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Abstract We extend stit logic by adding a spatial dimension. This enables us to
distinguish between powers and opportunities of agents. Powers are agent-specific
and do not depend on an agent’s location. Opportunities do depend on locations,
and are the same for every agent. The central idea is to define the real possibility
to see to the truth of a condition in space and time as the combination of the power
and the opportunity to do so. The focus on agent-relative powers and space-relative
opportunities firmly roots effectivity of an autonomous choice making agent in a space—
time picture. Our space—time view will be classically Newtonian, since we will assume
relativistic phenomena do not play a role in agentive effectivity. We show how our
semantics naturally distinguishes between different kinds of histories; histories that
reflect real (factual) possibilities and histories that reflect counterfactual possibilities
(of a particular hypothetical kind). Furthermore, we discuss how the spatial picture
sheds light on conceptual problems plaguing the central stit property of ‘independence
of agency’. Atseveral points in the article we will emphasise and defend the differences
with Belnap’s theory of agency in relativistic branching space—times.
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1 Introduction

Along one dimension of development, stit logic has evolved from a theory of agency
for general propositional conditions (Kanger 1972; Porn 1970; Chellas 1995) through
a theory of agency for temporal conditions (Horty and Belnap 1995), to a theory of
agency for conditions in time and space (Belnap 2005). Like Belnap, we will investigate
here the addition of a spatial dimension to temporal stit theory. However, our approach
is different in many respects, as will be made clear at appropriate points in this article.

There are several motivations for adding a spatial dimension to stit logic. One of
them is to enable the study of real possibilities of agents in relation to their intrinsic
powers and their extrinsic opportunities. In our conceptualisation opportunities intro-
duce a spatial aspect; in Paris agents have the opportunity to climb the Eifel tower, !
in Utrecht they do not.? Indirectly this relates to the affordances and potentialities of
objects present at these locations (such as the Eifel tower), as we will explain. We hope
to show that we can formalise a notion of situated agency in terms of real possibilities
that are provided by the combination of an agent’s intrinsic powers and its extrinsic
space related opportunities. In a more elaborate picture, agentive powers also play a
crucial role in an agent’s abilities. However, we leave ability out of the scope here.
Ability not only involves agentive power but also practical knowledge (Ryle 1946;
Anscombe 1963), and we will not consider epistemic or other mental attitudes in this
article. Our notion of real possibility-based agency will be without any informational
or motivational connotations; it will be a notion of what Marek Sergot calls ‘unwitting
agency’ (Sergot 2008).’

A second motivation is that in logics of action (e.g., Kowalski and Sergot 1986 or
Segerberg 2002) the spatial dimension seems to have been largely neglected. That is
a remarkable omission. The temporal dimension plays a role in almost all formalisms
of action we are aware of, but apart from Belnap’s proposal we cannot think of one
example that also considers a spatial dimension. That is surprising. Why, in logical
considerations on agency and action, would one focus on one prominent physical
dimension and not on the other? Especially in artificial intelligence and robotics a
logical theory of actions in time and space is very welcome, it seems safe to claim. We
hope this article is a first step towards such a logic of situated agents, where ‘situated’
refers to both time and space.

Belnap’s branching space—time theory is based on yet another motivation to involve
the spatial dimension in giving formal semantics to agency. His main concern is the
issue of dependency. Dependency of a situation’s properties on some agent’s choice at
some other point in time and space requires that this agent exerts a physical influence
of some kind on that situation. This influence has to travel through time and space. The
subject Belnap pays attention to in particular is then whether or not such an influence
on some agent or entity at another location can be instantaneous. This relates directly

I This example is from the third author of Linder et al. (1998).
2 There is the Dom tower as a meagre alternative, though.

3 To be even more precise: we consider agency at an abstraction level where the distinctions between
motivational, informational and causal aspects do not matter; and this is also exactly the level Sergot aims
at with his ‘unwitting’ agency.
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to the interpretation of the central classical stit operator. In classical temporal stit
theory in the Chellas-Belnap-Perloff-Horty tradition the truth condition M, m, h =
[ag stit]e for a stit formula of the form [ag stit]e says that the agent ag in
the performance of its current choice along #, sees to it (necessitates) that currently
at moment m the proposition of the form ¢ is guaranteed to hold.* Belnap observes
that ¢ may contain reference to a location that is different from the location of the
agent ag engaged in the action. A problem Belnap then sees, is that if indeed the
agent ag featuring in [ag stit]e is at a location other then the location the property
@ is thought to be made true for, it seems the agentive effect expressed by the truth
of [ag stit]e reflects an instantaneous influence by the agent ag on some other
spatial location of the world it is situated in. That is, if ag and ¢ are thought to
refer to different locations, we would have that the truth of [ag stit]e reflects an
instantaneous effect at a distance of ag on ¢. That conflicts with Einstein’s axiom that
nothing can travel faster than the speed of light. This motivates Belnap to develop his
(truly remarkable) ‘agency in branching space—time theory’ (Belnap 2005). In this
work (which we will often refer to as ‘BST-theory’ from now on) Belnap adds agency
to his earlier developped relativistic ‘branching space—time’ theory (Belnap 1992).
In relativistic space—time there is no absolute reference frame against which we can
define simultaneity of events, which implies that effects are local and cannot have
instantaneous ramifications at a distance.

We have two reasons not to go along with Belnap’s motivation to add the spatial
dimension to stit semantics. The first is that we believe that relativistic phenomena of
time and space do not seem to be very relevant for agency.” Exactly because agency
is a very local phenomenon, we should not be bothered about instantaneous effects
at large distances being problematic in our relativistic universe. Relativistic effects
should only play a role in quite extraordinary circumstances. For reasoning about how
two agents in the same room can combine their efforts to lift a table without breaking
the precious vase that is on it, relativisitic phenomena seem hardly relevant. What
is relevant though in such examples, is what powers these agents have and whether
they both actually have the opportunity to lift the table at the right moment (maybe
they are too far removed from the table; maybe they lack the strength or agility to
move quickly enough, etc.). This is the kind of dependence and interaction relevant for
modelling, for instance, artificial agents such as robots. So, at least for the possible use
of the formalism we develop here for knowledge representation purposes in Artificial
Intelligence, a Newtonian view on space and time should suffice.

Our second reason not to go along with Belnap is that in a logical sense, instan-
taneous effects at a distance should always be possible. This is a difficult point, and
we will try to explain it by way of an example. There is no problem with having an
instantaneous effect at a distance, if that instantaneous effect is, for instance, of the
logical form [X]p saying that (at this distant location) at the next moment in time, p is

4 We will here only consider Chellas’ version of such operators: [ag Cstit]e, where choice alternatives
are not part of the truth condition (which is not a limitation for the logic, since we can define the availability
of choice alternatives in the object language: [ag dstitly =g.f [ag Cstitlp A O—).

5 We do believe in the relevance of quantum mechanics for understanding the phenomenon of agency, and
for the theory of entanglement of distant particles quantum mechanics actually conflicts with relativity.

@ Springer



34 Synthese (2019) 196:31-68

guaranteed to be true. There is no risk that this truth constitutes an unwanted physics-
defying kind of instantaneous effect at a distance, since the [X]-operator allows for
some (unspecified amount of) slack; influence in the form of the necessitation of the
proposition p can now travel through space and time. Now we can say that in such a
case p is anon-instantaneous physical effect at a distance and [X] p is an instantaneous
logical effect at a distance. So two spaces play a role, and they should not be confused:
logical space and physical space. Logical space is the mathematical dimension we use
for logical modelling; we can jump around in it at will and take different viewpoints.
Physical space is the space agents perform their actions in. Agents can act and move
within this space, but they are bound by its physics. Now why does Belnap not make
this distinction? That is not entirely clear. But what is clear, is that his object language
has no logical operators for both time and space. So logical operations like jumping to
a future moment in time or another location in space are not supported by his language.
His language is much closer to the physics of the spaces it studies, which explains
why he claims the physical impossibility of instantaneous effects at a distance should
be directly reflected by its semantics.

This article sets out then to design a stit logic that features both a time and a space
dimension and distinguishes between effectivity, power and opportunity. Our setting
will be classically Newtonian, and in the next section we will discuss the rammifica-
tions this has for our view on branching time.® We present an object language that
makes time and space explicit and a formal semantics that enables us to check logical
properties of the language. Besides operators for time and space, our object language
features operators for power, opportunity and effectivity. Agents have certain pow-
ers. But not every situation (location) enables them to use these powers effectively.
In our formal logic we show how powers of agents and opportunities of locations
are fogether necessary for the generation of real possibilities for the agents; possi-
bilities for being effective at those locations. The formal semantics of the power and
opportunity operators require that we distinguish between different kinds of possibili-
ties. We will distinguish between factual possibilities and counterfactual possibilities.
The first, the factual possibilities, are given semantics by histories in temporal choice
structures that reflect courses of events that a situated agent can effectively pursue.
The second, counterfactual possibilities, reflect on the one hand intrinsic powers of
agents, powers that might not be effective in certain situations, and on the other hand
opportunities of locations, that can only lead to concrete effects if an agent with the
right powers is positioned at that location and executes the right choices. Opportunities
are true relative to locations; they are not agentive. Powers are properties of agents.
Power and opportunity together determine whether there can be effectivity.

We end this introduction with a very general objection one can have against the
kind of enterprise undertaken here. One could claim that logic should not be bothered
at all with issues of physical possibility and impossibility. One could take the stand-
point that logical theories and physical theories concern different theoretical domains
that should be kept entirely separate. In such a view logical truths are independent
of physical truths. For instance, logical truths should be consistent with different,

6 We think ‘branching time’ is a misnomer, as it is not time itself, but the space of possibilities through
which it flows that branches, but we prefer to stick to established terminology.
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mutually inconsistent physical theories (for instance, with both general relativity and
quantum mechanics). However, taking this standpoint would dismiss all of tempo-
ral logic, action logic, spatial logic, and indeed, stit logic. And, in case we endorse a
physicalist picture we may argue that it would also dismiss epistemic logic, preference
logic, deontic logic, etc. So, we will take a less strict standpoint about the reach of
logical validity, one that fits more with the use of logic as a knowledge representation
formalism for Artificial Intelligence (Al). In Al, artificial agents use formal logic to
represent and reason about their environments. And it seems safe to fix some generally
accepted and common physical properties for such environments and take them up as
invariants’ in a logic.

2 Physical and metaphysical considerations on branching

Our starting point is a non-deterministic universe where the truth of properties that
refer to the future is not necessarily settled. Alternative temporal trajectories into the
future are possible, because the universe inhabits non-deterministic processes allowing
for different possible outcomes. One such non-deterministic process is underlying the
phenomenon of agency (in a specific way, to be explained below). The alternative
trajectories that are possible for the universe from a certain moment, we call ‘branches
of time’. One trajectory is an alternative to another trajectory if it obeys different
properties, that s, if the non-deterministic processes of our world make other properties
of the universe true for that trajectory. So, our view is that branching is due to the
different possible continuations of the properties of our world: for instance as the
result of a radioactive atom decaying or not.®> We do not assume that all processes in
our world are non-deterministic. Or, at least we will assume that some processes are
very close to deterministic (without making precise how close exactly). In particular,
we will assume the possibility of deterministic processes that keep track of the passing
of time: clocks. Clocks cannot be indeterministic processes or else they are no good
clocks.

There is a special class of properties that determine which alternative branches are
possible as alternative temporal continuations from a given moment. Examples of such
properties are dispositions, powers, abilities, opportunities, etc. Branches are different
even if they differ only in the sense that they make different such ‘possibility’ proper-
ties true.? In this article we look at two kinds of properties influencing possibilities:
agentive powers and opportunities.

There is one more aspect to clarify about this basic picture. We may ask: at what
point do branches that are different because they obey different properties actually
start to branch? This is not as simple a question as it may seem. We cannot say that
two branches start to branch at the point where their properties start to diverge. This

7 In the sense explained by Tarski (1986).

8 This is certainly not the only possible view. An alternative is, for instance, to give time a less ‘derived’
identity, such that it can pass or branch independent of the properties true at moments. Or we can adopt a
more idealistic view where time only passes and/or branches in our observations.

9 The semantic equivalence notion induced by this criterion is known in modal logic as ‘bisimulation’.

@ Springer



36 Synthese (2019) 196:31-68

is because in the object language we will use—the language in which we specify the
properties—we will be able to refer to future points on branches. Now, if two branches
are different because at some point one of them obeys p and the other obeys —p, with
p a basic proposition of our language, then also on points that temporally precede
that point we will be able to say that they obey different properties, for instance
[X]p and [X]—p. It seems then that we have to say that different branches that are
initially undivided start to branch at the point where their non-temporal properties
start to diverge. A more precise characterisation of this idea is outside the scope of
this article.

A suggestion emanating from the above view is that one particular source of
branching are the choices made by agents. But that is not the right picture for our
stit-semantics. To get the correct picture it is important first to know that we believe
that time branches continuously and massively and not only in relation to the processes
that constitute our agency.'? This view may seem unlikely to many, but we believe
it is the correct picture. It is just that we are easily led to believe that time does not
branch, because when looking back in time, we always see exactly only one branch.'!
Also, by the advancement of science, we become better and better in predicting future
properties (think about weather forecasts becoming better). And it may be tempting
to belief that this advancement has a limit in the situation where in principle through
physical laws and computations we can predict the outcome of any situation.

Our view is not that the choices made by agents are yet another source for our
massively non-deterministic world; an agentive choice does not make time branch. If
that would be the correct view, it would suggest that if agents would not choose, there
would be less branching. The view we endorse is quite the opposite: if agents would
not choose, there would be even more branching. By performing a choice an agent
actually stems the flow of branchings of the world by ensuring that all non-deterministic
possibilities left by its choice performance obey the effect property that constitutes its
action. Describing such an influence on the branching of time as ‘making time branch’,
thus puts one on the wrong foot. When misled in this way, one should turn around
the picture 180 degrees: agency is about excluding non-deterministic possibilities that
otherwise would be there and is not a way to produce possibilities that otherwise would
not be there.

The metaphysical picture gets more complicated if we involve space. We need an
idea about what space is and we need to combine it with the branching of time. We will
assume that two agents are in the same space if and only if their actions may interfere
(= bear the possibility of having joint consequences) at some location in that space at
some point in the future.!2:13 Since we are in a non-deterministic universe, it is not

10 We do not believe that agents are the only entities that have the power to interfere with the branching of
time. We just see no reason to deny the privilege to other natural phenomena (maybe animals, plants).

1" And when looking back we have a hard time believing that the branch we are on now was not special
already in the past; maybe somewhat similar to how in early days it used to be that people had a hard time
believing that our planet is not the centre of the universe.

12 We can imagine spaces that are completely decoupled from ours: parallel universes.

13 Note that such an elegant definition of space is not available to those who do not believe in the branching
of time.
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guaranteed that actions of agents in the same space will interfere, but the possibility
needs to be there in order for them to be in the same space. A consequence of this
starting point is that if' time branches for one agent in some space, it also branches
for all other agents in that same space. After all, if one agent locally determines
some physical properties of some location, at some point in the future, the physical
properties of that location may interfere with the physical properties of any other
location in that same space. Of course, for rather distant locations the interference
may never obtain. But that is not important. What is important is that a choosing agent
affects the physical properties of its space as a whole. This is not the same as having
an effect at a distance. There is an effect at a distance only in the sense that a choice
here on Earth has as a result that at Alpha Centauri our common space changes. This
effect at Alpha Centauri, we refer to as a logical effect. It is not a physical or causal
effect. The effect is logical, since the ‘jump’ to the other location at Alpha Centauri is
a coordinate jump; we consider the same space from another viewpoint and say that
also from that viewpoint the physical constellation of our common space has been
altered by the choice being made on Earth.

The above view is very different from Belnap’s. Belnap does not distinguish between
physical effects and logical effects and just argues that instantaneous effects at a
distance are unwanted. In Belnap’s BST-theory if an agent chooses, time branches at
the location of the agent, but not instantaneously and simultaneously across all other
locations of the space the agent inhabites. That is a startling view adding the absence
of absolute simultaneity of branching to Einstein’s absence of absolute simultaneity
of events. The absence of absolute simultaneity of branching actually follows from
the absence of absolute simultaneity of events, as it is the non-determinism of events
themselves that makes time branch. In this view it is not the case that for an agent on
Alpha Centauri space—time has been altered at exactly the moment where an agent
on Earth makes a choice between two alternatives; the point of alternation might be
slightly later or earlier, depending on the frame of reference.!> We refer to Belnap’s
articles for more insights.

We think it is an interesting observation that our distinction between physical and
logical effects at a distance, a distinction that is absent in Belnap’s work for reasons
already mentioned, seems to allow for a different relativistic interpretation of operators
[ag stit]e then Belnap’s. Using our object language it seems we could build a
theory that allows for instantaneous logical effects at a distance and that at the same
time does not allow for physical effects at a distance. This theory would then look
rather different from Belnap’s, even though, like Belnap’s theory, it would depart from
relativistic insights.'® We do not pursue that route here though. In the next section we
will proceed to give a modal logic account of Newtonian space and time.

14 Note that we do not write ‘when’, to leave room for relativistic physics.

15 To be precise: this depends on a positive or negative velocity of the frame of reference in the direction
of the line between Earth and Alpha Centauri.

16 The semantics would have to be reconsidered thoroughly. In a relativistic picture, it is not possible to
evaluate against what we have called ‘situations’ because we do not have an absolute space frame to evaluate
truth against. Therefore, like Belnap, we would have to evaluate against ‘point events’. It is unclear then if
in such a picture a distinction between logical effects and physical effects makes sense.
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3 Newtonian branching time and space

Our formal modelling of time and space will be based on some simplifying assump-
tions. Although we belief, as we said, that time branches massively and continuously,
we will only consider discrete time where branching occurs in subsequent time steps.
For referring to next moments in time, we will introduce the modal quantifier [X], that
reads as ‘next’. A second reason to consider the next operator instead of a conceptually
less demanding operator like the well-known temporal ‘henceforth’ operator, is that
we can use it to capture an important property of Newtonian time and space: the reality
of global clocks. We can use the next operator to capture this property, since the next
can be used for ‘timing’ purposes; we are going to assume that every step interpreting
some instance of the next operator has a sufficiently small (for scenario modelling pur-
poses) and equal duration. To refer to the other branches that emanate from the same
moment (and location) we use the modal quantifier [H] that reads as ‘it is historically
necessary/it is settled’. Besides these familiar operators we introduce a new modal
universal quantifier [L] that ranges over all positions/locations in the current space.
The spatial operator enables us to express that something is true independent of the
location in the current space ([L]) and to express that there is a location in the present
space for which something is true ((L)). This is the simplest kind of location operator
one can think of. Yet it is complex enough to provide us with some serious modelling
problems, both conceptually and technically. For the purpose of this article, the issues
of topology, number of dimensions and structure of the locations are not relevant; we
will treat locations as unanalysed points whose topology has no bearing on the issues
considered here. In particular, in order to represent the distinction between power and
opportunity in Sect. 4, we will not need to dig into the structure of space itself: a
point-like representation of locations will do the job.

Definition 3.1 (Language) Given a countable set of propositions P and p € P, and
given a finite set Ags of agent names, and ag € Ags, the formal language LnpTs is:

p=pl-plorneg]|[Llp|[Xle| He

For all operators the reading is relative to a position in time and space. We call
such a position in time and space a ‘situation’. And we say that truth is ‘situated’. The
readings are as follows.

[L]g reads as “for all locations (in the evaluation space), at the moment of eval-
uation, along the history of evaluation, it holds that ¢”. We will assume that the
locations visible from different situations are always the same set; so there is only
one space.

[X]e reads “at the next moment, along the history of evaluation, at the location
of evaluation, it holds that ¢”. We can think of the next moment in time as being
specified by an implicit clock related to a specific deterministic process. The gran-
ularity of the succession of times is arbitrary: we can make it as fine-grained as
needed for a reasoning scenario.

[H]g reads “whatever happens, it holds that/it is historically necessary that/it is
settled that at the moment and location of evaluation ¢”.
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Fig. 1 Visualisation of Newtonian branching time and space

We introduce the spatial dimension in the same way as histories and strategies are
introduced in stif logic: as elements of the units of evaluation. This makes truth location
dependent/situated. Concrete examples of truths that are location dependent are: “it

CEINNT3 ELINNT3

is safe”, “it is raining”, “one can see the Eiffel tower”, etc. Examples of truths that
are not location dependent are: “today is Mieke’s birthday”, “Mieke can play guitar”,
“Mieke’s house is burning”, etc. Sentences like “the house is burning” might confuse
us though, because we can either interpret “the” relative to a location or not. Truth
evaluation relative to locations is very natural; we can always view an agent as being
situated in some space evaluating the propositions he is reasoning about relative to
locations of the space around him/her. Like temporal extensions of Chellas stit logic
make truth relative to histories, spatial extensions make truth relative to locations.

For helping to create a mental picture in which to understand the coming definitions,
in Fig. 1, we provide a visualisation of Newtonian time and space. The figure shows,
for instance, how at moment m’ the future branches out into three histories 4, 2’ and
k", and that this branching is uniform over space, stretching from [ to /. Points in
this three dimensional space will be called ‘situations’ and are denoted (/, m, h). The
picture highlights three such situations.

Definition 3.2 (Frames) An NBTS-frame is a tuple (L, M, H, L, X, H) such that!7:

1. L is a non-empty set of locations. Elements of L are denoted [, I’, etc.

2. M is a non-empty set of moments. Elements of M are denoted m, m’, etc.

3. H is anon-empty set of possible system histories. Each individual history h € H
is of the form <...m_y, m_y, mg, my, mp, ...> with m, € M. Each history &
is isomorphic to the integers Z under an isomorphism fj such that f,(m;4+1) =

Su(m;) + 1.

17 In the meta-language we use the same symbols both as constant names and as variable names, and we
assume universal quantification of unbound meta-variables.
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We define the h-relative ‘next moment’ functions next, : M — M such that
nexty(m) = m’ if and only if m, m" € h and f,(m) + 1 = fr(m’).

Histories can come together only in the ‘past’ direction, and if they do, they stay
together going further into the past. So, if for 4, A’ € H it holds that next, (m) =
nexty (m') thenm = m’.

We define situations as tuples (I, m, h), withl € L,m € M, h € H. A situation
will be called coherent if m € h and incoherent if m ¢ h. In the sequel, when
we refer to a situation, we will always mean a ‘coherent situation’; incoherent
situations will not be considered.

4. L is a spatial reference relation over situations. We have the following constraint
ensuring reference to other locations using the location operator does not affect the
moment or history component of a situation (that is, spatial reference is a logical
operation, not a physical one involving ‘movement’):

independence of space: (I, m, h)L{I’,m’, h’) if and only if m = m’ and h = K’
5. X is a next-time relation over situations. We have that:

independence, seriality and functionality of time steps: (I, m, h)X(I',m’, 1)
ifand only if | =’ and h = k' and if next,(m) = m’

6. 'H is a cross-history relation over situations. We have the following constraint
ensuring reference to other situations using the cross-history operator does not
affect the moment or location component of a situation:

independence of branching: (I, m, h)H(l',m’, i) if and only if m = m’ and
1=

Ad 3: Note that moments can be shared by different histories, and if they do, there
must be a particular moment from where the histories stay together into the past
direction and branch out into strictly separate directions into the future (if there is not,
either the histories are not different or do not share a moment at all). This is their
branching point. There can also be moments where 3 or more (up until countably
many) histories have their branching point, such as in moment m’ in Fig. 1.

Ad 3’: Since we assume histories are isomorphic with the integers and since we
assume time-space is not relativistic, we have a rudimentary notion of ‘time’ in the
semantics; from any given moment, we can count steps into the future and into the past
and assume that each step has the same duration. For practical modelling purposes it
seems we can always choose the duration of time steps sufficiently small to capture
the scenario at hand. This construction thus shows clearly that moments should not be
identified with ‘times’; if at a certain moment and time for the next instance of time
there are two diverging possible temporal continuations (histories), then there are two
possible next moments but there is only one next fime.'® We do not make times explicit
in the object language which explains why times play no significant role in our logical
framework.

Ad 3”: We define a ‘bundle’ of histories as a set B € H such that for any two
h,h’ € B itholds that h Nk’ # @. One may wonder if we should not impose more

18 Which again shows that ‘branching time’ is a misnomer, see footnote 6.
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constraints on our branching structures. For instance, we could impose that H itself is
a bundle. This would mean that any two histories in H at some moment in backwards
temporal direction meet. However, conditions like these will not be important for us,
since the modal language we will use to talk about the structures is not strong enough
to express them.

Definition 3.3 (Models) A frame (L, M, H,L, X, H) is extended to a model
(L,M, H, L, X, H, V) by adding a valuation V of atomic propositions:

e V isavaluation function V : P - 2LXM*H aqcigning to each atomic proposition

the set of situations relative to which they are true.

Note that that we have assumed that all situations are coherent (see Definition 3.2,
after item 3), so this also holds for the situations (I, m, h) in the above definition and
in the definitions yet to come. We will now define the truth conditions for the operators
relative to coherent situations in NBTS-frames.

Definition 3.4 (Truth) Relative to amodel (L, M, H, L, X, H, V), truth {{, m, h) &=
¢ of a formula ¢ in a space—time situation (/, m, h) with m € h is defined as'’

€ Vip)

h) E¢

) Ewand({,m, h) = ¢

VLA m!, B implies (I, m', h') = ¢
VX', m', by implies (', m’', 1) = ¢
) m’, 1’y implies (', m’, h') = ¢

Satisfiability, validity on a frame and general validity are defined as usual.

Definition 3.5 (Hilbert system) The following axiom schemas, in combination with
a standard axiomatization for propositional logic, and the standard rules (like neces-
sitation) for the normal modal operators ‘[ ]* define the Hilbert system NBT Sy,

(normal modal logic) S5 for [H]

(normal modal logic) S5 for [L]

(normal modal logic) Alt.D for [X] (obeying e.g. =[X]—¢ < [X]p)
(global clocks) [X][L]p < [L][X]e

(global branching) [H][L]e < [L][H]¢

(forward branching) [H][X]¢ — [X][H]e

Relative to a language £, a class of frames F and a truth definition |=, we define the
logic Logic(F) of a class of frames JF as the subset Logic(F) C L of the formulas
of the language that are generally valid for the class of frames according to the truth
definition.

Proposition 3.1 (Soundness) Logic(NBTS-frames) 2 NBTShiin

19" All meta variables not explicitly quantified are assumed to be universally quantified.
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Conjecture 3.1 (Completeness) Logic(NBTS-frames) € NBTSyiin

Sketch of a proof All axioms are in the Sahlqvist class. This leaves us to prove that
the first-order correspondents of the axioms correspond to the constraints we have
put on our frames. This is a doable exercise. Construe a one-to-one correspondence
between situations (I, m, h) and possible worlds w such that w = w’ if and only
ifl =1 and m = m’ and h = h’. This transforms the structures into standard
one-dimensional structures with multiple modalities. The constraints on the original
three-dimensional frames can now be rewritten into standard first-order constraints on
the newly constructed one-dimensional structures. These first-order conditions then
correspond to the Sahlqvist axioms. Note that the conditions to be checked are all
standard ones: equivalence, functionality and commutativity.

Within the context of the other axioms ensuring e.g. functionality for the [X] opera-
tor, the forward branching axiom corresponds to the condition in Definition 3.2 clause
3 saying that there can be no divergence of histories in a backwards time direction;
if for two histories h =<...my, ma,...> and b’ =<...m3, m4, ...> it holds that
my = my and not m; = ms, then (X)(H) p — (H)(X) p, with p an atomic proposition,
is easy to falsify in a p-based model in a coherent situation based on the moment m .

The axiomatisation can do without confluency axioms (X)[L]¢ — [L](X)¢ and
(H)[L]lep — [L](H)gp, as these are derivable (we only need symmetry for one of the
operators involved in these formulas to derive confluency from commutativity, and
symmetry follows in S5 for [L]). O

The fragment of our logic determined by the operator [X] is Segerberg’s ‘tomorrow’
logic (Segerberg 1967). A more recent name for the logic is Alt.D (Alt for partial
functionality and D for seriality).

The reason we present completeness as a conjecture is that it is not 100% guaranteed
the proof strategy sketched above can be successfully employed. It is possible that
the class of structures characterised by the Sahlqvist axioms is still a superset of the
structures of Definition 3.2. In particular it might be the case that Definition 3.2 imposes
stronger interactions between the dimensions than is reflected by the commutativity
axioms. However, it is important to stress that the three base dimensions of time ([X]),
space ([L]) and branching ([H]) do not form the three dimensional product logi020
S5 x §5 x Alt.D. Confronted with the semantic clauses in Definition 3.2—4, 5 and
6 one could easily be led to belief this, though. Indeed the space dimension forms
a two dimensional product with both the time and the branching dimension, but the
interaction between the time and the branching dimension is weaker (which does not
mean that if this latter interaction actually was also a product, the three dimensions
would form a three-dimensional product). This is because our logic only concerns
coherent situations ([, m, h) for which m € h. This dictates that a moment m and
a history A cannot be chosen independently, as would be required for a full three-
dimensional product frame. Actually, what we have is a three dimensional ‘relativized’

20 However, if they would, they would probably still be finitely axiomatizable, because the product logic
S5 x §5 x Alt.D is very likely to be ‘product matching’ (Gabbay and Shehtman 1998) which means it
is axiomatisable using standard commutativity and confluency axioms (thanks to Agi Kurucz for pointing
this out to me).
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product (Kurucz 2007). Then, more circumstantial evidence for the completeness is
that most relativized products inherit the meta-logical properties of the logic formed
by the fusion of their dimensions (Kurucz and Zakharyaschev 2003). We will however
refrain from trying to give a detailed proof. The envisioned audience of this paper is
not mathematical logicians, but philosophers of agency, time, and powers.

It can be a surprisingly impactful step to go from two to three dimensions.”! Two S5
dimensions combined in a ‘coordinate system’-type-of-way are fully axiomatised by
a commutativity axiom, as exemplified by our pairs of dimensions [L] x [X] and [L] x
[H]. But three S5 dimensions combined in a ‘coordinate system’-type-of-way are not
finitely axiomatisable>? and their logic is not decidable. One should not underestimate
the ontological relevance of such unexpected ‘jumps’ in logical characterisability. If
a logical language reflects our capacity to talk about the kind of structures we study,
then absence of axiomatisability and undecidability (of the satisfiability problem) for
the logic defined relative to this language imply that we will not always be able to
(formally, computationally) check if what we express in our language actually has
a model. And, if indeed there would be no model for what we say in terms of the
language, our talk is, at least from one important point of view, meaningless.>>

4 Power and opportunity

The previous section formalises how branching interacts with space, and we adopted a
classical Newtonian view on this. In this section we add to the picture how branching
relates to powers of agents and to opportunities at specific locations in space. Indi-
vidual powers and opportunities are interpreted by sets of branches: the histories the
possible future continuations of the world is restricted to, according to that particular
power or opportunity. But first we need to describe in more detail what our power and
opportunity concepts are.

We view powers as properties of agents. We are aware that the literature has adopted
a more general use of the term, where powers are properties of physical objects in
general; being ascribed to agents, trees and stones alike (see e.g., Mayr 2011). We
believe our use of the term ‘power’ as an agentive property is closer to common
natural language use; we feel it is somewhat odd to talk of the powers of stones, since
inanimate objects like stones do not act. An alternative would have been to use the
term ‘capacities’, which has a strong agentive flavour to it. But, the connotation of
capacities as being a quantitive measure makes this in our opinion a less suitable term;
our agentive powers are gualitative.

21 One example of this is Pélya’s theorem saying that a random walk in two dimensions is guaranteed to
return to its origin, while a random walk in three dimensions has a chance of approximately only 0.34 to
do so.

22 One can ask the reverse question: what is captured by three commutativity axioms for three pairs
of dimensions in a three dimensional S5 set-up? The answer to this is ‘a kind of loosely coupled three
dimensional space that is not a coordinate system’.

B Itis tempting to extend this picture to natural language and certain philosophical debates the actual
impact of which seems hard to check.
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Also our use of the term ‘opportunities’ requires further explanation. In our con-
ceptualisation opportunities are relative to places and moments. They are independent
of agents, and thus, of histories. Opportunities, in this view, encode what futures are
possible as seen from a particular point in space. For instance, standing on top of
the Utrecht Dom tower, with little effort I can drop a stone on the Utrecht academy
building. But, standing in that place, I cannot with little effort drop a stone on the
Utrecht railway station. The opportunities of locations (and moments) are determined
by the affordances or potentialities of objects present at these locations and their direct
surroundings (at a particular moment). In the stone-throwing example: the opportunity
to throw a stone at the academy building hinges on the position at the Dom tower one
has and the availability of a suitable stone there (not too heavy, not too light).

Affordances originate in behavioural psychology but are now also studied in
robotics (Chemero and Turvey 2007) and virtual environments.”* There are differ-
ent competing theories about the nature of affordances that differ on whether they are
objective properties or subjective properties (Gibson 1979 vs. Norman 1999) or on
whether they have an identity independent of agents or not (Turvey 1992 vs. Chemero
2003). The affordances as we prefer to interpret them are objective (in line with Gibson)
and have a physical identity independent of agents (in line with Turvey). Potentialities
are talked about by Aristotle who distinguishes them form actualities. Barbara Vetter
describes potentialities as follows (Vetter 2015): “Potentialities are possibilities rooted
in objects; they are like possibilities, but they are properties of individual objects.”.

However, our theory is not about affordances and potentialities of objects directly,
but about the opportunities of specific locations they give rise to indirectly through their
situatedness in time and space. Our view here is that the objects present at locations
and their surroundings, through their affordances and potentialities, determine the
opportunities of that location. And the opportunities of different locations, they all
hang together. But, there is no systematic logical way in which they do. The way they
hang together is determined by the physical constellation of our world at the moment
of consideration. The physical constellation, in turn, is determined by the affordances
of objects present at neighbouring locations.

We can question this view in several ways. A first possible objection is that it seems
we might have overlooked certain physical conditions of locations that influence their
opportunities. To go back once more to the rock-throwing example: the opportunity to
throw a stone at the academy building also hinges on physical conditions like the wind
being not too strong and/or coming from the right direction and gravity being gravity as
we normally experience it on earth. However, as we see it, also these conditions result
from affordances of objects in the surroundings. The gravity we normally experience
can be seen as an affordance of our planet. Properties of the wind are properties of the
‘air objects’ in our atmosphere.

A second objection is that according to physics it is incorrect to allocate properties
to points in space. Since Einstein, we know that space is not an absolute reference

24 Itisan interesting fact that the behaviour in virtual worlds of computer games is mostly modelled along
the lines of the theory of affordances and potentialities: objects in virtual environments typically have their
own local animated behaviours attached to them (often explosions, collapses), and these are visualised as
soon as they are directly or indirectly triggered by the player.
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frame against which we can evaluate the truth of contingent physical properties. Yet,
that is what we propose to do here. As we already explained, our assumption is that for
the study of the phenomenon of agency this is justified. And under this assumption—
the absoluteness of space—we can see physical opportunities indeed as properties of
reference points in space.

A third objection is that there are kinds of opportunities that are not at all linked to
space or objects in space. These are typically (and maybe exclusively) opportunities
related to situations in social reality (Searle 1995) instead of physical reality. Examples
are opportunities related to social position, money and trades, rights and permissions,
etc. For instance, one only gets the opportunity to marry the person one has loved
for a long time if that person divorces her/himself from her/his current partner. One
only gets the opportunity to own a house in the center of Amsterdam as soon as one
can afford it (if ever). And one only gets the opportunity to go to university if one
successfully finished high school. Our ideas may be transferable to situatedness in
social reality, but we leave this investigation for future research.

Finally we might object against the whole enterprise of making a distinction
between powers and opportunities. Maybe it is not always very clear what exactly
the distinction between powers and opportunities is; does an agent who steps into a
very fast car obtain the power to drive very fast or the opportunity to drive very fast?
Our answer in that case is that the agent obtains the opportunity, and not the power,
because our notion of power is independent of locality. But there are other cases where
the distinction is not so clear. For instance, things are already less clear if we think
about the power/opportunity to see clearly only if one wears glasses. We believe that
‘opportunity’ is still the right modality here, but one can see where this is going; from
the glasses we can turn our attention to our eyes, our optic nerves, etc. Here we will not
address this issue any further and will assume that we can make a sensible distinction
between power and opportunity.

Let us now try to make these ideas formal. We do this by adding power and oppor-
tunity operators to the language of Newtonian space and time of the previous section.
The following definition gives the extended syntax.

Definition 4.1 Given a countable set of propositions P and p € P, and given a finite
set Ags of agent names, and ag € Ags, the formal language LnBTS PO iS:

p=pl-oleonrneg|[Llp|[Xle|[He | (lag pwrl)e | (lopptlie

The power and opportunity operators have the following readings.

([ag pwr])e reads “agent ag at the moment of evaluation has the power to see to
it that ¢”.

([oppt])e reads “at the moment and location of evaluation there is an opportunity
to see to it that ¢”.

It is important to read ([ag pwr])¢ correctly. It will therefore be good to con-
sider some readings that are wrong. One incorrect reading is “ag is at the location of
evaluation, where it has the power for ¢”. So, truth of ([ag pwr])p does not say the
agent ag is actually present at the location of evaluation. Another incorrect reading
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would be “wherever ag is, it has the power for ¢ at the location of evaluation”. This is
incorrect, because for most properties ¢, relative to the location of evaluation, it does
matter where the agent is: for non-spatial properties ¢ it actually needs to be present at
the location of evaluation, and for other properties, it may need to be present at some
specific other location in space. The correct reading is thus as stated above. If we want
to make it more precise, but also cumbersome, we could correctly change it to “from
its unknown location somewhere in space (that is possibly not the location of evalua-
tion) ag has the power for ¢ at the location of evaluation”. By this reading we avoid
talking about locations of agents in our object language. If we would have wanted to
talk about locations of agents in the object language, we would also have to assign
locations to agents in the structures. From a logic perspective it seems preferable not
to do that.

One feature that distinguishes powers from opportunities is that they are uniform
over space. This property adds further flavour to the above explained reading of the
power operator. We explained how operators should be interpreted as not saying any-
thing about the location of agents. Now we add as an extra condition that wherever an
agent is, it has the same powers. So, metaphorically speaking, we could say that the
power operator ‘hides’ an agent’s location.

In contrast to powers, opportunities are strictly ‘local’ in the sense that they encode
how local conditions affect what is possible globally. An opportunity here in Utrecht
restricts what is possible in Amsterdam in the sense that the possible histories of both
cities’ common space are restricted to the ones compatible with the opportunities here
in Utrecht. Yet, still these are the opportunities of Utrecht, and not of Amsterdam;
if Amsterdam’s opportunities were changed, and Utrecht’s opportunities not, then
we would induce another subdivision of the global histories admitted by Utrecht’s
opportunities.

We extend the NBTS-frames (L, M, H, L, X, H) of Definition 3.2 to NBTS.PO-
frames (L, M, H, L, X, H, P, O) that include structure for powers and opportunities.

Definition 4.2 AnNBTS.PO-frameisatuple (L, M, H, L, X, H, P, O) such that?>:
1. (L,M,H, L, X, H)is an NBTS-frame.
2. P: M x Ags +— 22" isa power function yielding for any moment and agent a
set of powers. We apply the following constraints.
a. moment specificity of powers: if P € P(m,ag) andh € P thenm € h
b. power for historical necessities: J £ P(m, ag)
c. no power for historical impossibilities: ¥ ¢ P(m, ag)
d. powers induce branching: if P € P(m,ag) and h € P and k' € H and
m € h’and b’ ¢ P, then nexty (m) # nexty (m)
3.0:Lx M 22" isan opportunity function yielding for any location and
moment a set of opportunities. We apply the following constraints.
a. moment specificity of opportunities: if O € O(/,m) andh € O thenm € h
b. opportunity for historical necessities: ¥ £ O(l, m)
c. no opportunity for historical impossibilities: ¥ ¢ O(l, m)

25 In the meta-language we use the same symbols both as constant names and as variable names, and we
assume universal quantification of unbound meta-variables.
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d. opportunities induce branching: if O € O(l, m) andh € O and h’ € H and
m e h’and i ¢ O, then next,(m) # nexty (m)

Ad 2: Individual powers are sets of histories. A set of histories modelling a power
reflects one possible impact an agent can have on the properties of the world; the
agent can ensure the actual history is among the members of the set.’® Powers are
not relative to locations or histories, but only to moments and agents. Note that this
definition hinges crucially on the fact that histories are uniform across space, which
would not have been the case if we would have adopted relativistic space—time. Powers
do depend on moments, to reflect that the powers of an agent may change over time.

NBTS structures do not provide a location of the agent somewhere is space. We
already explained that the reading of object level formulas is such that their truth value
does not depend in any relevant way on the location of the agent in space. This explains
why the structures do not provide that information.

Ad 3: Individual opportunities are sets of histories. A set of histories representing
an opportunity reflects one possible impact an agent with suitable powers could have
on the course of events of the world as seen from a certain location. Opportunities are
not relative to agents or histories, but only to locations and moments.

Conditions 2.d. and 3.d. are essential to bring the branching of histories in connec-
tion with the exertion of powers and the exploitation of opportunities. Without these
conditions, powers and opportunities would be mere sets of subsets of histories that
have no connection with their branching structure. The conditions ensure that powers
and opportunities actually differentiate between different possible temporal continua-
tions of a moment. These properties are similar to the well known ‘no choice between
undivided histories’ condition from stit-theory (see the discussion after Definition 5.2
in the next section).

Note that opportunities and powers are independent influencers of a situation’s
possible futures, that is, if in a certain situation something is an opportunity there is
no reason for it to also be a power, and if something is a power there is no reason
for it to also be an opportunity. But, as we will define in the next section, both quali-
ties are needed to enable real possibilities. This means that powers and opportunities
themselves are not given semantics through histories that necessarily reflect what is
actually (or really) possible in the world. Only the histories interpreting the agentive
effectivity function defined in the next section represent real possibilities. This raises
the question what the exact ontological status is of the histories implementing powers
and opportunities. Our answer is that they are counterfactual possibilities of a spe-
cific kind. So, our theory distinguishes between real (or factual) possibilities27 and
counterfactual possibilities.

26 This is a standard modelling view from game theory where such functions are generally called ‘effectivity
functions’. We avoid calling these functions ‘effectivity functions’ here, because in Sect. 5 we will define
a notion of effectivity with a more precise meaning than in game theory. The technical notion ‘effectivity
function’ can be said to hide a lot of conceptual structure that is worth bringing to the fore, like we aim to
do in this article.

27 A real possibility is still only a possibility; there is not one possibility singled out as being ‘the” most
real or factual possibility. We remain strongly committed to the non-deterministic world-view.
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To understand the definition of opportunities as subsets of histories at specific
locations better, let us come back to the Utrecht—Amsterdam example once more. Even
though the subsets of histories determined by Utrecht’s opportunities are also ‘present’
in Amsterdam (as explained, in our Newtonian setting histories branch out uniformly
over space, see Fig. 1) they cannot be ‘exploited’ from the Amsterdam perspective; they
have to be exploited by an agent from the Utrecht perspective: Utrecht’s opportunities
are not the same as Amsterdam’s opportunities.

We will now define a logic of power and opportunity in the space and time setting
of Sect. 3. The logic will be defined semantically. A Hilbert system based on sound
principles is also provided, but we do not know if it characterises the logic completely.
We will discuss valid schemas and non-valid schemas, to sharpen our intuitions about
the system and validate its modelling adequacy.

Definition 4.3 Relativetoamodel (L, M, H, L, X, H, P, O, V), truth ([, m, h) = ¢
of a formula ¢ in a space—time situation ([, m, h) with m € h is defined as:

(I,m,h) = {[ag pwr])p < 3P € P(m,ag) suchthatVh' € P, {I,m,h') = ¢
(I,m,h) = {[opptl)¢ < 30 € O(,m) suchthatVh' € O, ([, m,h') = ¢

Satisfiability, validity on a frame and general validity are defined as usual.

Definition 4.4 The following axiom schemas, in combination with a standard axiom-
atization for propositional logic, and the standard rules (like necessitation) for the

normal modal operators ‘[ ], and the non-normal operators ‘([ ]}’ define the Hilbert
system NBTS.POyip

Power

(moment determinacy of power) ([ag pwr])p — [H]([ag pwr])e

(power for historical necessities) [Hlp — ([ag pwr])e

(no power for historical impossibilities) [H]lp — —([ag pwr])—¢

(location independence of power) (L)(lag pwr])p < (lag pwr])(L)e
(monotonicity of power) (lag pwr]) (@ A V) — ([ag pwr])e
(reduction of second-order power) ([ag pwr]){[ag pwrl)p — ([ag pwr])e
(reduction of double power negation) —(lag pwr])—(lag pwr])p — ([lag pwr])p
(powers induce branching) (lag pwr])[X]e — (H)[X][H]e
Opportunity

(moment determinacy of opportunity) ([oppt])e — [H]{[oppt])e
(opportunity for historical necessities) [H]lp — ([opptl)e

(no opportunity for historical impossibilities) [H]¢ — —([oppt])—¢

(monotonicity of opportunity) (loppt]) (@ A ¥) = ([oppt])e
(reduction of second-order opportunity) ([oppt])([opptl)p — ([opptl)e
(reduction of double opportunity negation) —([oppt])—([oppt])p — ([oppt])e
(opportunities induce branching) (loppt])[X]e — (H)[X][H]@

Power-Opportunity interactions
(opportunity-power reduction) ([oppt]){lag pwrl)p < ([ag pwr])e
(power-opportunity reduction) ([ag pwr])({[opptl)g < ([opptl)e
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The above system is sound relative to the logic defined by the semantics, but we do
not know if it is a complete characterisation. Let us state this in the following way.

Proposition 4.1 (Soundness) Logic(NBTS.PO-frames) 2 NBTS.POuyiin

Proofs are provided in the appendix.

Open question 4.1 (Completeness) Logic(NBTS.PO-frames) € NBTS.POwip,

A proof strategy for completeness that could be employed here is to simulate the
power and opportunity modalities in normal modal logic (Gasquet and Herzig 1993;
Kracht and Wolter 1999). One meaningful way in which this could be done is by
introducing normal modal logic S5 operators [ag pwr] and [oppt]. Then we can
define ([ag pwr])p =4er (H)lag pwrle and ([opptl)y =4.r (H)[opptle. It is
not difficult to see that in this way we can build a normal modal logic equivalent of
the above logic. For this equivalent logic, we could then aim for a normal modal logic
completeness proof. One of the complications for completeness is exemplified by the
‘location independence of power’ axiom (L)([ag pwr])¢ < ([ag pwr])(L)¢e. The
axiom expresses commutativity between the normal modal operator [L] and the non-
normal operator ([ag pwr]). Its validity is easy to assess. But, its translation in the
above suggested way yields a non-Sahlqvist formula. Furthermore, the commutativity
points to a product-like interaction between a normal and a non-normal modality,
something that to our knowledge has received no attention in the mathematical modal
logic literature (Kurucz 2007).

Instead of focussing on completeness, we discuss some salient valid schemas and
non-valid schemas of the logic. We group related properties and issues together. We
will use the symbol - for valid schemas derivable in the system, and ¥ for schemas
that are not derivable, and for which, due to soundness, semantical counterexamples
exist.

4.1 Counterfactual possibilities and the ‘reach’ of cross-historical reference

To assess properties like ‘opportunity for historical necessities’ [H]gp — ([oppt])e it
is important to realise that the modal quantifier [H] reaches over all histories emanating
into the future from any given situation. These histories include some that interpret
powers, some that interpret opportunities, some that interpret both, and we even allow
those that interpret neither. Of the histories that interpret both, there are some that
interpret real possibilities. The validity says that if a property ¢ is true for all such
histories, it must be a (trivial) opportunity. Validity of [Hl¢p — ([ag pwr])e gives
the same story for powers. The properties have negative variants in the form: [H]p —
—(lag pwr])—¢ and [H]p — —([oppt])—¢.

The following properties are derivable from the ‘power for historical necessities/no
power for historical impossibilities’ and ‘opportunity for historical necessities/no
opportunity for historical impossibilities’ properties by substitution of T.
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(power for logical necessities) F ([ag pwr]) T
(no power for logical impossibilities) F —(lag pwr]) L
(opportunity for logical necessities) F ([oppt]) T

(no opportunity for logical impossibilities) = —([oppt])L

Note that by performing the substitution we detach a purely logical property from a
property that carries both logical and physical information. And this is correct: logical
invariants (in the sense of Tarski (1986)) are also invariant over time and space.

4.2 Second-order phenomena, idempotency and immutability

(idempotency of power) F ([ag pwr]){[ag pwrl)p <> ([ag pwr])p
(immutability of power) F —(lag pwr])—([ag pwr])p < ([ag pwr])e
(idempotency of opportunity) = ([oppt])([oppt])¢ < ([oppt])e
(immutability of opportunity) = —=([oppt])—=({[oppt])¢ < ([opptl)e

The properties of idempotency and immutability, that are easily derivable in the
Hilbert system, express an important aspect of our modelling of power: there are no
second-order powers. Agents have a power for something, or they do not have a power
for that something. They do not have, in a non-trivial sense, the power to have a power,
as this is just the same thing as having that power, witness the property of idempotency.
And they do not have, in a non-trivial sense, the power not to have a power they have, as
this would conflict with immutability. So agents have no (instantaneous) powers over
their powers; in any situation there is exactly one specific unambiguously demarcated
set of powers (which indeed is directly visible in the formal semantics in the form of
the set P(m, ag)).

Mayr (2011) mentions as an example of a second order power “to become brittle
when heated” (the first order power is here “having the power to break™). But as we
mentioned before, this assumes a more general interpretation of powers than ours.
Here we strictly talk about agentive powers. However, it seems that the property
we formulated for agentive powers could make sense for powers in general. It seems
defendable to claim that in cases like “to become brittle when heated” the only relevant
property is that the material (object) has the power to break and that we can eliminate
all talk of brittleness: the object has the power to break, which is manifested if it is
both heated and hit.

4.3 Interactions between power and opportunity

Two properties listed among the axioms in the Hilbert system are the identifica-
tion of the opportunity for power with plain power: ([oppt]){lag pwrl)e <
([ag pwr])e and the identification of power for opportunity with plain opportunity:
(l[ag pwr]){[opptl)¢ <> ([opptl)e. These properties follow from the fact that
powers and opportunities each only select subsets of histories linked to the moments
relative to which one evaluates truth. This eliminates rather complex possible con-
cepts such as the opportunity for a power and the power for an opportunity relative to
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a single moment of evaluation. Note that concepts like ‘the power fo obtain an oppor-
tunity’ may make sense though, if we consider agentive movement (we will discuss
this separately below). However, in case of instantaneous realisations at one and the
same moment of evaluation, it is correct to identify nestings of opportunity and power
operators with the last operator used, as is reflected by the opportunity-power and
power-opportunity reduction properties of Definition 4.4. From this it follows that the
following are non-valid schemas saying that we do not have commutativity for the
two non-normal operators.

(no opportunity-power commutativity) ¥ ([oppt])([lag pwr])¢ — ([ag pwr])([oppt])e
(no power-opportunity commutativity) ¥ ([oppt])([lag pwr])p < ([ag pwr])([oppt])e

The counter models proving these invalidities are easy to construct, because for a
given situation {/, m, h) powers and opportunities are entirely independent.

4.4 Moving agents

One particularly interesting issue concerning interactions between power and oppor-
tunities is the problem of ‘agent movement’. Agents have a position somewhere in
time and space. At such a point the agent has powers (that it would also have at
other places in space) and it faces some opportunities (that are, or can be, specific for
that situation). However, we can imagine that an agent lacking a certain opportunity
might have the power and opportunity to move itself to a location where it does have
that opportunity. Movement always takes place in time and space. And it cannot be
infinitely fast. Should we then have logical properties in our system corresponding to
the constraints imposed by the limitations of movement? We believe we should not.
We already pointed to the fact that our object language ‘hides’ the locations of agents
in the sense that they are not needed for the interpretation of the object level language
operators. So, our language is not meant to be able to express such constraints. Move-
ment couples the location dimension and the time dimensions. But in our language we
can only talk about these dimensions in terms of general modal quantifiers; accounting
for constraints reflecting the physical limitations of moving agents requires a stronger
language, like the mathematical languages used by physicists.

4.5 The dynamics of power and opportunity

A natural question to ask is how agentive powers and opportunities develop over
time. It is clear that we do not want to put too much logical constraints on that.
Opportunities change over time, because the world changes over time. And powers
of agents change over time, because agents may gain or loose powers. However, for
powers and opportunities that refer to future (next) properties, we do get a logical
constraint. It is a quite subtle one and we explain it in terms of opportunities. If at
a certain location there is an opportunity for an effect in the future, then along the
histories leading into that particular future at that particular point in the future, there
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is an immediate (but trivial) opportunity for that effect.”® This is in accordance with
the following properties following in the Hilbert system.

(powertime shift) = (lag pwr])[Xlp — (H)[X[{[ag pwr])¢
(opportunitytime shift) b= ([oppt])[X]lp — (H)[X]([oppt])¢

These are direct consequences of the ‘powers induce branching” and ‘opportunities
induce branching’ axioms in combination with the ‘power/opportunity for historical
necessities” axioms. One might wonder how then, with these logical constraints, agents
obtain new powers and opportunities and lose others. The answer is: by being effective
for some effects and not for others (something we will discuss in the next section).
By being effective for a certain proposition, agents ensure that the ‘next’ histories
are a subset of the current ones, and in the next state a new division of powers and
opportunities in terms of this subset of histories becomes relevant. In this way, powers
and opportunities change as time evolves.

4.6 Independence of powers

We already explained that opportunities, since they belong to locations, are not
independent, but hang together in a non-logical way determined by the physical con-
stellation of the world. However, what about the powers of separate agents? Do they
interfere with each other? Are there dependencies between them? Actually, in the
system we put forward here there is such dependence and interference, but it goes via
the notion of effectivity, discussed in the upcoming Sect. 5. Effectivity will be defined
as requiring both power and opportunity. And for effectivity we will define an axiom
capturing, for instance, the fact that it cannot be the case that at the same moment and
location one agent effectively opens a door while another agent effectively closes it.
But, in examples like these it does not follow that if one agent has the power to open the
door, the other cannot have the power to close it; it can be that this other agent has the
power, but not the opportunity. So, the logic dependence on the level of effectivity does
not induce a logic dependence of powers, because this is prevented by the non-logical
physically contingent way in which opportunities hang together across space. There is
no systematic logic interaction at the level of powers; interactions between agents and
between agents and their environment take place at the level of effectivity, and that is
how it should be, we believe. This links up neatly with one of our core beliefs, which
is that agentive powers are constitutive of what it is to be an agent. And being an agent
or not should not depend on the environment or the interaction with other agents.

4.7 Group powers and opportunities

A closely related question is whether powers and opportunities of agents can be com-
bined into powers and opportunities of groups of agents. Let us first note that we do
not have groups in the language here. Several related formalisms like Coalition Logic

281 hardly can get more logical than that.
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(Pauly 2002) and Alternating Time Temporal logic (Alur et al. 2002), do. The central
property in these formalisms, called ‘super-additivity’, allows that the effectivity of
groups possibly exceeds the effectivity of its members. Should we allow a similar view
for group powers and group opportunities? Our current position is that the powers of
a group are nothing more than the union of the powers of the individuals in the group.
We believe that powers are what make agents into individual agents, and groups are
not agents in that same sense. If that is correct, for powers we should trade in Coalition
Logic’s super-additivity axiom for the (logically) stronger ‘additivity’ axiom. But how
then should we think about the role of opportunities? As we saw, opportunities are not
properties of agents, but of the locations these agents apply their powers to. This would
not change for groups of agents: the powers of groups combine with the opportunities
of locations to form possibilities for these groups to be effective. But, we could maybe
add-in an extra interaction here, and it is one that could explain how on the level of
effectivity we switch from additivity to super-additivity. This interaction consists in
the possibility that agents might use characteristics of other agents in their environ-
ment as opportunities (which is inspired by the ideas of Bratman on shared agency;
Bratman 2014). However, all this is currently not accommodated by our theory, and
we leave the issue of powers and opportunities of groups for future research.

5 Effectivity

We will now add effectivity to the picture. An agent can be effective in a situation
if it has the appropriate power and the situation ‘grants’ him the opportunity, that is,
the situational environment (objects, forces, orientations, etc.) does not constrain it in
exercising its power. A power that can be exercised in a situation with the appropriate
opportunities leads to a real choice. A real choice is a ser of real possibilities, and an
agent having that choice has the possibility to be effective by constraining the future
possible courses of events to those demarcated by the choice.

Let us again make these intuitions formal. We introduce an effective stit operator
to model the concept of effectivity.

Definition 5.1 Given a countable set of propositions P and p € P, and given a finite

set Ags of agent names, and ag € Ags, the formal language LegTiT is:

p=pl-olorneg|[Lle|[Xle|[He | {lag pwrl)e | ([oppthe | [ag Estit]e

The effective stit operator [ag Estit] has the following reading.

[ag Estit]e reads “relative to the situation of evaluation, agent ag effectively
sees to it that ¢”.

For convenience we also provide the reading of the dual.

(ag Estit)ep reads “relative to the situation of evaluation, agent ag effectively
allows for ¢ to occur”.

The dual accurately captures modes of acting that play a significant role in the
moral or legal evaluation of acts (one of the subject matters of deontic logic; Gabbay
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et al. 2013); agents can be to blame for things they allowed to happen (and could have
prevented>”).

We will not assume that an agent can only have an effect in the situation of evaluation
if it is actually present at the position determined by that situation (remember that
situations have three components: a location, a moment and a history). By choosing,
an agent affects the entire space it inhabites since branching is not a local phenomenon
in our theory (see Sects. 1 and 2); in terms of the histories selected by an agent that is
present somewhere in space exercising its choice, a choice is uniform across space.

Before giving the formal definition of the effectivity frames, let us introduce the
reader a bit more to stit-stuctures in general. A stit-structure imposes a structure of
moment-based choices on a branching time structure. In such structures it makes less
sense to ask “does the agent only have one choice to make at any moment?”’. The answer
is either yes or no, depending on how one individuates the act to be done by the agent.
Yes, one choice can only be done in the sense that one subset of histories is carved
out from all the possible temporal continuations of the world; in a non-deterministic
world it simply makes no sense to assume that agents can do anything else than that.
No, this one set of histories carved out by what an agent choses to do may be described
as doing many things at the same time; eating ones meal, thinking about logic, looking
at ones partner, listening to music, each of which can also be seen as a separate choice,
either conscious or unconscious, either intentional or unintentional. The structures
we define below always ‘look’ at a set of histories necessitated by an agent’s choice
(in the first sense described above) from the perspective of one such history in the
set. We will call the function that gives the alternative histories relative to a situation
(I, m, h) an ‘effectivity function’, because it gives the choice that determines for which
properties the agent is effective relative to the history %. This, of course, can be rather
confusing for readers familiar with the Coalition Logic notion of effectivity function
(Pauly 2002), which actually, as already explained, is similar to the functions we use
to interpret powers and opportunities. To avoid confusion (somewhat) we will call the
effectivity function we use below a ‘situational h-effectivity function’.

We extend the NBTS.PO-frames (L, M, H, L, X, H, P, O) of Definition 4.2 to
ESTIT-frames (L, M, H, L, X, H, P, O, £) thatinclude a function £ encoding effec-
tivity.

Definition 5.2 An ESTIT-frame is a tuple (L, M, H, L, X, H, P, O, £) such that:

1. (L,M,H, L, X, H,P,O)is an NBTS.PO-frame.

2. £ :LxMx H x Ags — 28 is a situational h-effectivity function yielding
for an agent ag the set of histories allowed by the choice exercised by the agent
relative to a location /, moment m and history 4. The agent ag need not be present
at location /. If agents are ineffective relative to a situation, the effectivity function
assigns the empty set. We have the following constraints on situational h-effectivity
functions’?:

a. no effectivity in incoherent situations: if m ¢ h then E(I, m, h,ag) = ¢

29 The ‘could have prevented’ condition is easily definable in stit formalisms.

30" All free meta-variables in these first-order conditions are assumed to be universally quantified; we do
not make these quantifications explicit to keep the conditions readable.
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b. conditional success: if £(/, m, h,ag) # dthenh € E(I,m, h,ag)

moment specificity of effectivity: if 2’ € £(I, m, h, ag) thenm € h’

d. effectivity requires power: if £(I,m,h,ag) # ¥ then E(,m,h,ag) €
P(m,ag)

e. effectivity requires opportunity: if £(I, m, h,ag) # Wthen E(I,m, h,ag) €
O, m)

f. local real possibility: there is an & € H such that £(I, m, h, ag) # ¥

g. shared space dependence: if for 0 < i < |Ags|, E(;, m, h;,ag;) # ¥ then
ﬂ0<,’§\Ag3\ Eli,m, hi,ag;) #9

©

Property 2.a. says that for incoherent situations (I, m, h) where the moment m is
not an element of the history 7, the effectivity function specifies the empty effect. As
we already mentioned, such incoherent situations will never ‘occur’, however, we add
this condition to make the function £ total. This constraint does not in any way affect
the properties of the logic.

Property 2.b. says that if we evaluate against a real history, that history is in our
effectivity set. This is a conditional version of classical stit’s success property: effec-
tivity implies succes.

Property 2.c. says that choices as defined by the effectivity function are only effec-
tive for the moment they are exercised at.

Properties 2.d. and 2.e. say that effectivity requires both power and opportunity.
Note that the distinction between effectivity, power and opportunity induces different
kinds of histories. In particular, there are histories that are not part of the effectivity
function of an agent. This is a main departure from standard stit theory, where histo-
ries are always concrete possibilities. But in our current theory there are also histories
that only give semantics to an agent’s powers or to opportunities of locations with-
out being elements of an effectivity function. We call such histories ‘counter factual
possibilities’.

Also note that effectivity possibly takes more than only power and opportunity. We
do not exclude that additional concepts are needed to get to a sufficient condition for
being effective. One such concept could be ‘knowing how’ (Ryle 1946).

At this point it is opportune to point to a constraint we did not explicitly state: h. no
choice between undivided histories: if »’ € £(I,m, h,ag) and h”" € H and m € h”
and next, (m) = nexty(m), then h”" € E(, m, h, ag). The reason we did not state
this constraint is that it already follows from conditions 2.d. and 2.e. together with
the powers induce branching and opportunities induce branching conditions in
Definition 4.2. Because effectivity sets (sets of histories pointed to by £(/, m, h, ag)
for different /) are also power sets and opportunity sets, and because the ‘undivided
histories’ condition is logically equivalent to the ‘induced branching’ properties, there
is no need to explicitly state it again (see proof in the appendix for the soundness of
the ‘no choice between undivided histories’ axiom in Definition 5.4).

Property 2.f. captures a basic assumption: that for any moment and location, there is
areal future that is admitted by any agent. The alternative would be incoherent: it would
mean that there could be moments and locations where agents could effectively see to it
that history comes to a hold. One could maybe argue that this could be allowed as akind
of subjective possibility, for instance to model that for a certain agent history would
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come to a hold (the agent is no longer part of the system; it dies and its powers cease to
exist,?! not their opportunities), but then we would enter even more uncharted territory.

Property 2.g. is the property we have to say about most. The property is a spatial
generalisation of what in the stit literature is called ‘independence of agency’. But, that
name is a mistake, we believe, and it is one that has carried a long way. First note that
the property is about non-emptyness of intersections: it says that if somewhere in space
there is an agent performing a real choice (it is effective for something), and somewhere
else in space there is another agent also performing a real choice, then the intersection
of their choices (in terms of admitted histories) is non-empty. Now one can have
different views on what non-emptyness means here. Our view is that non-emptiness
of intersections of choices of spatially separated agents represents that one agent can
influence the other in the sense that one agent can rule out possible futures for the other.
If an agent throws a stone in a river, it thereby changes the world common to all agents
and possibly influences, in some inexplicable and unknown way, the possible futures
of those other agents. The influence is there, because the throwing of the stone rules out
some of the cross spatial joint futures that were possible before the stone throwing. If
we would allow intersections to be empty, we could not conclude to this dependency.
If two spatially separated agents can perform their choices entirely independently
thereby reaching a new situation where they no longer share a joint cross spatial history,
apparently they have started to live in spatially entirely separated universes; they can
no longer do actions that at some point in the future might have a joint consequence.>?

Now, within this view, there is a case to be made for the position that the further
away two agents are from each other, the more independent they become. Intuitively
this is right. And the reason is just that the further away agents are, for all practical
purposes, the more they start to live in separated worlds. The further away they are,
the less likely it will become their actions will ever interfere. But gradients is not
what we are studying here. Our logic is not about likelihoods of interaction or grades
of dependence. In our idealised logical sense agents that live in the same world, no
matter how far they are spatially removed from each other, are dependent; they live in
the same space which means that for whatever actions they perform, ultimately there
might be joint consequences within that shared space.

Let us now briefly look at the other view. The traditional narrative behind non-
emptyness of choice intersections in stit logic is quite different. In a sense it is exactly
the opposite. It goes something like this. The choices of one agent cannot be influ-
enced by the choices of another agent, because whatever choice one agent performs,

31 Note we would have to get rid of the property ([ag pwr]) T.

32 Maybe the difference between dependence and independence can be made more clear by sketching the
analogy with multi-agent epistemic logic (van Ditmarsch et al. 2015). Making this comparison is more
than observing a similarity in the mathematical structures; the stit concept of ‘indetermination’ and the
epistemic concept of ‘uncertainty’ have much in common (and most compatibilists would likely say there is
no difference at all). This is reflected by their modal semantics. In the case of epistemic logic, the possible
worlds are the ones that are epistemically possible modulo the uncertainty admitted by the beliefs of an
agent. In stit logic, the possible histories (that in this context play the role of possible worlds) are the ones
that are possible modulo the indeterminacy admitted by the choice of an agent. Now, if in epistemic logic
we would demand that intersections of sets of possible worlds of different agents are never empty (like we
do for the choices in stit), then we would get dependence of beliefs: it would never be possible that if one
agent beliefs p, another agent would belief —p.
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any choice of some other agent is still possible because of the non-emptyness of
intersections. Note how this narrative leads to exactly the opposite point of view: if
intersections of choices are non-empty, the agents are independent, because a choice
by one agent does not affect the repertoire of choices open to other agents. We believe
our narrative above, with a clear role of the spatial dimension of agency, is much
more appealing, which is why we reject the name ‘independence of agency’ for the
most central formal property of stif logic’s. The generalisation to a situational context
involving both time and space shows us that the property expresses dependence rather
than independence.’® This is especially clear if one realises that in the traditional
view, we cannot develop a story of agents ‘in practice’ becoming more independent
the further they become spatially separated, as we did above for our interpretation.

We end this discussion point with what Belnap, in an early article (Belnap 1991),
has to say about the non-emptyness of intersections. Here is what Belnap writes:

When considering multiple agents, I postulate for each moment that for each
way of selecting one possible choice for each agent from among his or her set
of choices, the intersection of all the possible choices selected must contain at
least one history (Something happens).

Note that this quote does not talk about independence or dependence, but more
neutrally about intersections in relation to ‘something happens’. Belnap’s descrip-
tion concerns the classical stit picture that does not consider a spatial dimension nor
counterfactual possibilities related to powers and opportunities, as we do here. But,
translated to our setting, the property is directly linked to our dependency property,
and to our property 2.f concerning local real possibility. Note however that ‘something
happens’ is maybe not a very good name for the property described in the quote; it
may suggest that one of the histories in the non-empty intersection is ‘most real’ in
the sense that it is the actual thing that is happening. That is a wrong idea, also heavily
attacked by Belnap himself (see his discussion on the ‘thin red line’; Belnap and Green
1994). But if we adopt Belnap’s terminology here, we could say that in our semantics
we do not only have temporal continuations along which ‘something happens’, but
also non-real continuations where we could say that nothing happens,>* or something
‘could have happened’ if the right opportunities and/or powers would have been in
place.

Let us proceed with the truth condition for the effectivity operator. We evaluate
truth with respect to situations built from a dimension of locations, a dimension of
moments and a dimension of histories.

33 Note that essentially the difference between the two views is that in the traditional view the ‘choice cell’
(Horty’s terminology) itself is what the choice is, while in our view the properties necessitated by that choice
cell are what the choice is. So, even in the well-studied context of stit-logic, we still have interpretation
problems related to different views on act individuation.

34 A natural questions is then how to think about histories that start out ‘real’, then become ‘unreal’
(counter-factual), and then end up ‘real’ again. This is not something to worry about. Actually, it is the
standard situation. Histories that stay ‘unreal’ continuously can only be like that if their counter-factuality
is reinstated at every branching point they encounter, which corresponds to a nesting of counter-factuals
seldom needed in reasoning contexts.
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Definition 5.3 Relativetoamodel (L, M, H, L, X, H, P, O, &, V), truth ([, m, h) =
¢ of a formula ¢ in a space—time situation (I, m, h) with m € h is defined as>>:

(I,m,h) =[ag Estit]le & W' € E(,m, h,ag) implies {{,m, h') = ¢

Satisfiability, validity on a frame and general validity are defined as usual.

If £(,m, h,ag) = ¥ we have that (I, m, h) = —(ag Estit)T. This says that
effectivity allowing for any consistent logical property is not possible along the history
h; the agent can only be effective along the history on penalty of reaching a logically
inconsistent state. This is another way to say that such effectivity is not possible
(physically).

Note how all our operators [ag Estit], ([ag pwr]) and ([oppt]) are interpreted
as carrying truths about the set of histories that can be reached by an instantaneous
‘jump’ relative to the same moment and choice.

Definition 5.4 The following axiom schemas, in combination with a standard axiom-
atization for propositional logic, and the standard rules (like necessitation) for the
normal modal operators ‘[ ], and the non-normal operators ‘([ ]}’ define the Hilbert
system ESTITwjp:

(agglomeration and monotonicity) [ag Estit]e A [ag Estit]y <> [ag Estit](p A ¥)
(transitivity and Euclidicity) axioms 4 and 5 for each [ag Estit]

(conditional success) (ag Estit)T — ([ag Estit]e — ¢)

(effectivity for historical necessities) [H]lp — [ag Estit]e

(effectivity requires power and opportunity) (H)[ag Estit]y — ([ag pwr])¢ A ([oppt])e
(no choice between undivided histories) (ag Estit)T — (lag Estit][X]e — [X][H]p)

(local real possibility) (H)(ag Estit)T
(shared space dependence) A (H)(L)((ag Estit)T Alag; Estitle) —
agi€Ags
(H) A (L)((ag Estit)T Alag Estitle;)
agi€Ags

The above system is sound relative to the logic defined by the semantics, but, as for
the fragment involving only powers and opportunities in Sect. 4, we do not know if it
is a complete characterisation. We state this more precisely, as follows:

Proposition 5.1 (Soundness) Logic(ESTIT-frames) 2 ESTITnjp

For the proofs, see the appendix.

?
Open question 5.1 (Completeness) Logic(ESTIT-frames) € ESTITyp

As in Sect. 4 for powers and opportunities, let us discuss salient properties and
non-properties of this semantics in order to sharpen our intuitions and assess its appro-
priateness. We will again use - for valid schemas derivable in the system, and ¥ for
schemas for which counterexamples exist.

35 All meta variables not explicitly quantified are assumed to be universally quantified, that is, I will leave
out universal quantifiers whenever their presence is obvious from the context.
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5.1 Something happens (better: global real possibility)

We can capture Belnap’s ‘something happens’ intuition (see our earlier discussion)
in a derivable property that we call ‘global real possibility’ (recall that we did not
agree with Belnap’s name for the property). In the following schema we have that
n=|Ags|.

(global real possibility) = (H)({(L)(ag) Estit)T A... A (L){ag, Estit)T)

The property is derivable from the properties ‘local real possibility’ and ‘shared
space dependence’. It says there is always some future admitted by the agents that are in
the spatio-temporal space our location of evaluation is part of. In terms of the properties
it derives from, we can say that local real possibilities can always be combined into
global real possibilities due to the property of different local possibilities always being
related to each other in a shared space. Note that in our semantics this property also
holds true for situations that are ‘reached’ through non-real histories. We believe that
is exactly right; also in counter-factual situations we apply the logical constraints that
hold for ‘real’ situations.

5.2 Interactions between effects and space

If an agent is effective, it is, in a logical sense, effective everywhere in space, because
the histories admitted by its choices are global and stretch out over the whole of space.
That is the Newtonian picture we sketched before. However, from that it does not
follow that we have a property like (ag Estit)T — [L](ag Estit)T that would
express something like ‘cross-spatial possibility’. Relative to a fixed history h, varying
over the spatial coordinate /, opportunities change, and thus, also the possibility for
an agent to be effective. Two related schemas concerning effects and space that do not
hold are the following (to keep the schemas simple we here consider systems with 2
agents only).

(spatial separation of effects) ¥ (L)[ag Estit]e A (L)[ag Estit]y —
(LY([ag Estit]p A [ag Estit]y)

(location dependence) ¥ (L)lag) Estit]e A (L)[agy Estit]y —
(L)(lag1 Estit]y Alagy Estit]y)

The schemas are not valid, because effectivity rests on opportunity, which depends
on the location. Counter models can thus easily be constructed on the basis of different
opportunities for different locations that cannot be made to hold jointly for one location.

5.3 Unreal histories and partiality of effectivity
Our semantics admits different kinds of histories. We already pointed to the difference

between real histories (for which £(I, m, h,ag) # ) and unreal (counterfactual)
histories (for which £(/, m, h, ag) = ¥). Unreal histories are ones along which agents

@ Springer



60 Synthese (2019) 196:31-68

are not effective. The existence of such histories leads to the absence of seriality for
effectivity.

(no seriality for effectivity) ¥ —[ag Estit]L

As a consequence, we also do not have unconditional success for effectivity: ¥
[ag Estit]e — ¢, which is why we added the condition to the success schema in
the Hilbert system.

For exactly the same reason (unreal histories) also the following scheme does not
hold (note that for power and opportunity we had similar schemas that did hold).

(no absence of effectivity for historical impossibilities) ¥ [H]p — —[ag Estit]—g

Clearly we can also have histories that are ‘partially’ real. A history % can be real up
to the moment m where £(I, m, h, ag) = ). And an unreal history can come back real
again at a moment m’ where £(I, m’, h, ag) # ?. And histories can also be partially
real in another sense: real for one agent but not for another. Along such histories some
agents are effective, while others are not. So the counterfactuality of such histories
is due to the fact that some agents in the situation considered do not have the right
powers or opportunities to be effective. One could add as a constraint to the logic that
we want to rule out such partial effectiveness. But we do not. Since we do not, we
have the following property.

(partiality of effectivity) ¥ —(H)({ag) Estit)T A [agr Estit]l)

5.4 The relation to the classical axiom for independence

The classical axiom of independence for stit-logics is as follows (for ease of exposition,
we only consider two-agent systems in this discussion).

(classical 2-agent ‘independence’) (H)[ag) Estit]e A (H)[ags Estit]y —
(H)([ag1 Estit]y Alagy Estit]y)

The axiom and the associated constraint on frames are justifiable if they talk
about a world consisting of moments and (branching) histories, but no locations.
It is a natural question then if in the current setup, where locations are added,
the classical axiom comes back if, for instance, we consider what is valid rel-
ative to one particular fixed location. For two-agent systems, our constraint for
shared space dependence is: if E(I,m,h,ag)) # @ and EI',m, 1, agy) # ¥ then
EU,m,h,ag))NEW",m, ', agy) # #. Now, if we consider this constraint relative to
one particular location, which means that [ = I/, we get a corresponding schema that
is close to the classical independence axiom.

(2-agent ‘shared space dependence’)

(H)({ag1 Estit)T Alag) Estit]e) A (H)({agz Estit) T Alagr Estit]y) —
(H)({ag1 Estit)T Alag) Estit]e A (agr Estit)T Alagr Estit]y)
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If the Hilbert system we gave is complete, this schema is derivable. But here we
do not want to investigate that, we only want to point to what the schema means and
how it can be justified that it closely resembles the classical axiom for independence
(the only difference being the ‘possibility’ clauses of the form (ag; Estit)T).

One can easily be led to belief that actually there are obvious counterexamples
falsifying this schema. Those are the examples where we substitute (logically) con-
flicting information for ¢ and . Take for instance the example where one agent,
relative to a house at the current location, ensures that he will repaint it (let us say,
represented by seeing to it that p), while another agent ensures that it will be burned
down (implying and amounting to seeing to it that —p). Clearly there is not one history
admitting this, since the same house cannot be repainted and burned down at the same
time. But this does not invalidate the above schema. It only says that since in this case
the consequence is false, the antecedent also has to be false. So, we get the property
—((H)((ag) Estit) T Alag) Estit]e) A (H)({(agr Estit) T Alags Estit]y)),
by which it follows that if at some place of evaluation it is possible for some agent
to make p true (the painting of the house), it is excluded that at that same place it
is possible for some other agent to make —p true (the burning of the house). These
possibilities cannot coexist, because, they depend on each other: in case the house
is indeed burned down by agent 1, it is not possible for agent 2 to repaint it. This
emphasises again that despite its name, the classical axiom expresses dependence and
not independence: the possibility for some agent to repaint the house depends on the
house not being burned down by some other agent.°

Now let us investigate this same example in our spatially generalised logic. Assume
that we still have that seeing to it that p means that a house is repainted and that —p
stands for burning down a house. But now the seeing to it that p and the seeing to
it that —p take place by different agents ar different locations. Then, for this specific
example, there is no dependence anymore: since the effectivity for p and for —p takes
place at different places, apparently we are talking about different houses. And then
there is no conflict and no dependence; one house is repainted, the other burned down.

But, if it is the case that in our generalised spatial setting, examples like these show
that agents acting at different locations can be more independent, then why are we
still referring to our axiom as “shared space dependency”? That is because even if
two agents are far removed from each other, as long as they share the same physical
space, in principle there can be cases of dependence or interference. In the burning
down the house example this can be made clear in an admittedly somewhat contrived
way. Assume that the second agent, the one with the arsonist tendencies, has the
opportunity to employ a powerful bomb that can destroy the world. That would mean
that no houses wherever located could be repainted, which could be associated with
making the formula [L]—p true.’” So, now again, this conflicts with p being true at

36 One could argue that a logic of physical possibilities should not treat them as dependent entities, since
only one possibility can be realised at the time. That is a valid, and natural view in so far non-agentive
possibilities are concerned. But, note that here we talk about how what one agent can do has a bearing on
what other agents can do at the same time.

37 Or, if we want to give the bomb some time to do its devastating work: use [X]p for painting the house
and [X][L]—p for the result of the explosion.
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some other location. Then, in this adapted example, we have dependence again; and
the dependence is due to the fact that the agents inhabit the same space.

6 Conclusion

In this article we are interested in logical theories of agency where choice performance
is situated in time and space. We take Chellas’ stit logic (Chellas 1980) as the basis
for our investigations and add a spatial dimension to it to come to a theory of situated
agency.

The only other theory aiming at a theory of agency in time and space is Belnap’s.
Unlike Belnap, we do not only study semantic structures of space, time and agency,
but also add the space dimension to a logical object language. The differences with
Belnap do not stop there. An important difference is that we depart from a classical
Newtonian picture, while Belnap’s proposal for agency in time and space is based
on his earlier work on relativistic branching space—times (BST, for short) (Belnap
1992). The theory of branching space—times is very intriguing as it couples a ‘true’
description of space and time, namely Einstein’s general relativity, with the crucial
presupposition of stit theory and open future/indeterministic thinking: the reality of
branching time. However, we have good reasons to stick to a Newtonian picture, as
we explained. A third difference with Belnap is that we incorporate in our spatio-
temporal stit logic how opportunities linked to ‘locations’ and ‘powers’ linked to
agents, together may result in ‘real possibilities’ or ‘factual possibilities’ that may
give rise to concrete instances of agents being effective. We managed to give a precise
logical description of the relation between opportunity, power and effectivity. This
precise logical description distinguishing between two different kinds of ‘non-real’
possibilities in the semantics. We can have counterfactual possibilities associated with
opportunities at specific spatial locations that would have been real possibilities if
an agent with the right powers would be present at that location, and we can have
counterfactual possibilities associated with agents present at certain locations; agents
having certain powers that would have been real possibilities if at that location the
agent would have had the opportunity the effectuate its power.

The theory we have put forward provokes new questions that could not be asked
before. An example of such a question is if it is possible to give a similar object
language level analysis of Belnap’s theory. It is clear that some of the axioms central
to our formal system, like ‘global clocks’ and ‘global branching’ should not hold for
a language taking Belnap’s model theory as its interpretation. But it is unclear what
we would get back in return, and how ideas about powers and opportunities could be
added to Belnap’s view.

Admittedly, this article has several deficiencies. There are many open questions.
Also the chosen approach and the design choices for the logic are open to reconsid-
eration. For instance: would it not have been better to be less abstract about space?
To make that question more concrete: if time comes with a discretisation (the next
operator), why do we not do the same for space? And, should the language (and thus
the structures) not be more concrete about the locations of agents? We can ask several
more questions like these. This shows that we have only scratched the surface of the
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problem of formalising situated agency. Yet we believe our picture can be a starting
point for new developments.

Maybe the most important contribution of the article is the picture it sketches of
agency in time and space. To conclude we want to try to sketch that picture one more
time. Every agent at any point in time and space can change the course of history
of its universe. If an agent does so at some point in time and space, that agent also
changes the course of history relative to all other points in space. In that logical sense
effects on other locations are instantaneous. It follows that in a fundamental sense all
space-inhabiting agents work together to determine the future of their spatial world.
Branching is then a global phenomenon influenced by local choices of agents. These
local choices, on their part, depend on agentive powers and local opportunities. All
these dispositional properties together, in one huge Cartesian product, determine the
possible real futures of the world.
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Appendix: Soundness proofs
Proofs for proposition 4.1.
(moment determinacy of power) ([ag pwr])¢p — [H]{[ag pwr])e

(I,m,h) = ([ag pwrl)p says that 3P € P(m, ag) such that VA’ € P,{{,m,}h") &=
¢. Now, since the function P(m, ag) does not depend on histories, we directly have
that for any 4" running through m it holds that {/, m, h”) = ([ag pwr])e. But then
(I, m, h) = [H|([ag pwr])e. O

(power for historical necessities) [Hlp — ([ag pwr])¢

From condition 2.a of Definition 4.2 we have that powers are subsets of histories
relative to an agent ag running through a particular moment m. Because of condition
2.b of Definition 4.2 we know that 3P € P(m, ag). Now, if all situations based on
the histories running through m satisfy ¢, also the situations based on histories in P
satisfy it.

(no power for historical impossibilities) [Hlgp — —([ag pwr])—¢

Itis convenient to prove the contraposition ([ag pwr])—¢ — —[H]e.If ([, m, h) =
([ag pwr])—¢ then AP € P(m, ag) such that V' € P, (l,m, h’) = —¢. Now con-

@ Springer


http://creativecommons.org/licenses/by/4.0/

64 Synthese (2019) 196:31-68

dition 2.c of Definition 4.2 tells us that P # (. But then also 34" € P such that
(I,m,h'y = —¢. Butthen (I, m, h) = [H]p and thus {/, m, h) = —[H]e.

(location independence of power) (L)([ag pwr])p < ([ag pwr])(L)e

Directly from the fact that powers are location independent subsets of histories and
the fact that the history dimension and the location dimension commute (def 3.5).

(monotonicity of power) ([ag pwr]) (¢ A ¥) — ([ag pwr])e

Directly from the fact that powers are sets (of histories, relative to a moment and
an agent). If ¢ A 1 holds for a set, ¢ also does.

(reduction of second-order power) ([ag pwr])([ag pwr])p — ([ag pwr])e

Consider a situation (I, m, h) relative to a model (L, M, H, L, X, H, P, O, V)
such that (I, m, h) = ([ag pwr])(lag pwr])¢ for some ¢. The truth condition for
powers now says that 3P € P(m, ag) such that Vi’ € P, {{,m, h') = ([ag pwr])e.
Because of condition 2.b of Definition 4.2 we know that P # (. Then, because of
moment determinacy of power, if (I, m, h') = ([ag pwr])¢ holds for some ' € P
running through m, it holds for any 4 running through m. So, we immediately also
have that (I, m, h) = ([ag pwr])e, which we needed to prove.

(reduction of double power negation) —([ag pwr])—([ag pwr])p — ([ag pwr])e

We will prove the contraposition —([ag pwr])¢ — ([ag pwr])—([ag pwr])e.
Consider a situation (I, m, h) relative to a model (L, M, H, L, X, H, P, O, V) such
that ({, m, h) = —([ag pwr])e. This says that there is no P in P(m, ag) such that
for all #’ € P we have that ([, m, ') & ¢. (¥) Because of moment determinacy of
powers we have for any i through m that (I, m, k") &= —([ag pwr])¢. Now take an
arbitrary P’ in P(m, ag). Such a P’ exists because of condition 2.b of Definition 4.2.
From (*) it follows that also for all #” in P’ we have that (I, m, h”) = —{[ag pwr])e.
So, P’ is a witness for the fact that (I, m, h) = ([ag pwr])—{[ag pwr])e.

(powers induce branching) ([ag pwr])[X]e — (H)[X][H]p

Consider a situation (I, m, h) relative to a model (L, M, H, L, X, H, P, O, V)
such that (/,m, h) = ([ag pwr])[X]e. It follows that 3P € P(m,ag) such that
(x)Vh' € P,{l,m, ') = [X]p. Take some h”" € P.From condition 2.d of Definition
4.2 it follows that for all """ with m € h”" and next;»(m) = next,»(m), we have that
" € P.Weknow from (*) that for all such 4", we have that (I, next,»(m), k") = ¢.
It follows that (I, m, h"") |= [X][H]p. But then we have that ([, m, h) = (H)[X][H]e.

We skip the proofs for the opportunity schemas; they very closely follow the structure
of the corresponding proofs for powers.

(opportunity-power reduction) {[oppt])([ag pwr])¢ < ([ag pwr])p
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Consider a situation (I, m, h) relative to a model (L, M, H, L, X, H, P, O, V)
such that (I,m,h) = ([opptl)([ag pwr])¢ (the left hand side of the schema
is true). It follows that 30 € O(m,[) such that for all »/ € O we have that
(I,m, 1) = {[ag pwr])e. From condition 3.c of Definition 4.2 we know that O # @.
So, let us say that A” € O. It follows that (I, m, k") &= ([ag pwr])e. Now from
moment determinacy of power we have that for any 42" running through m it holds
that (I, m, k") = {[ag pwr])e. So also (I, m, h) = {[ag pwr])e.

Consider a situation (I, m, h) relative to a model (L, M, H, L, X, H,P,O, V)
such that (/, m, h) = ([ag pwr])e (the right hand side of the schema is true). Now
from moment determinacy of power we have that for any 42” running through m it holds
that (I, m, ") = ([ag pwr])e. From conditions 3.b and 3.c of Definition 4.2 it follows
that 30 € O(m, [) such that O # (. From condition 3.a it follows that for any 2 € O
we have that m € h. But then O is witness to ([, m, h) = ([oppt]){[ag pwr])e.

(power-opportunity reduction) ([ag pwr])([oppt])¢ < ([oppt])e

The proof structure is the same as for the previous property with the roles of powers
and opportunities interchanged.

Proofs for proposition 5.1.
(agglomeration and monotonicity) [ag Estit]p A [ag Estit]y < [ag Estit](¢ A )

Definition 5.2 item 2 states that situational h-effectivity functions interpreting
modalities [ag Estit]e map each situation to a (possibly empty) set of situations.
[ag Estit]e holds in a situation if and only if ¢ holds in the situations mapped
to. So, our situational h-effectivity functions are nothing more than classical Kripke
frames. This means that as far as effectivity is concerned we deal with normal modal
logic frames obeying both agglomeration and monotonicity (together equivalent to the
Kripke axiom K). Proofs are trivial and to be found in any textbook on modal logic. O

(transitivity and Euclidicity) axioms 4 and 5 for each [ag Estit]

[ag Estit]le — [ag Estit]lag Estit]e and —[ag Estit]ey —
[ag Estit]—[ag Estit]e Follow directly from the fact that h-effectivity function
outcomes are sets. If the set is empty (indicating that we are on a history interpreting
a power or opportunity, but not a real posibilty), the axioms hold trivially.

(conditional success) (ag Estit)T — ([ag Estit]ep — ¢)

First consider situations where (I, m, h) = (ag Estit)T. Inthat case we trivially
have that (/,m, h) &= (ag Estit)T — ([ag Estit]e — ¢). Second consider
situations where ([, m, h) |= (ag Estit)T. It follows that £(I, m, h, ag) # #. Now
from condition 2.b of Definition 5.2 it follows that in that case & € £(I, m, h, ag). So,
from (I, m, h) = [ag Estit]e it follows that ([, m, h) = ¢.

(effectivity for historical necessities) [Hlp — [ag Estit]e
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(I,m,h) = [H]p says that all situations (I, m, h’) based on histories running
through m obey ¢. Condition 2.c of Definition 5.2 says that h-effectivity functions
interpreting modalities [ag Estit]e in a situation (/, m, h) select subsets of the
histories running through m; the modality evaluates to true if ¢ holds relative to all
histories in the set. So, it follows that ([, m, h) = [ag Estit]e.

(effectivity requires power and opportunity) (H)[ag Estit]e — ([ag pwr])p A ([oppt])e

Follows directly from conditions 2.d and 2.e in Definition 5.2 saying that if
El,m,h,ag) # @then E(I,m, h,ag) € P(m,ag), and if E(I,m, h,ag) # @ then
El,m,h,ag) € O, m).

(no choice between undivided histories) (ag Estit)T — ([ag Estit][X]e — [X][H]ep)

First consider situations where (I, m, h) [~ (ag Estit)T.In that case we trivially
have that (I, m, h) |= (ag Estit)T — ([ag Estit][X]gp — [X][H]e).Second con-
sider situations where (I, m, h) = (ag Estit)T. It follows that £(I, m, h, ag) # @.
from conditions 2.d and 2.e in Definition 5.2 it follows that £(/,m, h,ag) €
P(m,ag)NO(, m).But, for this proof we only need either £(I, m, h, ag) € P(m, ag)
or E(I,m,h,ag) € O(,m) (we take the first). Since E(I, m, h,ag) € P(m,ag),
from condition 2.d in Definition 4.2 we have that (*) for any 4’ € £(I, m, h, ag) and
h' € H and m € h” and nexty (m) = nexty:(m) then h” € £, m, h,ag). We
need to prove now that ([, m, h) |= [ag Estit][X]¢ — [X][H]e, and to that end we
assume ([, m,h) = [ag Estit][X]e. It follows that for any ' € £, m, h,ag)
we have that (I,m,h’) & [X]e and thus (I, next;y(m), h’) &= ¢. Now consider
any h” with m € h” and nexty»(m) = next;,(m). From (*) it follows that since
h e &E(,m,h,ag) (the succes condition in condition 2.b of Definition 5.2) we have
that h” € £, m, h, ag) and thus (I, next,»(m), k") = ¢. Since this holds for any /"
we get that ([, m, h) = [X][H]e.

(local real possibility) (H){ag Estit)T

Condition f. of Definition 5.2 says that relative to any situation there is an h € H
such that £(I, m, h, ag) # ¥, which corresponds directly with the above schema.

(shared space dependence) [\ (H)(L)({ag Estit)T A [ag; Estit]e;) —
agicAgs
(H) A (L)({ag Estit)T Alag; Estitle;)
agicAgs

Take a situation (I, m, h) where ([, m, h) = /\agieAgX(H)(L)((ag Estit)T A
[agi Estit]e;). This says that for each ag; € Ags there is a situation (/;, m, h;)
such that £(l;, m, h;,ag;) # ¥ and for all ' € &E(;, m,h;,ag;) we have
that (I;,m,h’) &= ¢;. Now, from condition 2.g of Definition 5.2 it follows that
ﬂ0<iS|AgS|€(li,m,hi,agi) # {J. But that means there is at least one h” €
ﬂ0<i§|AgS|5(l,~,m, hi,ag;) and that for all h"”" € ﬂ0<i§|Ag5| Ell;,m, hi,ag;) it
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holds that (I;, m, h"") = ¢;. But then (I, m, h) = (H) /\ag[eAgs (L)({(ag Estit)T A
[agi Estit]e;), with h”” as a witnes for the existential modal quantifier (H), and the
l; as witnesses for each occurrence of the existential modal quantifier (L;).
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