hypotheses and informs future research. Policy
makers, professional practitioners, and others must act appropriately informed by such
complex and heterogeneous evidence. And philosophers of science try to understand
the underlying logic of these practices, their role in the history and development of
the sciences, and their avenues for refinement. Accordingly, the critical analysis of
evidence amalgamation in the sciences involves historical and descriptive aspects as
well as epistemically, methodologically, and ethically normative ones.

Here we have gathered thirteen contributions along each of these lines of inquiry.
With such diversity, it is of course difficult to amalgamate their collective morals into
a simple conclusion! So, in this introduction, we introduce the basic concepts and
questions within the main themes of this special issue (in Sect. 2) before situating
the contributions to the issue within these themes and (in Sect. 3) describing them
in more detail. For readers interested in specific themes, here is a list thereof with
corresponding contributions:

1. The variety-of-evidence thesis (Sect. 2.1): Claveau and Grenier (Sect. 3.1) and
Heesen et al (Sect. 3.2).

2. The philosophy of meta-analysis (Sect. 2.2): Holman (Sect. 3.3), Vieland and
Chang (Sect. 3.4), and Wüthrich and Steele (Sect. 3.5).

3. The role of robustness/sensitivity analysis in amalgamating diverse evidence (Sect.
2.3): Wüthrich and Steele (Sect. 3.5), Wilde and Parkkinen (Sect. 3.6), and Kao
(Sect. 3.10).

4. How diverse types of evidence bear on the external validity of experimental con-
clusions and extrapolation therefrom (Sect. 2.4): Wilde and Parkkinen (Sect. 3.6),
Frank (Sect. 3.7) and Reiss (Sect. 3.8).

5. The role of amalgamating diverse evidence in theory development (Sect. 2.5):
Bertolaso and Sterpetti (Sect. 3.9) and Kao (Sect. 3.10).

6. Causal inference from diverse evidence (Sect. 2.6): Wilde and Parkkinen (Sect.
3.6), Danks and Plis (Sect. 3.11), Mayo-Wilson (Sect. 3.12), and Baetu (Sect.
3.13).

Among these, Wilde and Parkkinen (Sect. 3.6), Reiss (Sect. 3.8) and Bertolaso and
Sterpetti (Sect. 3.9) use the example of causal theories of cancer to illustrate their
arguments, hence are of interest to readers topically interested in how those theories
meet general issues in amalgamating evidence.

Finally, in Sect. 4, we describe our outlook on these themes, including future direc-
tions for research, in light of these contributions.
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2 Diverse topics

2.1 Variety of evidence

Varied evidence for a hypothesis confirms it more strongly than less varied evi-
dence, ceteris paribus. This epistemological Variety-of-Evidence Thesis (VET) enjoys
widespread and long-standing intuitive support among scientific methodologists (Car-
nap 1962; Earman 1992; Horwich 1982; Hüffmeier et al. 2016; Keynes 1921).

Nowadays, confirmation is almost always understood in terms of a Bayesian
confirmation measure. The starting point of contemporary Bayesian analyses of
this thesis (Claveau 2013; Landes 2018; Landes and Osimani 2018; Stegenga
and Menon 2017) is the analysis of Bovens and Hartmann (2002, 2003)—
the recent Kuorikoski and Marchionni (2016) is an interesting exception to this
rule.

Bovens and Hartmann study the Bayesian confirmation that a body of evidence,
E , bestows on a (scientific) hypothesis of interest, H . Their model of scientific infer-
ence is represented by a Bayesian network over the following binary variables: a
hypothesis variable H , a set of variables C which represent the testable consequences
of the hypothesis H , evidence variables E , each of which pertain to precisely one
consequence variable, and a set of variables R which stand for the reliability of
the instruments employed to obtain the evidence. To compare two different bod-
ies of evidence ED and EN in terms of their confirmatory value, they compare the
difference in posterior beliefs in the hypothesis H , i.e., they compare P(H |ED) to
P(H |EN ).

They compare the confirmation of an hypothesis H by a diverse body of evi-
dence (depicted in the right-hand column of Fig. 1), ED , to that by a narrow
body of evidence (depicted in the left-hand column of Fig. 1), EN , in three dif-
ferent scenarios. Plausibly, one may take the VET to entail in all three scenarios
that

P(H |ED) > P(H |EN ) .

Their key contribution is to show that instead

P(H |ED) < P(H |EN )

in all three scenarios for some sensible prior probability distributions.
Claveau andGrenier (2018) extend the Bovens andHartmannmodel by formalizing

the notion of unreliability in a way which is closer to scientific practice. Furthermore,
they consider consequence variables and reliability variables that are dependent to
a degree, showing that the VET fails in many of their models. Heesen et al. (2018)
break with the tradition of a Bayesian analysis of the confirmatory value of varied
evidence obtained by employing diverse methods. In their contribution drawing on
voting theory, it is the evidence from diverse methods which supports the hypothesis
of interest more strongly.
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Fig. 1 The three scenarios described in Bovens and Hartmann (2003) as depicted in Landes and Osimani
(2018): each row represents a scenario comparing two parallel strategies: B versus D in the upper row, A
versus C in the middle, and C versus E in the lowest row
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2.2 Meta-analysis

Meta-analysis is the branch of statistics concerned with how to amalgamate evidence
for hypotheses from many different individual studies, each typically with its own
analysis. A meta-analysis is, as it were, an analysis of analyses, designed to produce
a summary report on the evidence from varied sources. Even when scientific studies
designed to measure an effect within a target population study are well-designed, their
conclusions are still defeasible at least because of the random variation within that
population. In other words, random variation in the data actually sampled can entail
misleading conclusions either for or against hypotheses and variation in estimated sizes
of effects of interest. But various asymptotic results in statistics provide someassurance
that the probability of being so mislead becomes smaller and smaller as more data are
collected—as the evidence accumulated from different statistical studies is assessed
together, instead of separately. Thus procedures for meta-analysis are procedures for
the amalgamation and assessment of (potentially) the total statistical evidence available
for hypotheses and effects.

The statistical and scientific literature on the technical aspects of how to perform
a meta-analysis is huge—see, e.g., Sutton et al. (2001); Sutton and Higgins (2008);
Cumming (2012) for reviews—in contrast with the near complete absence of discus-
sion of those technical aspects’ conceptual and epistemological foundations among
philosophers of science—but see Kilinc (2012) and Vieland and Chang (2018), the
latter of whom raise interesting puzzles about their epistemic justification. Rather,
philosophical attention to meta-analysis has so far focused on the role of the social
structure of science in assessing the cogency and objectivity of meta-analytic proce-
dures, especially for biomedical research. This is due to the explicit recognition that
the Evidence-Based Medicine (EBM) community gives to meta-analysis of random-
ized controlled trials (RCTs) at the top of proposed evidential hierarchies (Reiss and
Ankeny2016, Section5). Thegeneral aimof this community is to promote quantitative,
statistical evidence for medical decision-making at the clinical level over qualitative
evidence such as case reports and expert consensus, which are considered fraught with
bias and uncontrolled confounding factors. By contrast, these potentials formisleading
evidence can be (better) controlled in RCTs and the meta-analysis thereof.

Although there is increasing philosophical analysis and critique of various aspects
of the EBM framework—see, e.g., Worrall (2007) for a review—meta-analysis has
been identified as one such aspect in need of greater attention (Mebius et al. 2016). As
one of the first philosophical analysis to focus on meta-analysis in particular, Stegenga
(2011) raises at least three sorts of important issues. First, meta-analysts seem to have
many arbitrary choices to make in order to complete their work, raising the specter
of impotence or conventionalism if their conclusions depend on the details of these
choices. Second, meta-analyses typically focus only on statistical data and so neglect
other important types of evidence, e.g., mechanistic evidence, whichmay be especially
relevant for policy and decision-making. Third, meta-analyses are not immune to the
damaging effects of publication bias, p-hacking, experimenter degrees of freedom,
and other questionable research practices whose trace in the published literature can
be difficult to detect, thereby impugning its objectivity and claim (within EBM) to
evidential superiority.
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In this special issue, Holman (2018) explicitly defends meta-analysis, pointing out
that once one conceives of it as a developing process rather than a static technique,
some of the charges against it are no longer apropos, while others can be resolved
after periods of problem solving. Wüthrich and Steele (2018) are also interested in
defending the utility of meta-analytic methods, especially in cases where automation
becomes necessary due to the super-large-scale data involved. In these cases, careful
problem solving cannot be done on a case-by-case basis and must instead be built into
the automated aggregation algorithm; they suggest amenability to robustness analysis
(Sect. 2.3) is an important aspect of design.

2.3 Robustness/sensitivity analysis

The notion of robustness comes in different shapes and forms (Lloyd 2015; Jones
2018; Schupbach 2018; Staley 2004; Weisberg 2006; Woodward 2006). Weisberg
delineates a four-step procedure of mathematical robustness analysis. In the first step,
a group of models is examined to determine if they all make the same prediction and
if they are sufficiently diverse. The second step aims at finding the common structure
which generates the prediction. The third step relates the model predictions to the real
world (on which cf. Sect. 2.4). The final step is to conduct an analysis to investigate
conditions which defeat the prediction.

Wilde and Parkkinen (2018) expand on Weisberg’s first step. But rather than con-
straining themselves to the robustness of mathematical models, they also consider
varying modeling assumptions, detection methods and experimental set-ups (such as
experimental species)—see Culp (1995) for more on robustness and experimental set-
ups. Woodward (2006) calls this derivational robustness, whose confirmational value
has recently been argued for (Eronen 2015; Kuorikoski et al. 2012; Lehtinen 2018).
Again we find a notion of diversity playing a key role: the more divergent the group of
experimental species for which a robust result is found, the less likely the observations
are owed to idiosyncrasies of the individual species—in other words, the more likely
it is that the observed phenomenon is also manifest in the species of interest. It is an
intuition concerning the weight of the variety of evidence (Sect. 2.1) which confirms
the hypothesis of interest via extrapolation (Sect. 2.4). Schupbach (2018) also traces
intuitions regarding extrapolation back to intuitions concerning the variety of evidence
as expounded in Horwich (1982).

Derivational robustness is also the most basic form of the fourth step in Weisberg’s
procedure. Intuitively, changing a single or few parameter values by a fraction only
changes the conclusions minimally, if at all. (Raerinne (2013) is careful to distinguish
procedures like sensitivity analysis from other types of robustness analysis.) In math-
ematics, this notion is often formalized as the continuity of a function. By contrast, in
situations with manifold discontinuities, reliable predictions become all but impossi-
ble as chaos reigns. In between these extreme scenarios, chaos theory may be applied
in situations with some discontinuities.

In scientific practice, such robustness analysis is often carried out via Monte Carlo
algorithms on a computer (Lagoa and Barmish 2002; Rubinstein and Kroese 2016).
Roughly speaking, such algorithms probabilistically explore how one’s conclusions

123



Synthese (2019) 196:3163–3188 3169

change for different input and parameter values. Wüthrich and Steele (2018) argue
that evidence amalgamation algorithms ought to be assessed by considering the kind
of robustness analysis, thusly understood, that can be performed; the possibility space
associated with the robustness analysis is revealing of the basic structure of the algo-
rithm.

By contrast, Kao (2018) employs a notion of robustness to support the development
or discovery of a theory or hypothesis rather than its evaluation. She points out that
attempting to generalize specific hypotheses for concrete domains to further areas of
application is a viable heuristic research strategy which sheds light on the possible
unifyingwork that a generalized hypothesis may do. Furthermore, determining bound-
aries limiting the scope of such generalized hypotheses may help our understanding of
the epistemic values of scientific hypotheses. The search for boundaries outside which
the theory no longer holds is a search for defeaters—the fourth step in Weisberg’s
robustness analysis.

2.4 Extrapolation and external validity

There are many examples in the sciences in which evidence is collected to support
a hypothesis about a certain system, but this system is not directly accessible for
financial, ethical, or technical reasons. In these cases, surrogate model systems stand
in as test objects in experiments, and experimental findings are then transferred from
the model system to the target system. This type of inference is called extrapolation.

Obviously, the concept of extrapolation brings with it a host of interesting and diffi-
cult questions, such as “what is a model?” and “how do models represent?”, touching
philosophical issues such as the problem of induction (as some gap between model
and target must be leaped over), the status of universal laws (as the model and target
may not fall under the same law), and the nature of causation (since it is almost always
causal knowledge that is extrapolated). Another persistent problem is the question
of what degree of contextualization is needed for a successful transfer of knowledge,
especially in the biomedical sciences with large, complex, and dynamical systems that
come with all kinds of redundant mechanisms. Moreover, the philosophical debates
around the nature of similarity, relevance, and analogy cannot be neglected here, either.

The concept of extrapolation is tightly entangled with questions about internal and
external validity. When an experiment is performed on an animal model or a study
conducted on a test population (which in medical settings is sometimes quite small), a
causal claim can only be established if the experimental set-up or the study design is
judged internally valid, i.e., it was reallyC which caused E in the setting M . (See also
the debate around randomized controlled trials described in Sects. 2.2 and 2.6.) When
the experiment or study goes beyond M and is deemed externally valid in that the
causal link between C and E does not only hold in M alone, then causal knowledge
about M might be justifiably extrapolated to some distinct target setting/population T .
The question of whether this transfer is permissible for a given M-T pair is dubbed the
problem of extrapolation—e.g., transferring causal knowledge about a drug’s effects
from animal models to humans might be sensitive to certain particularities of the study
setting (such as age, co-morbidity, etc. in the study’s sample).

123



3170 Synthese (2019) 196:3163–3188

In his discussion of mechanistic reasoning for the purpose of extrapolation, Steel
(2008, p. 78) presents the following additional challenge any viable account of extrap-
olation ought to address:

[A]dditional information about the similarity between themodel and the target—
for instance, that the relevant mechanisms are the same in both—is needed to
justify the extrapolation. The extrapolator’s circle is the challenge of explaining
how we could acquire this additional information, given the limitations on what
we can know about the target. In other words, it needs to be explained how we
could know that the model and the target are similar in causally relevant respects
without already knowing the causal relationship in the target.

(See alsoGuala (2010).) Different proposals have been put forward to evade this circle,
including mechanistic reasoning (e.g., Steel 2008 on comparative process tracing) or
analogical reasoning in a Bayesian framework (Poellinger 2018). Reiss’s contribution
in this issue (2018) offers an overview of strategies to tackle the problem of extrapola-
tion, while Reiss himself proposes an alternative pragmatist, contextualist perspective
on evidential support for an inaccessible target system. Comparative process tracing
is picked up again by Wilde and Parkkinen (2018) as a way of basing extrapolation
on mechanistic reasoning to show how both probabilistic and mechanistic informa-
tion can be transferred at once when establishing a causal claim about a human target
population. Frank (2018) adds an ethical dimension to the discussion by shifting the
focus to reasoning under uncertainty when results from locally validated models of
climate change-related economic effects are extrapolated.

2.5 Evidence amalgamation and theory development

It is natural, as many of the previous sections have done, to consider evidence amal-
gamation as pertaining to the confirmation of scientific theories and hypotheses. But
beyond its role in the logic of scientific justification, it also figures in the logic of
scientific discovery. (Here, “logic” is understood in a broad sense as a form of rational
inquiry.) Whewell (1840) was one of the first to distinguish the process of conceiving
of a theory or hypothesis from the bulk of the establishment of its empirical support.
He identified three stages to scientific inquiry, as we would call it today:1

1. the “happy thought,” or the event of the novel insight or idea properly so called;
2. the “colligation” of facts and ideas, or the further formation and maturation of the

happy thought by its relation and integration into other ideas and known data; and
3. the verification of the colligation, meaning the judgment of its explanatory and

predictive power and its simplicity compared with its “consilience,” that is, its
unifying range of application.

The first, and possibly also the second, of these steps are included in the modern
conception of scientific discovery.2 Clearly, the role of amalgamating diverse evidence

1 Whewell referred to the whole process as that of scientific discovery, reflecting the older usage of that
sense of “discovery” as broad inquiry.
2 Cf. Laudan (1980), who prefers to distinguish all three, calling the second the context of pursuit.
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figures most centrally in the second and third steps, hence in discovery itself insofar
as the second step is included therein. In this special issue, Kao (2018) focuses on
this second step with the example of the development of the early quantum theory,
showing how versions of the quantum hypothesis guided further experimental results,
which in turn constrained their scope.

For much of the twentieth century, however, most (but not all) philosophers saw
the process of scientific discovery as an essentially creative phenomenon beyond the
purview of philosophy of science, whose task was to delineate the normative con-
straints on the scientific endeavor.Only in the 1970s did philosophers devote noticeably
more attention to it (Schickore 2014). An early exception was Hanson (1958, 1960,
1965), who articulated a theory of discovery as abduction, whereby diverse phenom-
ena, particularly those unexplained, are unified as following from the truth of a certain
hypothesis. To the extent that this hypothesis amalgamates diverse evidence, it is a good
candidate for further investigation. Although Hanson cited Charles Sanders Peirce as
inspiration, there is clear continuity with Whewell’s conception. Further, Magnani
(2001, 2009) has later emphasized that abduction needn’t be used to select a single
hypothesis once and for all—that is, as a mode of inference properly so called—but
can also be used creatively to generate or refine further hypotheses.3 Whether one
views this abduction as a “logic” in any relevant sense, such unifying or abductive
reasoning concerns the developments and pursuits of hypotheses and theories rather
than their direct support or justification. In this special issue, Bertolaso and Sterpetti
(2018) follow this line of argument concerning how cancer researchers should pursue
theories of carcinogenesis according to their plausibility.

2.6 Causal inference

After—and despite—Russell’s famous, skeptical wholesale rejection of the concept
of causation (Russell 1912), the past hundred years have seen a surge in approaches
towards (more or less) formally explicating cause-effect relationships. Reductive or
non-reductive in nature, none of the explications or definitions rests on a singlemarker:
probabilistic accounts (Suppes 1970; Reichenbach 1956) combine information about
two events’ correlational and temporal relations, prominent causal graph accounts
(Pearl 2000; Spirtes et al. 2000; Woodward 2003) aim at the integration of knowl-
edge about probabilistic relations and underlying (spatio-temporal) mechanisms, and
process theorists about causation build on descriptions of physical mechanisms and
difference-making information, either in terms of energy transfer (Salmon 1984) or
a system’s counterfactual development (Dowe 2009). In applied settings, several of
these can be combined: the Russo–Williamson Thesis (Russo and Williamson 2007)
captures the desideratum to enrich probabilistic data (as gleaned from RCTs) with
mechanistic information towards the establishment of justifiable causal claims in
medicine—for a discussion of this Thesis, see Wilde and Parkkinen (2018) in this
issue.

3 See also Schaffner (1993), who sees this use of abduction as a “weak” evaluation procedure, providing
more evidence of scientific promise rather than confirmation.
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Let us briefly take a closer look at the causal graph account. The causal modeler
might start by synthesizing probabilistic data from databases, background informa-
tion, common sense, and expert knowledge. These different sourcesmight provide both
structural/mechanistic as well as parametric (or also distributional) information about
the relations between different factors. Causal learning algorithms can help in dis-
covering unsuspected relationships, but the integration of expert knowledge becomes
even more important as the number of investigated variables grows and computa-
tional tractability quickly gets out of hand. Moreover, a larger causal theory might be
constructed as a patchwork theory by combining smaller, local structures collected
from different experiments, different research groups, or even different branches of
science (Mayo-Wilson 2018). When dynamic information is added to the mix in the
aggregation of time-series data, a host of new inferential problems arises (as dis-
cussed in Danks and Plis 2018). Interesting conceptual and computational innovation
towards solutions to these problems and in synthesizing ideas is increasingly driven
by exchange between computer scientists and philosophers.

But, if one takes a skeptical stance towards such a monistic explication of cause
and effect, advocating instead for a pluralist explication, one should be prepared to
amalgamate causal evidence in a fundamentally particularist way. For example, in
her critique of the causal graph approach, Cartwright (2004, pp. 814–815) dismisses
this “monolithic” account as too formal and “thin” and advocates richer terminology
closer to experimental practice:

[T]here is an untold variety of quantities that can be involved in laws, so too there
is an untold variety of causal relations. Nature is rife with very specific causal
laws involving these causal relations, laws that we represent most immediately
using content-rich causal verbs: the pistons compress the air in the carburetor
chamber, the sun attracts the planets, the loss of skill among long-term unem-
ployed workers discourages firms from opening new jobs. …These are genuine
facts, but more concrete than those reported in claims that use only the abstract
vocabulary of “cause” and “prevent.” If we overlook this, we will lose a vast
amount of information that we otherwise possess: important, useful information
that can help us with crucial questions of design and control.

Thus, for the causal pluralist, amalgamation of varied evidence is necessary to preserve
rich information about the causal system under investigation. (See also Reiss’s sketch
of his pragmatist-contextualist theory of evidence for causal inference in Reiss 2018.)

3 Contributions

3.1 Claveau and Grenier on the surprising failure of the variety of evidence
thesis

Claveau and Grenier (2018) follow up on Claveau (2013) in offering more nuanced
understandings of varied evidence in the sense of Bovens and Hartmann (2003) and
Sect. 2.1. In this tradition, instruments are assumed to be either α) fully reliable,
delivering perfect information about what they measure, upon which one can deduce
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Fig. 2 The most general model
of Claveau and Grenier (2018)
with evidence variables and
consequence variables that are
dependent to some degree

HYP

CON1 CON2

E1 E2

REL1 REL2

infallibly the consequences, or β) fully unreliable in that they do not provide any
informationwhatsoever (since reports from these instruments are randomandmutually
independent). As Claveau (2013) notes, real scientific instruments do not work like
this.

Claveau (2013) models unreliable instruments as biased instruments that either
always create reports that the hypothesis of interest is true or always create reports
that the hypothesis of interest is false. Eliminating the testable consequence variables
from the models, Claveau (2013, Section 4) shows that a natural formalization of the
VET holds in his models.

In a second step, he drops the assumptionofBovens andHartmann that the reliability
variables are either fully independent or not independent at all. He discovers situations
in which reliability variables have intermediate degrees of independence, for which
the VET fails.

In their contribution, Claveau and Grenier (2018) extend this analysis by first re-
introducing the testable-consequence variables into the models and then dropping the
assumptions that these variables are either fully dependent or fully independent. These,
so far, most general models, are depicted in Fig. 2.

Within this general model, they show that a variety of possible understandings of
the VET fail for a large set of plausible priors. In a natural sense, the set in which the
VET fails is much larger in Claveau and Grenier (2018) than it is in Claveau (2013).
Consequently, the conclusions drawn for the thesis are less favorable in Claveau and
Grenier (2018) than in Claveau (2013).
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3.2 Heesen et al in praise of methodological triangulation

Heesen et al. (2018) are interested in the work of Du Bois (1996/1899) concerning the
question, “What do Negroes earn?” (To avoid anachronism, they follow Du Bois’ ter-
minology in using “Negro” rather than the more contemporary “African-American.”)
To make progress in answering this question for households, they consider four meth-
ods for gathering information: (1) conducting interviews, (2) combining the average
income for the professions represented in a given household, (3) using family mem-
bers’ estimations of time lost to work, given their occupation, and (4) judging the
appearance of the home and occupants, rent paid, and the presence of lodgers. They
are then interested in how to aggregate answers obtained from these different methods.

Heesen et al. (2018) delineate (i) a purist strategy—single out a method and believe
whatever this method finds—from (ii) a triangulation strategy—believe what most
methods find and break ties by randomly picking from best supported findings. They
show that the triangulation strategy has a greater probability of yielding the correct
answer than the purist strategy for m ≥ 3 methods and n ≥ 2 possible answers.
Furthermore, this probability for the triangulation strategy increases with the number
of methods m. Their model hence underwrites an understanding of the VET in which
variety is understood as the employment of a variety of methods to support one’s
inferences.

Interestingly, their model can almost be understood in terms of the Bovens and
Hartmann framework. The first ingredient of such a model is an n-ary propositional
variable HY P . Second, one considersm different propositional consequence variables
CON which can take the same values as HY P . The relevant conditional probabilities
satisfy P(Con = con|HY P = hyp) = 1 if and only if con = hyp—that is, the
consequences are perfect indicators of the hypothesis. Every consequence variable
CON has a different single child E of arity n for which P(E = ei |Con = coni ) >

P(E = e j |Con = coni ) holds for all j �= i , for which see the left-hand graph in
Fig. 3. Landes (2018, Section 6) shows that, under suitable ceteris paribus conditions,
the posterior Bayesian probability in the correct answer increases in m when n ≥ 2,
even if the consequences are not perfect indicators of the hypothesis.

The crucial difference between these two approaches is how varied evidence is
used to update beliefs. Heesen et al. (2018) employ a triangulation strategy while
Bovens and Hartmann (2003) update using Bayesian conditionalization. Those with
very strong intuitions for the VET may thus feel compelled to give up on Bayesian
updating.

Since the proofs of Heesen et al. (2018) heavily draw on voting theory (List and
Goodin 2001), we have hence connected voting theory to variety-of-evidence rea-
soning. It is tempting to speculate about deep connections between the two. These
connections, if they exist, are as yet unexplored.

3.3 Holman in defense of meta-analysis

In his contribution, Holman (2018) mounts a spirited defense of meta-analysis as a
flexible toolkit to amalgamate data for (medical) decision making, against criticisms
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Fig. 3 The triangulation and purist strategies described by Heesen et al. (2018) within the Bovens and
Hartmann (2003) framework

fromStegenga (2011), Jukola (2015), Romero (2016), Holman andBruner (2017), and
Jukola (2017). He argues that worries raised for meta-analysis can be dealt with by the
rich meta-analytic toolkit and that worries concerning the objectivity of meta-analysis
either pose a major threat to all other forms of evidence amalgamation, too, or impose
an unreasonably high standard. Crucially, though, he understands his argument as a
defense of, but not an argument for, meta-analysis.

In more detail, Holman (2018) understands meta-analysis as an ongoing process,
much like other scientificmethods. The process is ongoing in two respects: (i) the avail-
able evidence accumulates over time, which may bring resolution to disputed issues,
and (ii) the meta-analytic tools themselves as well as tools to assess meta-analyses
improve over time. While there may be disagreement between competing meta-
analyses at any given time, there is good hope that the disagreementwill disappear over
time either due to new evidence coming to light or by detecting virtues and flaws in the
present meta-analyses. So, meta-analysis is not a tool which meets the unreasonable
standard of instant elimination of disagreement but it is rather the ongoing process of
scientific inquiry which leads to the eventual elimination of disagreement over time.

Next, he turns to issues arising from considering meta-analysis as a social practice,
acknowledging the importance of assessing the impact of industry funding and pub-
lication bias. He first considers concerns raised by Jukola (2015, 2017) regarding
worryingly skewed data from the FDA. She hence pointed out that even a well-
conducted meta-analysis on the skewed data produces a systematically biased result.
Holman (2018) addresses this worry by pointing to meta-analytic tools for detecting
skewed data—PRISMA and funnel plots. Recent computer simulations by Romero
(2016) make a point similar to Jukola’s. Holman (2018) argues that applying the
p-uniform technique in Romero’s implicit meta-analysis would have been the best
practice to mitigate effects of biased publications.

Holman (2018) thinks that it is rational in practical terms to violate the Principle of
Total Evidence (Carnap 1947) in medical inference. Firstly, there are many cases in
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which ignoring non-RCT studies has produced the right results, by the light of history.
Secondly, research in cognitive psychology suggest that we tend to interpret complex
information in ways that fit our view of the world. So, focusing on smaller bodies of
high-quality evidence reduces the risk of biased interpretations.

3.4 Vieland and Chang on conceptual problems for classical meta-analysis

The Fisherian approach to classical statistics determines what one might call the “evi-
dential bearing” of a data set against a hypothesis according to how extreme the data
set is compared with what is expected under the hypothesis. In other words, the data
are interpreted as evidence against an hypothesis to the extent that the data do not
fit it. For example, in an experiment of ten independent coin flips, there is evidence
against the hypothesis that the coin is fair to the extent that the number of heads (say)
differs from five. This evidence against the hypothesis of fairness is often quantified
by a p-value, the probability of measuring data at least as extreme as the data actu-
ally observed, if the hypothesis were true.4 The question then arises: how does one
amalgamate the evidence across many statistical studies against a hypothesis? If the
p-value measures the evidence, then this question becomes: how should one combine
p-values? Doing so justifiably is the goal of classical meta-analysis.

In their contribution, Vieland and Chang (2018) draw philosophers’ attention
to neglected conceptual problems involved in these procedures for classical meta-
analysis, evenwhenone focuses on the simplest case ofmultiple independent replicates
of the same study type, design, and size. They show that three different procedures
for meta-analysis—what they call p-averaging, r-averaging, and replication counting
(alongwith their likelihood-ratio-measure analogs)—all have problems being justified
as an evidence amalgamation procedure or conflict with what they call the “measure-
ment amalgamation principle” (MAP), that the inputs and outputs of an amalgamation
procedure should be on the same measurement scale, with a meaningful interpretation
vis-à-vis the evidence.

P-averaging, which they attribute to Fisher (1925), satisfies the first clause of MAP,
as it outputs the p-value associated with a certain statistic proportional to the sum of
the logarithms of the p-values of the input studies. But there are reasons to doubt that
it satisfies the second clause, calling into question whether the p-value was a measure
of evidence in a single study in the first place. In r-averaging, on the other hand,
certain aspects of the data themselves are first amalgamated and then the p-value is
calculated for this larger data set, resulting in a procedure that fails to satisfy the first
clause of MAP. Finally, they consider binary classification schemes, which coarse-
grain the evidence provided by statistical studies into those that support the rejection
of a certain hypothesis or not, depending on whether their p-values are below or above
a fixed threshold, respectively. Simply put, these schemes are so coarse that it is hard
to justify how they could be reliable procedures for amalgamating evidence.

4 Technically, the p-value is of a statistic of the data, which orders the possible data by increasing extreme-
ness. Typically data is taken to be extreme to the extent that it has low probability (or low probability
density).
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While Vieland and Chang (2018) do not offer a positive proposal to overcome these
problems, they describe in some detail various constraints on potential solutions and
directions for future research, such as the connection with parameter estimation.

3.5 Wüthrich and Steele on automated evidence aggregation

Wüthrich and Steele (2018) are concerned with evaluating procedures for aggregating
ever-larger bodies of evidence. The rapid growth of available data will eventually
require the application of automated evidence aggregators implemented as computer
algorithms. Recent work by Hunter and Williams (2012) in automated aggregation of
medical data serves as a case study to their philosophical questions.

They are particularly interested in how to choose the proper extent of automation.
They first argue that it is non-trivial to determine criteria which allow to specify an/the
appropriate extent of automation in any particular application. However, they do put
forward and defend one criterion for assessing the reliability of evidence aggregation
algorithms: the capacity to perform adequate robustness analysis.

But why is such a criterion necessary? Can one not simply assess the track record of
these algorithms? Unfortunately, this is often not possible in the medical domain when
one attempts to determine a priori the best treatment option for a particular patient at
a given time. There are at least three reasons why this may not be possible: (a) there
is no way to go back in time and check whether the other treatment options would
have been any better, (b) while the data were correctly amalgamated, it was the raw
data themselves which were misleading, and (c) the available good data were correctly
assessed but the patient belongs to a rare sub-group in which the indicated treatment
is—surprisingly—a lot less beneficial than in the general population.

So, by “robustness analysis”Wüthrich and Steele (2018) refer to a relatively simple
notion of robustness in terms of varying parameter values or “dial settings.” They
argue that designing large-scale evidence aggregation algorithms with the possibility
of such robustness analysis has two crucial advantages: it becomes clear from early on
in the design process (i) which (types of) uncertainty can be subjected to robustness
analysis by “turning the dial” and (ii) which types of uncertainty cannot be subjected
to robustness analysis because there is no “dial” one could turn. This directs attention
to the structure of the algorithm—the choice and organization of the dials. Thus, it
also increases transparency of the inner workings of the algorithm.

Wüthrich and Steele (2018) point out that in actual practice, further complications
arise due to limited (computational and other data processing) resources. An evidence
aggregation algorithm may produce better results by a deeper analysis of a smaller
data set than by a shallower analysis of a larger data set. These complications notwith-
standing, they argue that the assessment of an automated evidence aggregator is to be
assessed by focusing on robustness analyses.

3.6 Wilde and Parkkinen on extrapolation and the Russo–Williamson Thesis

In their contribution, Wilde and Parkkinen (2018) take a closer look at the so-called
Russo–Williamson Thesis (RWT), which can be understood as a programmatic claim
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about the importance of evidential variety in causal assessment. In its strong formu-
lation, the thesis says that, for the establishment of a causal claim, both knowledge
of the existence of a causal mechanism and knowledge of a suitable correlation must
be established (Clarke et al. 2014, p. 343). This thesis, so its authors claim, is sup-
ported by research practice, and especially by work done at the International Agency
for Research on Cancer (IARC), where multiple research groups work on different
sources of evidence for or against the carcinogenicity of various substances. When
separate research groups arrive at a conclusion, these findings are combined in order to
categorize the investigated substance as carcinogenic to humans (category 1), proba-
bly carcinogenic to humans (category 2A), possibly carcinogenic to humans (category
2B), not classifiable as to its carcinogenicity to humans (category 3), or probably not
carcinogenic to humans (category 4). Although the IARC’s way of reasoning can be
understood to be in accordance with the RWT, various seeming counterexamples to
this practice have been pointed out in the recent discussion. Wilde and Parkkinen
briefly mention the case of the carcinogenicity of processed meat, where the clas-
sification was seemingly based on correlational evidence alone. One answer to this
deviation in practice might be a call for correction (i.e., emphasizing the importance
of mechanistic evidence, as in Leuridan andWeber 2011), while an alternative answer
might be a reinterpretation of the the case: Clarke et al (2014, p. 343) point out that a
study of sufficient quality may provide correlational information and at the same time
rule out the possibility of confounding and bias.

Wilde and Parkkinen (2018) investigate a second case, the causal link between
benzo[a]pyrene and cancer in humans. In this case, benzo[a]pyrene was classified by
the IARC as carcinogenic to humans without an established correlation in humans.
In defense of IARC’s practice and the RWT, they show how evidence from ani-
mal studies can possibly yield both correlational and mechanistic information about
humans through mechanism-based extrapolation from experimental animal models to
the human target population (Steel 2008, p. 85). In this special case, extrapolation is
supported by particularly robust evidence from animal studies. The IARC protocols
report eight species of dissimilar non-human model animals, with the experimental
results remaining stable across species and therefore likely to be due to a common
causal feature of all experimental set-ups: the underlying phenomenon, i.e., the car-
cinogenicity of benzo[a]pyrene. In this sense, the IARC practice can be understood as
being in accordance with the RWT again, after all: evidence from animal models can
be reliably transferred from animals to humans via mechanism-based extrapolation
and thus provide both probabilistic and mechanistic information for the establishment
of a causal claim about the human target population.

3.7 Frank on the ethics of economic extrapolation from uncertain climate
models

Frank (2018) discusses ethical issues involving risk reporting where scientists extrap-
olate from locally validated models. In particular, he is interested in extrapolated
estimates of cost and damage within so-called Integrated Assessment Models of the
economic effects of climate change. The varied evidence that goes into constructing
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these models—e.g., the functional dependence of warming on atmospheric carbon
dioxide, the ability and efficacy of technology to allow economies to adapt to and
mitigate climate warming, and the effects of more extreme warming on global secu-
rity and scarcity of resources—entail high uncertainty about thesemodels’ predictions,
especially since that evidence is confined to relatively low amounts of global warming.
Frank (2018) expounds on the reasoning of Weitzman (2009), who critically observes
that such extrapolations have so far been based on analytic tractability rather than some
more evidentially justified reason. If the aforementioned high uncertainty is taken in
account, it tends to lead to “fat tails” in the probability distributions for catastrophic
events, such as the end of civilization as we know it.5 This can then lead to negatively
infinite, or arbitrarily large, expected value for climate mitigation risks. The discon-
certing conclusion that a rational actor should do anything and everything to mitigate
such risks could perhaps be avoided by placing an upper bound thereon using the
technique of a statistical value of a life multiplied by the world population, but this is
controversial because its coarseness has yet to be furnished with a justification.

Nevertheless, Frank (2018) argues that the Weitzman (2009) approach should be
taken seriously. Two ethical norms give it support: first, that scientists should be
sensitive to both the epistemic and non-epistemic consequences of their research con-
clusions, managing risk therefrom accordingly, and second, that their own uncertainty
about their conclusions should be made especially transparent for policy makers. Inso-
far as the fat-tailed approach is epistemically permissible, researchers should represent
that extreme uncertainty to policy makers, on precautionary grounds (Steel 2014). The
risks associated with overly aggressive climate change mitigation are simply dwarfed
by those with the collapse of civilization.While there are still uncertainties that remain
about how to balance epistemic and ethical values and risks, the argument for the fat-
tailed approach remains plausible.

3.8 Reiss against external validity

Reiss (2018) argues that understanding evidential reasoning in terms of external valid-
ity may lead to poor inferential practices by encouraging the search for epistemically
easily accessible models, which are then used as the basis for extrapolations. The
alternative he proposes involves the attempt to understand evidential reasoning about
targets more directly. In criticizing evidential reasoning in terms of external validity,
Reiss first introduces the problem of extrapolation, i.e., the question of how knowledge
of a causal relationship (about a model system) gained in experimental circumstances
can justifiably be transferred (extrapolated) to less accessible circumstances (the target
system, often the target population). He then presents solution strategies discussed in
the literature to show that evidential reasoning based on external validity encourages
foundationalist thinking about scientific inference: Learning whether C and E are
causally related in target system T requires taking the detour through the experimen-
tally accessible model system M . Yet, according to Reiss, foundationalism only offers

5 More technically, probability distributions with “fat tails” are ones over the real line that asymptotically
shrink sub-exponentially, leading to undefined moments.
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unsatisfactory answers to questions about (a) how the basic beliefs (inferences from
experimental data) are justified, and (b) how justified basic beliefs about M also lend
justification to beliefs about T .

As an alternative to external validity-based scientific reasoning, Reiss proposes
a pragmatist-contextualist perspective (Reiss 2015): reasoning about a target sys-
tem T should center around the hypothesis and begin with the question of what
evidence is required in order to establish this very hypothesis. In Reiss’s prag-
matist framework, the hypotheses together with their context—domain-specific
information, purpose of the inquiry, norms, etc.—determine what kind of evi-
dence is needed to support the target causal claim, and what counts as justi-
fication in this situation. Contextualism in this sense facilitates reasoning from
models without external validity. In a series of examples taken from cancer
research and IARC practice, Reiss illustrates the fruitfulness of the contextu-
alist approach: Experiments might suggest hypotheses in the discovery stage,
animal experiments may provide direct support for a hypothesis once a suit-
able (domain-specific) bridge principle is available, animal experiments might
also refine hypotheses if they suggest a more specific causal relationship, and
analogies can be exploited if knowledge about the mechanisms involved is avail-
able. All these inferential patterns facilitate the integration of evidence in support
of a causal hypothesis but do so without extrapolation or judgments of external valid-
ity.

3.9 Bertolaso and Sterpetti on plausibility and cancer research

Bertolaso and Sterpetti (2018) argue that the analytic view of theory development
(Cellucci 2016, 2017) can shed novel light on how varied evidence influences this
development.According to this view, one ranks hypotheses by theirplausibility accord-
ing to the following procedure: deduce conclusions from the hypothesis, then compare
the range of these conclusions with other provisionally accepted hypotheses and data.
Those that yield contradictions are less plausible and so are provisionally rejected,
while those that remain are provisionally accepted. They argue that the plausibility
concept is distinct fromprobability, because it arises from the balance of reasoned argu-
ments for an hypothesis from diverse evidence, which is a non-quantitative relation.
This better explains the actual pronouncements of scientists regarding their theories,
who rarely give probabilistic estimates for them, and may go some way to explain
how different researchers assign different prior probabilities to hypotheses. Because
plausibility depends on an argumentative structure, they emphasize that development
cannot be fully automated without the input of researchers, contra big data advocates
such as Gagneur et al. (2017). This in turn has implications for the debate between
frequentists and Bayesians about RCTs.

Bertolaso and Sterpetti (2018) illustrate their view using the current state of the art
in theories of carcinogenesis. The dominant Somatic Mutation Theory (SMT) posits
that the cause of cancer is accumulated mutations in a cell that lead to proliferation
instead of the default state of quiescence. The minority Tissue Organization Field
Theory (TOFT), on the other hand, posits that the cause of cancer is abnormally
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imbalanced interactions among adjacent cells and tissues, whose default state is rather
proliferation. SMT and TOFT are rivals insofar as they posit different default states
for cells, resulting in different assessments of the mutations found in cancer cells:
either a cause (SMT) or an effect (TOFT). But there is difficulty finding decisive
evidence for or against either theory. In the case of SMT, for example, researchers have
used big data sets to search for driver mutations, the mutations allegedly responsible
for carcinogenesis. However, the interpretation of the data as such evidence requires
accepting the SMT in the first place. So this search is not best understood as for a
probabilistic confirmation of SMT over TOFT, but as the articulation of a plausibility
argument for it; conversely, proponents of TOFTmount arguments according to which
the data can be explained by their theory.

3.10 Kao on unification for theory development

Unification, as the process of bringing together a disparate set of phenomena under a
common understanding, has long been recognized as one strategy for explanation, as
has the abductive inference to the hypothesis or theory providing that understanding
as a method of confirmation or justification. Kao (2018) reminds us that seeking
such unification also provides a strategy for theory development—cf. Sect. 2.5. Here
Kao appeals to the second stage of the inductive method of Whewell (1840, 1858),
the “colligation of facts” by which an idea is elaborated and delineated. The initial
articulation of an idea does not always yield a precise hypothesis or entail a definite
theory. Attempts to unify phenomena under an idea therefore help delineate the scope
and content of an hypothesis or theory: how broadly applicable the idea is, and what it
is in detail. As a heuristic, unification is distinct from confirmation or a commitment
to any broad unity of science, because failures to unify can delineate the scope and
content of a theory, too. Finally, Kao compares this sort of unification with uses of
robustness analysis to develop a theory rather than confirm it.

To illustrate this thesis, Kao examines the quantum hypothesis in the early quan-
tum theory of Planck (1967/1900), Einstein (1967/1905), Einstein (1907), and Bohr
(1913) from 1900–1913. As Planck (1967/1900) originally formulated it in the context
of describing the blackbody radiation spectrum, the quantum hypothesis was ambigu-
ous, as an assumption of discreteness, between the states of elemental constituents
of the blackbody and their energy. Einstein (1967/1905) then extended this idea to
electromagnetic radiation itself, rather than just the material part of a matter-radiation
system as Planck (1967/1900) had applied it. In the other direction—that is, regarding
matter only without radiation—Einstein (1907) applied it to the energy spectrum of
atoms in diamond. Now, the quantum hypothesis entails the existence of a constant,
h, in units of which the energy of vibratory phenomena (at some frequency ν) are
discretized, but the scope of the universality of this constant was unclear. It was Bohr
(1913) who extended this scope to provide the information needed to calculate the
characteristic size of atoms. However, the proposed extension of Debye and Sommer-
feld (1913) to quantize the duration of an energy exchange process in an electric field
was not born out by experiments. This showed the quantum hypothesis was delimited
to the descriptions of systems rather than temporal processes.
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3.11 Danks and Plis on amalgamating evidence of dynamics

Danks and Plis (2018) turn their attention to the problem of amalgamating statistical
time-series data. The authors note that inmany cases where large datasets are compiled
over long durations by different teams possibly measuring different parameters with
different methods at different time scales, merging the resulting databases is highly
desirable but hampered by technical problems. One step towards amalgamating infor-
mation about the behavior of complex, dynamical systems (as, e.g., in neuroscience,
econometrics, climatology, etc.) is to integrate different studies not at the level of data
but, in a move to sidestep some evidence amalgamation challenges, at the structural
level precisely because the underlying causal structure remains invariant across stud-
ies. However, how well structural causal knowledge can be amalgamated in the end
relies on how well the causal structure can be extracted from the raw data. In the
case of extracting such structural information from time-series data, two challenges
arise on which the authors focus: (1) there might be a mismatch between the measure-
ment timescale and the causal timescale, and (2) latent, unobserved variables might
confound dynamical systems over temporal durations.

Danks and Plis illustrate the first challenge with an example from brain research,
where measurement timescales of different methods deviate significantly: magnetoen-
cephalography takes a measurement each 1 ms, while fMRI data is sampled with one
measurement every 2000 ms. As a result, causal structures with different underlying
causal time-steps will be extracted from their respective databases. Danks and Plis
visualize the loss of information (i.e., “disconnectedness”) through undersampling in
causal graphs and discuss algorithmic approaches towards learning causal timescale
structure from measurement timescale data (for known and unknown undersampling
rates).

The second challenge consists in amalgamating different causal structures into one
global structure in the presence of unobserved latent influences. In particular, if the
sets of measured variables differ between studies, not all variables are measured in all
experiments. Most importantly, such unmeasured variables might act as confounders.
Yet, recovering latent structures from time-series data is made even more difficult
by the problem of underdetermination: How many latent variables? How many self-
loops? How many time-steps from cause to effect? To tackle this second challenge,
Danks and Plis propose to extend the causal structures extracted from time-series
data to minimally enriched (“simplest”) networks expressing causal influence through
latent variables over temporal distances. They discuss concrete algorithmic solutions
that can finally help in merging the resulting causal structures.

3.12 Mayo-Wilson on causal collages and piecemeal experimentation

Mayo-Wilson (2018) also focuses on causal learning, in particular on how to com-
bine the results of smaller studies into larger causal collages. Such practice is quite
common in medicine and in the social sciences where researchers often confine their
attention to a limited set of variables first and combine the inferred causal knowledge
with other researchers’ results later. Mayo-Wilson’s discussion builds on earlier work
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(Mayo-Wilson 2011, 2014) showing that in combining causal knowledge inferred
from observational studies (which might in many instances be the only option due to
ethical, financial, or technical constraints), information might be lost—in other words,
causal theories might be significantly underdetermined by evidence when observa-
tional data is gathered piecemeal in contrast to comeasuring more (or all) variables at
once. Mayo-Wilson (2018) argues that this “problem of piecemeal induction” persists
even when interventions in a given setting are possible. He then investigates three
interrelated questions regarding this problem.

Firstly, Mayo-Wilson asks what type of information (and how much) is lost in the
piecemeal aggregation of evidence for the purpose of constructing a causal theory.
As soon as experimentation is possible, no information is lost regarding the direc-
tion of the “causal flow.” Nevertheless, depending on the connectedness of the true
causal structure, quite some information regarding the presence (or absence) of causal
connections can be lost.

Yet, in which cases does no information loss occur when merging the results of
multiple studies? Mayo-Wilson (2018) shows that underdetermination of the inferred
causal theory can be eliminated if the graph of the true causal structure contains
relatively few edges.

Lastly, Mayo-Wilson asks how often the problem of underdetermination arises.
Unfortunately, experimental interventions do not reduce the underdetermination rate
(in contrast to inference from observational data) when the number of variables in the
causal graph becomes large (as is the case in many real-world settings, especially in
medicine or sociology).

Balancing his skeptical outlook on the fruitfulness of interventions for causal learn-
ing, Mayo-Wilson remarks that scientists usually build their investigations on more
than just probabilistic knowledge or facts about conditional independencies: Most
importantly, domain-specific knowledge (such as plausibility constraints) might be
available and useful in reducing underdetermination of inferred theories, but further
knowledge about the variables under investigation (e.g., a variable’s arity, distribution
type, functional description, etc.) may also be used in selecting plausible theory candi-
dates. Mayo-Wilson (2018) discusses important distributional assumptions that help
in disambiguating causal theories, for example when two causal theories (i.e., two
causal graphs) are not distinguishable by their conditional independence information,
but can be told apart when known facts about marginal distributions are compatible
with only one of the graphs. He concludes by hinting at important questions left open.

3.13 Baetu on multidisciplinary models and inter-level causation

There is a long tradition in philosophy of science and philosophy of mind that under-
stands reality, or at least our description or explanations thereof, in terms of different
levels. Different scientific disciplines, despite using vastly different vocabulary to
describe phenomena and the world, are not in direct conflict if one understands the
targets of their investigations to be separated into distinct and separate strata (Cat 2017).
For example, psychology concerns phenomena at the psychological level, chemistry,
the chemical level, and so on. Moreover, levels are ordered by supervenience rela-
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tions: e.g., the psychological level supervenes on the chemical level. However, Baetu
(2018) points out that many causal models used in multidisciplinary scientific inves-
tigations in fact relate causal variables at apparently different levels. Is this in conflict
with the usual supervenience thesis? Baetu (2018) argues rather that these multidisci-
plinary models should be conceived as level-neutral, rather than as multi-level, for the
empirical criteria for inclusion among the models’ variable, viz. their susceptibility to
effective intervention (Woodward 2003), are the same. Thus, level-neutrality follows
from the epistemic parity of the causal factors, which is a distinct feature of experi-
mental models. Thus, while this doesn’t eliminate the philosophical problems about
how to relate levels of explanation, it does show that this problem, and issues related
to level interaction more generally, are theoretical rather than practical.

As an example, Baetu (2018) considers biopsychosocial models of pain (Asmund-
son and Wright 2004; Craig and Versloot 2011). These models include a variety of
physiological, psychological, sociological, and cultural factors determining pain expe-
rience as a phenomena that can be the target of medical intervention. Some of these
incorporate neural circuit mechanisms, but interacting with higher-order cognitive
features as well as factors describing social and cultural determinants of perception
and responses to pain, such as (perceptions of) spousal support. Such models are
supported by experimental data from brain legion and hypnotic suggestion patients
indicating that the mechanisms for sensory perception of pain experience are in fact
distinct from the affective aspects of that experience. Nevertheless, these models do
not provide complete explanations for pain experience, nor are they intended to; they
are rather effective and useful summaries of the pathways of dependence relevant for
effective intervention by medical and psychiatric practitioners.

4 Outlook

Clearly this special issue illustrates that amalgamating evidence in the sciences touches
on a variety of philosophical issues concerning confirmation, causation, induction,
modeling, experiment, policy, and theory development. Beyond advancing the philo-
sophical discussion of these topics, they also bear upon and deserve further integration
with applications in the work of scientists themselves. Already the medical sciences
have been a focus here (Wüthrich and Steele 2018; Mayo-Wilson 2018), with several
examples from cancer research (Wilde and Parkkinen 2018; Reiss 2018; Bertolaso and
Sterpetti 2018), pharmaceutical drug trials (Holman 2018), brain imaging (Danks and
Plis 2018), and biopsychosocial models of pain (Baetu 2018). However, any science
that invites the use of diverse evidence, whether it be sociology (Heesen et al. 2018;
Mayo-Wilson 2018), climate science (Frank 2018), or even physics (Kao 2018), can
be a target as well, and one should be cautious about extrapolating conclusions valid
in one domain to another. Thus, the role of evidence amalgamation in these sciences
deserves more attention.

Another application we believe deserves further collaborative attention between
scientists, philosophers, and computer scientists is the application of these ideas to big
data sets for which considered decisions cannot so easily be made on a case-by-case
basis. For example, what is the proper place for (and weight of) expert knowledge in
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automated assessment of the amalgamated evidence? It seems inevitably necessary in
order to formulate the right questions to probe with big data and to keep the answers
to those questions computationally tractable, so not all of the process can or should
be entirely automated.

Scientists must of course be party to these development, but philosophers are per-
haps especially positioned to contribute in a different way, by abstracting general
considerations about topics from specific cases—e.g., concerning the confirmatory
role that varieties of evidence may and may not play (Claveau and Grenier 2018),
and the justification of procedures for meta-analysis (Vieland and Chang 2018)—then
applying those lessons to new cases in different disciplines. Indeed, what has emerged
as a common theme in many contributions to this special issue is how one can and
should transfer knowledge from one domain or problem to another: extrapolation from
one population to another, the external validity of an experiment, the robustness of a
measurement technique, extending static to dynamic causal structure, etc. We enjoin
the reader to explore these further.
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