Synthese (2019) 196:1501-1528 @ CrossMark
https://doi.org/10.1007/511229-016-1244-4

S.I.: UNITY OF STRUCTURED PROPOSITIONS

A general argument against structured propositions

Peter Pagin!

Received: 14 February 2016 / Accepted: 4 October 2016 / Published online: 14 November 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract The standard argument against ordered tuples as propositions is that it is
arbitrary what truth-conditions they should have. In this paper we generalize that
argument. Firstly, we require that propositions have fruth-conditions intrinsically.
Secondly, we require strongly equivalent truth-conditions to be identical. Thirdly,
we provide a formal framework, taken from Graph Theory, to characterize structure
and structured objects in general. The argument in a nutshell is this: structured objects
are too fine-grained to be identical to truth-conditions. Without identity, there is no
privileged mapping from structured objects to truth-conditions, and hence structured
objects do not have truth-conditions intrinsically. Therefore, propositions are not struc-
tured objects.

Keywords Propositions - Structure - Graph theory - Truth-conditions - Unity

1 Introduction

This paper concerns the question whether propositions are structured. The idea that
propositions are structured has had both proponents and critics. Among models that
have been suggested are

Ordered tuples (e.g. Russell 1903 (ascribed); Cresswell 1985)

Trees or facts about trees (e.g. Lewis 1970; King 2007, 2014a)

Mental acts/speech acts (Soames 2010, 2014; Hanks 2011, 2015)

Abstract procedures (e.g. Duzi et al. 2010)

Elements of intensional algebras (e.g. Bealer 1993)

B Peter Pagin
peter.pagin@philosophy.su.se

Department of Philosophy, Stockholm University, 106 91 Stockholm, Sweden

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11229-016-1244-4&domain=pdf
http://orcid.org/0000-0002-5250-1881

1502 Synthese (2019) 196:1501-1528

Many have criticized the ordered-tuple model, for instance Bealer (1993, p. 22),
Soames (2010, pp. 29-32), King (2014b), Jespersen (2003). Cresswell (2002) have
argued on the basis of properties of logical operators that propositions cannot be signif-
icantly structured at all. Russell (1903, pp. 47-48) argued that analysing propositions
into parts irreparably destroys the essential unity of the proposition.

A number of issues have been taken to be the or a problem of the unity of the
proposition, or an aspect of the problem. King (2009, p. 258) lists three questions':

(UNITY) a. What holds the constituents of the propositions together?
b. How does a structured complex have truth-conditions?
c. Why does it seem that some constituents can be combined into a propo-
sition and others can’t?

Jespersen (2012, p. 620) takes (a) above to be the main question of unity. Others, such
as Soames (2014, p. 97) and Hanks (2015, pp. 42ff.) take (b) to be the main problem
of unity. In this paper, too, I shall be concerned with the (b) question of unity. I shall
focus on the problem of structured propositions and truth-conditions.

I shall here generalize the criticism directed at the ordered-tuple model or propo-
sitions, to argue that no entity can meet the requirements of being both a structured
object and a proposition.? In so doing, it will of course be crucial what is meant by
“proposition” and what is meant by “structure’. I shall say a little, but hopefully enough,
about what propositions are, in the next section. I shall elaborate on what structure is
in Sect. 3. In Sect. 4 I shall spell out the conditions for being a structured object, to
a large extent by means of the account of structure in Sect. 3. The argument that is
enabled by these accounts is offered in Sect. 5. The account is applied to King’s model
in Appendix 1. Appendix 2 provides a proof for a central claim in Sect. 3.

2 Propositions

So, what are propositions? A sound and well established strategy for answering ques-
tions of the type “What is X?” is to separate two aspects of the inquiry: Firstly, what are
the functional properties, or “job description” of the concept of X? Secondly, which
entities do, or could, satisfy these functional properties? When it comes to proposi-
tions, an answer to the first question would consist in giving a list of features like the
following:

(PROP) Propositions are
(1) the objects/contents of propositional attitudes: beliefs, desires etc;

1 King states the question specifically with respect to his own theory and his own example. I have changed
the formulations to abstract from that.

2 1 want to declare at the outset that I am not against structured meanings. In fact, I think that both
structured and unstructured meanings are needed for a full account of language and communication, e.g.
in the semantics for belief sentences. I have in earlier work already combined structured and unstructured
meanings (Pagin and Pelletier 2007; and more is in preparation). It is just that I think that propositions
belong to the unstructured side, given their essential characteristics.

@ Springer

Synthese (2019) 196:1501-1528 1503

(2) intrinsically bearers of truth-conditions>;

(3) the contents of assertions (and perhaps other speech acts);

(4) the meanings of meaningful (declarative) sentences (in context);

(5) the primary bearers of modal properties; being necessary or possible;
(6) the bearers of probabilities;

(7) the referents of that clauses.

I take the first item on this list to be close to a platitude. We do believe such things as
that it is raining (at a particular time and place), or that London is the capital of the
UK, or again that seven is a prime number. When we specify what someone believes,
we specify the content of her belief, and what we specify then is a proposition.

The second item is a little more technical, in two respects. The adverb ‘intrinsically’
is meant here to indicate that whether a proposition is true or false, in relation to Reality,
or to a possible world, a world-time pair, or whatever the point of evaluation be, no
arbitrarily selected third factor is needed: no interpretation, assignment, or projection
that is it not privileged. If an interpretation or projection is privileged, then it is not
chosen by stipulation, and it does not have alternatives that are equally good. This
condition is clearly met if propositions simply are truth-conditions. More generally,
we can say that for propositions to have truth-conditions intrinsically is for there to be a
privileged, non-arbitrarily selected, universal function 7" such that for any proposition
p, T(p) is the truth-condition of p. In case propositions simply are truth-conditions,
T is the identity function.*

Since the requirement that there be a privileged function from propositions to truth-
conditions will be central to the argument, some clarifications are in order. I will
not claim that there are no functions from propositions™ (defined below) to truth-
conditions. Plainly there are. The problem will be that there are many, and that none is
privileged, i.e. none is determined as the right, or appropriate one. The idea of being
a privileged function T is epistemic rather than metaphysical. I cannot rule out that
there is an unknown or even unknowable metaphysical ranking among functions that
makes some candidates better than others, even if we cannot understand why. But if
there is one, it does not matter. What matters is that we can see a reason to rank some
candidate function T above all others, and if we don’t know of any such reason for
any candidate, no candidate is privileged, in this epistemic sense. This is precisely
the sense, I take it, in which authors such as Bealer (1993, p. 22) have criticized the
ordered tuple model of propositions: for all we can see, there is no good reason to
identify an ordered tuple with one proposition rather than another, or a proposition
with one tuple rather than another.

This is of course also the strategy in Benacerraf’s (1965) argument against identi-
fying numbers with sets. I shall refer to arguments from the lack of a better candidate

3 Some stress that propositions are the primary bearers of truth and falsity, or of truth-conditions, but this
issue is immaterial in the present context.

4 You might think that it is enough that for each proposition p there is a function T}, that maps p on its
proper truth-conditions, but that there need not be a universal function that works for all propositions. But
either T}, is not determined by p itself, in which case there is then no privileged function, or else T) is
determined by p and the value of some general function U from propositions to functions, and we define
T so that for any proposition ¢, T'(q) = (U(¢))(q).

@ Springer

1504 Synthese (2019) 196:1501-1528

as Benacerraf-style arguments. In Sect. 5 I shall spell out exactly where we need to
appeal to a Benacerraf-style argument.

I am not here going to argue that (PROP2) is an ingredient in our general concept of
a proposition, but rather take that for granted. I am aware that it is a controversial idea
that an entity can have truth-conditions intrinsically, independently of human activity,
although it does depend on what we are prepared to regard as an entity. I assume in
this paper that we can we speak of truth-conditions themselves as if they are entities.’

The second technical point concerns the individuation of truth-conditions. When
are the conditions that p the same as the conditions that g? Are the conditions that not
p the same or different from the conditions that not not not p? How we individuate
truth-conditions is crucial to the question whether propositions are structured. As it
will turn out, if truth-conditions are fairly coarse-grained, then propositions will not
be both structured and have intrinsic truth-conditions. And I will here take truth-
conditions to be fairly coarse-grained, according to the general idea that equivalence
amounts to identity:

(1) If truth-conditions ¢ are logically/analytically equivalent to truth-conditions d,
then c is identical to d.6

This principle is of course not completely precise as long as we do not specify the
relevant logic, or what analyticity amounts to here. Luckily, this can be left open in
the present context, since the nature of the argument will depend only on finding
uncontroversial examples, irrespective of how analyticity or logicality be delimited.

The (PROP) list can be extended with more items of the kind bearers of F, where
the noun F is related to a sentential context for that clauses. Thus (PROP) may con-
tain too little to fully characterize propositions. It may also contain too much, in the
sense that not all the items on (PROP) are uncontroversial. For instance, according to
MacFarlane’s (2014) brand of relativism, a proposition and a world are not together
enough to determine a truth value. Over and above the world, or world-time pair, or
whatever objective reality contributes, a context of assessment is needed to determine
the truth value of a proposition, provided it does have assessment-relative ingredients.
The context of assessment does not, on MacFarlane’s account, constitute a factor that
determines what propositions are, but is added on top of such factors for determination
of truth value.

The current assumption will only be that (PROP2) does characterize propositions,
together with (1). Since the argument will be negative, this will be enough for present
purposes. I shall use ‘proposition*’ for propositions as characterized by (PROP2) and

(1).

5 King (2009, pp. 259-60) says that he cannot see how “how propositions or anything else could represent
the world as being a certain way by their very natures and independently of minds and languages”. This
is not a topic for the present paper. I argue that nothing that does have truth-conditions intrinsically is a
structured object, and this is claimed to hold whether there are such things—propositions*—or not (trivially
if not).

6 Tdon’t mean by this notation that truth-conditions are individuals, and that is also why I don’t here use ‘=".
However we elect to treat truth-conditions ontologically, identity must satisfy reflexivity and (a counterpart
to) Leibniz’s law in reasoning about them.

@ Springer

Synthese (2019) 196:1501-1528 1505

The second step of the strategy mentioned above is to consider independently
specified candidates for being proposition*, i.e. for satisfying the functional role of
propositions. I shall now exemplify this step with the most common type of proposal
for structured propositions.

A standard approach to structured meanings is that of the set-theoretic construc-
tion of an ordered n-tuple (ay, ..., a,). Ordered n-tuples can be defined in terms of
unordered sets in several ways.” What makes them ordered are their identity condi-
tions: (ay, . .., a)isidentical to (b1, ..., b,) if,and only if, m = nandforl <i <m,
a; = b;. Hence, it matters to the identity of an ordered tuple where in the tuple an
element a occurs (it can occur in more than one place).

On the ordered tuple-approach (see, for instance Cresswell 1985), the proposition
that Rab is modeled, for instance, as the triple (R, a, b), or the pair (R, (a, b)), where
the latter itself has an ordered pair as its second element. On the first alternative,
the proposition is a thought of as a triple where the first element, R, is a relation
(in extension or in intension), and the two following arguments, a and b, are either
individuals or intensions (individual concepts) of individuals.

Although this is only a hint of what a full theory of propositions along these lines
would look like, it is enough to illustrate the problems that have been pointed out.
Firstly, are ordered n-tuples plausible candidates for being objects of belief? As has
been stressed many times, the answer is no. We don’t really understand what it would
be to believe (R, a, b), as little as we understand in general what it is to believe any
particular set. One can of course add the explanation that to believe (R, a, b) is just
to believe that Rab. It is fine to add this explanation, but the problem is that it is
needed. By adding this explanation we implicitly extend the meaning of ‘believe’ so
that the expression ‘believe (x, y, z)’ is understood as meaning the same as ‘believe
that xyz’. This does not answer the question what it was to believe an ordered tuple in
the first place, prior to the extension, only adds a stipulation concerning a new sense
of ‘believe’.

This problem is clearly related to the second: what is it for a triple like (R, a, b)
to be true? Intuitively, we would think that (R, a, b) is true just in case a is related
by R to b. But, as has been pointed out many times, this is certainly not the only way
to assign truth-conditions to (R, a, b). We might also say that this triple is true just
in case b is related by R to a. Or we could have some function f such that (R, a, b)
is true just in case f(a) is related by R to f(b), or yet something else altogether.
The sky is the limit. The main point is that the predicate °...is true’ is not defined
for ordered tuples, and although the meaning of the predicate can be extended to
cover ordered tuples, this can be done in many different ways. None of these ways is
privileged, whether or not selected by any feature of the tuples themselves as the right
way. Hence, ordered tuples are clearly not intrinsically bearers of truth and falsity.
We need to add something to make the connection, like a redefinition of ‘true’ or an
assignment of a new significance to the ordered tuple operation. We can characterize
such extensions as providing a function 7 from ordered tuples to truth-conditions, and
the problem is that it is arbitrary which such function 7 to select.

7 Standardly, (a, b) is defined as {{a}, {a, b}}.

@ Springer

1506 Synthese (2019) 196:1501-1528

We conclude that the ordered tuple version of structured meanings does not sat-
isfy the functional properties of propositions. But maybe there are other versions of
structured meanings that do. For instance, King (2007, 2014a,b) claims to have pro-
vided a model that does combine internal structure with intrinsic truth conditions. In
this paper, I shall argue that no model of structured propositions can have intrinsic
truth-conditions. I shall then turn to King’s proposal in the light of this argument (see
Appendix 1).

It should be noted that it is not only significantly structured models of propositions
that fail to satisfy (PROP2). The standard possible-worlds model, i.e. a set of possible
worlds, fails as well. That a world w is a member of a set of worlds Q is an intrinsic
property of Q, given the extensionality of sets. But that Q is true at w requires that we
map the condition of membership on the condition of truth (usually effected indirectly
in formal truth definitions). Typically, Q is taken to be true at w justin case w € Q,
but this is clearly not the only possibility. The obvious alternative is to take Q to be
true at w just in case w ¢ Q. This gives the dual of the standard notion. It is a more
cumbersome and less natural alternative, but perfectly workable.?

3 Structure

I shall here suggest a formal framework for talking about structured entities. The most
basic idea is that if an object is structured, then it has at least one proper part, i.e.
distinct from the (main) object of which it is a part. An object that has a proper part is
thereby complex. An absolutely unstructured object is simple. A minimally structured
complex object is one where there are no relevant differences between the parts, and a
maximally structured object is one where there are relevant differences between all the
parts. The framework will allow a more precise characterization of partially structured
objects.

To set out these intuitive ideas with greater mathematical precision I shall avail
myself of Graph Theory.? A graph G is a pair (Vg, Eg) of a set of vertices, or nodes,
Vi and a set of edges Eg. E is a binary relation over V. In the basic case, the edge
relation E is symmetric, irreflexive, and non-transitive. Graphs are abstract and in
themselves non-visual, but are standardly pictorially represented. For instance, let the
graph G be given as in Fig. 1. In this case, the set of vertices is Vg = {a, b, ¢, d}, and
the setofedges Eg = {(a, b), (a, c), (a,d), (b, ¢), (b, d)} (sometime more compactly
written ‘{ab, ac, ad, bc, bd}’). Every node is connected to every other except ¢ to d.

The graph G in Fig. 1 is a labeled graph, in that the vertices carry labels (the letters),
and it is connected graph, in that every vertex is reachable from every other along the

8 Do the characteristic functions, i.e. functions from worlds to truth values, fare better? Analogously, we
need to stipulate conditions for functions to be true, and the non-traditional conception that takes a function
as true at w iff it maps w on 0, or on Falsity, or L, is perfectly coherent. In additions, there is a problem
with (PROP1), both for sets and functions, for it is not clear what it consists in to believe a set or a function.
Again, you can stipulate what it should amount to, but that wouldn’t answer the question what it does
amount to before the stipulation.

9 Chartrand and Zhang (2012).

@ Springer

Synthese (2019) 196:1501-1528 1507

Fig. 1 A basic, connected, and
cyclic graph

Fig. 2 A basic tree

Fig.3 The same tree as in Fig. 2 E

a]
bl [e]

edges. That is, we can define the transitive closure Eg of E¢, and every pair (v;, v;)
of distinct vertices in Vg is in Eg.!0

G in Fig. 1 is also cyclic. That is, it contains at least one cycle, leading from a vertex
v along edges in Eg back to v. That is, there is at least one vertex v (at least two in
the case E is irreflexive) such that Eg (v, v).

In characterizing structured objects we shall be interested in trees. A tree T is a
connected acyclic graph (not containing cycles), for instance as depicted in Fig. 2.

The same tree could equally well be depicted as in Fig. 3. There is no privileged
vertex or orientation in a basic tree. We shall, however, be interested in rooted trees,
where one particular vertex, the root of the tree, has a privileged role. Here the root
of a tree will be depicted as circled, and it is customary to depict rooted trees with the
root at the top, “growing” downwards. Letting the a vertex be the root, we would thus
get the depiction of Fig. 4. With a selection of a privileged vertex, a rooted tree T is a
triple (V7, ET, v) of a set of vertices Vr, a set of edges E7 over Vr, and a privileged
member v € V7.

10 The transitive closure R of a relation R is defined inductively as the smallest set X of pairs such that (i)
R C X; (ii) if (a, b) and (b, ¢) are in X, then (a, ¢) is in X.

@ Springer

1508 Synthese (2019) 196:1501-1528

Fig. 4 A basic rooted tree a

Fig. 5 A directed graph

The selection of a root imposes a direction on the edges, since in each pair of
adjacent vertices, one is closer to the root than the other. A rooted tree is therefore
equivalent to an un-rooted tree where all the edges are directed (arrows), all pointing
towards, or all pointing away from, some particular vertex, as in Fig. 5.

In a directed graph G, the edge relation Eg is not symmetric, and if all edges are
directed and there is only one edge between every two nodes, asymmetric, as in Fig. 5.

Here, we shall work with rooted trees, since it is natural to let the root represent the
whole structured object itself, the edge relation a relation of immediate part of, and
the non-root vertices the parts, immediate or mediate, of the whole object. We shall
from now on take the edge relations to be asymmetric. With an eye to the intuitive
part-of relation, we shall let the second argument of E be the one closer to the root.
Therefore, if vy is the root T, it holds that there is no v € V7 such that (vg, v) € ET
[we shall sometimes write E7(x, y)].

The structure of a graph is exactly what it has in common with any other graph that
has the same structure. The relation of being same-structured is then more basic than
the non-relational idea of a structure. Not surprisingly, two graphs G and H will be
said to have the same structure iff they are isomorphic, i.e. iff there is an isomorphism
between G and H.

An isomorphism between two basic graphs G and H is bijection f : Vg — Vg
such that for any v, u € Vg, it holds that

Eg(v,u) iff Eg(f(v), fw)

An isomorphism f between two rooted trees T and U must also satisfy the condition
that where v is the root of 7" and u the root of U, f(v) = u. This condition follows
from the basic isomorphism condition for rooted trees where the edge relation is
asymmetric. For there is exactly one vertex in each tree that satisfies the condition that
it is edge-related to no vertex (although one or more are edge-related to it), and by the
basic isomorphism condition, this vertex in the one tree one must be mapped on the
corresponding vertex in the other.

@ Springer

Synthese (2019) 196:1501-1528 1509

Fig. 6 A minimally structured
rooted tree

A special class of bijections are permutations, i.e. 1-1 functions f : Vg — Vg,
from a vertex set onto itself. A permutation that is also an isomorphism from a graph
to itself is called an automorphism. That is, f is an automorphism iff it holds for any
Vi, Vj € Vi that Eg(f (v;), f(v])) iff Eg (v;, Uj).

An automorphism of course maps the root on itself. In general, we shall say that
a permutation f on the vertex set of a rooted tree T is root invariant iff f(v) =
v in case v is the root of T. We can define a function Fy on trees in terms of a
root-invariant permutation f such that where T = (Vr, E7,v), F7(T) is defined
to be (f(Vr), f(ET), f(v)) = (Vr, f(ET),v). Here f(ET) = {(f(vi), f(v))) :
(vi, vj) € E7}. To exemplify, let T be the tree of Fig. 4, and let f be the permutation
that is the identity function on all vertices except that f(e) = b, f(b) = e. Then
f(E7) is the set {ea, ca, da, bd}. f is here not an automorphism, since (b, a) € Er
but (f(b), f(a)) = (e,a), and (e,a) ¢ E7. Now, in the case a permutation f is
an automorphism, then (f(v;), f(v;)) € f(E7) iff (v;, v;) € E7 (by the definition
of F), which holds iff (f(v;), f(v;)) € Er (since f is an automorphism). Hence,
f(ET) = E7.So0,in case f is an automorphism, the corresponding Fy is the identity
function on rooted trees.

By means of the concept of an automorphism, we can characterize a graded notion
of being structured, ranging from minimally structured to fully structured. We can now
say that a rooted tree T is minimally structured iff every root-invariant permutation f
on Vr is an automorphism. In such a case, there are no relevant differences between
the non-root vertices of 7. For instance, the tree T given in Fig. 6 has an edge relation
Er = {as, bs, cs,ds}. There are thus no structural differences between the lower
vertices a, b, ¢, d. Each is characterized by only being edge-related to s, and so clearly
any root-invariant permutation will preserve these properties. The depiction of the tree
presents a left-right order between the lower vertices, but that order is immaterial,
since no permutation of the lower vertices will change the edge relation. The tree of
Fig. 6 therefore presents the structure of a simple (unordered) set s with the members
a,b,c,d.

A rooted tree is maximally structured iff there is only one automorphism, the identity
permutation (mapping every vertex on itself). A minimal example is given in Fig. 7.
For this tree there are only two root-invariant permutations: the identity permutation
and the permutation f such that f(a) = a, f(b) = ¢, f(c) = b. But the latter is not
an automorphism, since the edge relation contains (b, @) but not (f(b), f(a)).

There are intermediately structured graphs. For instance, the tree in Fig. 4 admits as
automorphisms both the identity function and the function f which is like the identity
function except that f(b) = ¢, f(c) = b, but no other root-invariant permutation is an
automorphism on this graph. In general, we can say that a graph G is more structured
than a graph G iff the proportion of automorphisms among the permutations of G is
lower than that of G'.

@ Springer

1510 Synthese (2019) 196:1501-1528

Fig. 7 A maximally structured e

rooted tree

To be clear, that a graph G is maximally structured does not entail that G is very
complex (a rooted tree with only one other vertex is maximally structured), nor does
it entail that G has as much structure as a graph can have. We can always add other
features, like a second edge relation, or an additional order between vertices (see
below). There is no upper limit to what can be added to make graphs more structurally
complex.

To say that a graph G is maximally structured, in the present sense, is to say that
every vertex in G can be identified by its position in G, i.e. by which other vertices it
is related to. In Fig. 7, a is uniquely identified by being the root, b by being the only
vertex related to the root, and ¢ by being the only non-root not related to the root. In
Fig. 4, d is the only vertex both related to the root and to a second vertex, but b and ¢
have the same edge properties, and cannot be distinguished except by the labels.

Isomorphic graphs are identical except for the labels, which in a sense are arbitrary.
We can therefore regard a labeled graph as simply representing the structure that is
shared with the graphs it is isomorphic to. We can also extend the isomorphism relation
to hold between graphs and other complex entities that have parts according to some
relevant part-whole relation. This was already exemplified above with an unordered
set s, in Fig. 6. Putting these two ideas together, we can speak of some particular graph
as the structure of a complex object to which it is isomorphic. As will be spelled out
below, this will allow us to speak of structured objects more generally, without having
to rely on any particular kind of objects, like ordered tuples.

For the structured objects we are interested in, however, of a representational kind,
we need two additional features of graphs. The first is that of ordering. In a rooted
tree, if a is edge-related to b, and b is closer to the root (or is the root), a is said to be
a daughter of b and b the mother of c. If both b and ¢ are daughters of one and the
same vertex, b and c are said to be sisters. Thus, a—d are sisters in the tree of Fig. 6.

In an ordinary rooted tree, the sister relation is unordered. In an ordered tree, there
is an ordering relation < between sister vertices. An ordered (hence rooted) tree 7
is therefore a quadruple T = (V7, E7, <7, v). We write (a, b) €e<r asa <7 b, or
simply asa < b if the context is clear. An ordinary rooted tree is the special case where
< is empty. The definition of an isomorphism must also be extended. For ordered trees
we must in addition to the previous conditions add that f is an isomorphism between
T and U only if it holds that for any vertices v;, v; of T it holds that v; <7 v; iff
f) <u f)).

We can indicate ordering by means of numerical indices, here appearing as super-
scripts, such that vf < v iff k < 1. With the convention that if v; < vj, we write v;
to the left of v;, an ordered update of the tree of Fig. 4 will be:

@ Springer

Synthese (2019) 196:1501-1528 1511

Fig. 8 An ordered tree

Th ordered tree T of Fig. 8 is fully structured. The function f that interchanges b
and c is not an automorphism, because it does not preserve the vertex ordering: b <7 ¢
but f(b) Ar f(0).

The second feature to be added is needed because of the fact that in structured
abstract entities a particular part may occur several times. The name ‘Mary’ occurs
twice in the sentence

(1) John likes Mary and Mary likes Bill.

There is only one type ‘Mary’, but the type ‘Mary’ has two occurrences in the type
(1). Other examples come from the standard definition of an ordered pair in terms of
unordered sets:

(2) (a,b) =der {{a}, {a, b}}.

In the set denoted on the right-hand side, there are two occurrences of the object a.

In the case of entities with a type-token distinction, we can briefly characterize the
ontology of occurrences by saying that the number of occurrences of x in the type
y is exactly the number of fokens of x in any one foken of y. Thus, any token of (1)
contains two tokens of ‘Mary’. We can specify them by talking of the first occurrence
and the second occurrence of ‘Mary’ in (1), but this only works as long as we have a
linear order. In more complex cases we will have to be able to specify the position of
the occurrence in the structured abstract type, but this in turn only works if we already
possess tools for specifying the structure, for instance by means of syntactic trees or
grammatical terms, which allow you to identify the position of an occurrence.!!

We cannot invariably specify properties of occurrences of objects by means of
providing the properties of the objects they are occurrences of, since a particular object
may have several properties, but only in different occurrences. This is illustrated in
the tree of Fig. 9. Here the situation is depicted where ¢ occurs twice, as direct part
of a and as direct part of b. So, d is part of ¢ and c is part of b, but d is not part of
b. Thus, if we are dealing with complex objects that can contain multiple occurrences
of objects, and objects are allowed to freely vary properties between occurrences, we
cannot even capture the transitivity of the parthood relation by speaking only of the
properties of objects as opposed to properties of the occurrences of objects.

There are two ways to handle this problem. The first is to simply treat the concept
of an occurrence as primitive, and accept an ontology of occurrences as basic. Every
occurrence is an occurrence in a type. Every type a occurs exactly once in the type
a itself. Only abstract types can contain more than one occurrence of anything. If a

1 This is spelled out e.g. in Pagin and Westerstahl (2010).

@ Springer

1512 Synthese (2019) 196:1501-1528

Fig. 9 Failure of transitivity

Fig. 10 Transitivity restored,
from Fig. 9

physical or mental entity has parts, those parts have only one occurrence in that entity.
One can introduce a function O from occurrences of objects to the objects they are
occurrences of. As long as there is only one occurrence of an object, one can simplify
the presentation by speaking simply of the object itself.

On this alternative, one treats the parthood and ordering relations on parts as rela-
tions over occurrences. In the tree of Fig. 9, (the occurrence of) d is part of an
occurrence of ¢ and an occurrence of ¢ is part of (the occurrence of) b, but since
these are different occurrences of ¢, there is no violation of transitivity in the fact that
d is not part of b.

The second alternative is to restrict labeled trees the following way: whenever a tree
contains two vertices with the same main label, these two vertices have both different
indices and isomorphic sub-trees where corresponding vertices also have the same
label. With this restriction, the tree in Fig. 9 is not admissible. The proper version is
given in Fig. 10.

With the restriction, knowing that there is a vertex d5 that is edge-related to a vertex
¢y and a vertex ¢ that is edge-related to a vertex b, we can infer that there also a vertex
with main label ‘d’ that is edge-related to c;. Thus, transitivity is restored, in the sense
that if the tree represents a structured object where d is a part of ¢ and c is a part of b,
the object is also represented to the effect that d is (an indirect) part of b.

The restriction is well motivated in the sense that our ordinary conception of abstract
objects is such that wherever a complex object occurs, it does occur with occurrences
of its parts; they are part and parcel of iz.

Both alternatives allow us to prove the main point, that we can use multi-labeled
trees, up to isomorphism, as the structure of structured objects. The proof is more
straightforward on the first alternative, but it carries the ontological cost of taking
occurrences as primitive. There is a further difference, in that the second alternative
does not allow us to use multi-labeled trees to provide the structure of so-called mul-
tisets (taken as primitive), i.e. sets where elements can occur more than once, as in

@ Springer

Synthese (2019) 196:1501-1528 1513

Fig. 11 A tree with “double”
vertices

@ [a

Fig. 12 A tree with multiple
labels

{a, a, b}. This set can be represented on the first alternative by the tree in Fig. 11. The
characteristic feature of this tree is that two vertices that have no structural differences
still have the same main label. On the second alternative, this tree is ruled out by the
uniqueness condition, either in itself, or as being the structure of an object. I see no
way of accommodating multisets except by treating occurrences as basic (or instead
working with a model of multisets that itself does not use multisets). Not seeing the
need to handle these in the present context, I shall go for the second alternative, letting
vertices directly represent objects rather than occurrences of objects.

We cannot capture the phenomenon of multiple occurrences of parts in complex
objects within standard graph theory. A label pertains to a particular vertex, and no
sense is provided for letting two vertices have the same label. I shall propose here, as
has already been exemplified, to use complex labels, with a main label and an index,
such as ‘by’, where the numeral is the index. The main label can be shared by several
vertices, while the complex label itself must be unique to each vertex. We shall say
that trees with this feature are multi-labeled trees. We shall require that the root has
a unique main label. By means of this device, we can represent the unordered set
{a, {a, b}} by the tree in Fig. 12.

Now we can introduce the idea of letting the main label indicate what object a
vertex represents. That is, two vertices with the same main label, such as a; and a;
in the tree in Fig. 12, will represent the same object. In addition, let the edge relation
in this tree represent the element relation €. Then d represents the set {a, b}, and ¢
represents the set {a, {a, b}}.

Multi-labeled trees are still trees of the familiar kinds in the sense that each complex
or simple label (without index) still is unique to a vertex. However, adding the feature
of sharing main label amounts to adding a one-place property of vertices that provides
a new structural dimension. We shall include the ingredient of a labeling function L
in the definition of a multi-labeled tree. For instance, L(az) = ‘a’ in Fig. 12.

Next, consider the ser of main labels (including simple labels) in Fig. 12: that is
the set {‘a’, ‘b’, ‘c’, ‘d’}. We extend the function L to trees, giving the set of main
labels of all vertices as values. We can now say that two multi-labeled graphs G and
H are label-related iff there exists a a bijection g : Lg(Vg) — Ly (Vp), i.e. iff the
main-label sets have the same size. I shall sometimes drop the subscript on ‘L.’

@ Springer

1514 Synthese (2019) 196:1501-1528

Fig. 13 The result of a
label-preserving permutation e

(MLTree) An ordered (rooted) multi-labeled tree T, or ML tree, is a tuple
(Vr, ET, <7, LT,0)

where V7 is the vertex set of 7', E7 the edge relation, <7 the ordering
relation between sister vertices, L7 the labeling function, assigning labels
to vertices, and v the root of 7.

With the addition of the labeling function, we also have a new requirement on isomor-
phisms between ordered multi-labeled trees: f is an isomorphism from 7 to U only
if f maps same-labeled vertices on same-labeled vertices. That is,

(MLIso) Given two ML trees T = (Vp, Ep, <7, L7,v) and U = (Vy, Ey, <y,
Ly, up), the function f : Vy — Vr is an (ML) isomorphism iff f is a
bijection and

(i) f(uo) = vo.
@i1) Forall ug, u; € Vy, Ey(ug, up) ift E7(f(ug), f(up)).
(iii) For all ug, u; € Vy, ux <y up iff f(ur) <r f(up).
(iv) Forall ug,u; € Vy, Ly (ur) = Ly (up) iff Ly (f (ug)) = L1 (f (u7)).

We get the corresponding strengthening of the notion of automorphism for ordered
multi-labeled trees. When it comes to characterizing the structure of complex objects
by means of ML trees, the requirement of an automorphism for ML trees is sometimes
too strong. Thus, consider the permutation f that s the identity permutation except that
it maps aj and a; on each other in vertex set of the tree in Fig. 12. The result is the tree in
Fig. 13, Clearly, f is not an automorphism, since E7(aj, ¢) butnot E7(f(a1), f(c)).
The new tree, however, although it has a different edge relation, represents the set
{a, {a, b}} equally well. There is an ML isomorphism between the vertex sets of
the two trees, and f is indeed such an isomorphism. This exemplifies the fact that
characterizing structure by means of ML trees is unique only up to isomorphism.

In order to make this work, we need to introduce the restriction that same-labeled
vertices also have the same sub-trees where corresponding vertices have the same
main label. To be more precise, we need to define the notion of a subtree:

(SubTree) Given arooted ordered tree 7 with root vy, the subtree U determined by the
vertex u € V7 is a rooted tree with root u such that Vy = {u} U {v € Vp :
Er (v, u)} and such that for all v;, v; € Vy: Ey(v;, v;) iff E7(v;, vj),
and Vi <y Vj iff Vi <T1 Vj.

This allows us to define the notion of an S-tree, i.e. a tree fit for capturing structure:

@ Springer

Synthese (2019) 196:1501-1528 1515

(STree) An S-tree T is an ML tree such that for any two distinct vertices v;, v; € Vr
it holds that if L7 (v;) = L1 (v;)

(1) There is an ML isomorphism f between the subtree 7; determined by v; and
the subtree 7'; determined by v; such that for any vertex vy € Vr; italso holds
that L(f(vk)) = L(vr)

(ii) There is no vertex vy € Vr such that E7(v;, vy) and E7 (v, vg).

We can now state the main definition.

(STRUC) Let A be a complex object, R be a part-whole relation on A, and R* the
transitive closure of R on A. Let A* be the set of objects standing in R* to
A (the direct and indirect parts of A, including A). Let S be a partial ternary
relation on A* such that for any a, b, ¢ € A*, if S(a, b, c¢), then R(b, a)
and R(c, a) and not S(a, c, b); that is, S is asymmetric in its second and
third arguments. Let T = (Vr, Er, <1, LT, v9) be an S-tree. We say that,
up to isomorphism, T is the structure of A iff there is a surjection r from
Vr onto A* such that

(1) Forany v € V7, r(v) = Aiff v = vy

(ii) Forany v;,v; € Vr,r(v;) =r(v;) iff L(v;) = L(v;)

(iii) Forany v;, v; € Vr,if ET(v;, vj), then R(r(v;), r(v;));and foranya, b €
A* such that R(a, b), there are v;, v; € Vr suchthatr(v;) = a,r(vj) =b
and E7 (v, vj)

(iv) Forany vj, vy € Vr,if v; <1 v}, then there is a vertex v; € V7 and a part
a € A* such that E7 (v, v;), ET(vk, v;), and S(r(v;), r(vj), r(vr)); and
forany any a, b, c € A* such that S(a, b, c), there are vertices v;, v;, vk €
Vr such that r(v;) = a,r(v;) = b,r(v) = ¢, E7(vj, v;), E7 (v, v;),
and v; <7 vj.

The definition makes sense in virtue of the following fact:

Fact1 Givenatree T = (Vr, ET, <71, LT, v9) that by (STRUC) is the structure of
a complex object A, and and atree U = (Vy, Ey, <u, Ly, uo), U is the structure of
A iff T and U are isomorphic.

The left-to-right and right-to-left parts of this fact are stated separately and proved
in Appendix 2.

We can note, finally, that from a given structured object A, we can easily construct
the structure itself, i.e. an S-tree that is (up to isomorphism) the structure of A. The
exact recipe can be extracted from the definition of the ML-isomorphism. In a slightly
simplified form it runs as follows:

(Recipe) Foracomplex object A, assign arepresentation of A as the label of the root;
given a label ‘v;” of a vertex representing a part a; of A, for an immediate
part of a;, assign a label ‘v;’ to the corresponding daughter of v; ; make sure
to use the same main label with a new index for any new occurrence of one
and the same part. For a new vertex v, with the same label as a previous
vertex v, copy the entire subtree of vy, as the subtree of v,, assigning the
same main label to corresponding vertices. Continue until all occurrences
of all parts of A are represented on the tree.

@ Springer

1516 Synthese (2019) 196:1501-1528

Fig. 14 Applying the recipe to
{a, {a, b}}

We can illustrate the recipe as applied again to {a, {a, b}}, in Fig. 14, using standard
representations of the sets and elements as labels. Start with assigning ‘{a, {a, b}}’
itself as the label of the root. The two immediate elements are a and {a, b}, so assign
‘a;’ and “{a, b}’ as labels to the daughters of the root, without superscripts, since
there is no order relation, but with default subscripts: the lowest positive whole number
numerals so far not used in the tree. Next, since the second daughter (in order of the
presentation) itself is complex with two elements, generate two new daughters of that
vertex. Since one is again a, generate as label for the corresponding vertex ‘a,’, since
the index ‘1’ has already been used. And since the other element is b, choose ‘b;’, as
the index. Now the leaves of the tree, i.e. the lowermost vertices, are all simple, and
we are done.

As the exercise has illustrated, we needed no more information than the specification
of the object itself: the relevant part-of relation (€), and the instances of this relation
in the object: the immediate elements, their respective immediate elements, and so
on, until the simple elements. This recipe does result in an S-tree that is unique up to
isomorphism.

4 Structured and unstructured objects

Since the structure of a structured object, as far as it can be represented by S-trees, is
unique up to isomorphism, and since nothing more than a specification of the intrinsic
properties of the object are needed to generate an S-tree that is its structure, we can
say the following: there is (given a domain of structured objects) a general function
S that maps any structured object o on the isomorphism class S, of trees that are the
structure of o.

This highlights a particular property of structured objects: they are intrinsically
structured. Being structured is not a relational property. A non-empty set is intrinsically
structured, in that, by the extensionality of sets, it is part of the conditions of identity
of that particular set that it has those particular parts, and that the relevant parthood
relation of the set is the element-of relation.!? Note that it is not in virtue of a relation

12 This is not inconsistent with the fact that, with set abstraction, we can specify which the elements
are in a relational way, which may even require empirical knowledge. For instance the set represented by
“{x : xis a son of George}’ is a set of four elements that can also be presented as by ‘{W, Jeb, Neil, Marvin}’.
In the latter case, it can be determined from the representation of the set which the elements are, while
background empirical knowledge is needed in the first case. But because of the extensionality of sets, the two

@ Springer

Synthese (2019) 196:1501-1528 1517

Fig. 15 A little family tree

George

Fig. 16 Perhaps a structured
proposition?

to S-trees that an object is structured, but it is in virtue of its intrinsic properties that it
stands in a relation to S-trees: it is the definition of structure that is given in terms of
S-trees.

As will become important later on, if a complex object is specified in part by way of
representational properties of its parts, i.e. by way of relational properties, this object
is not a structured object in the present sense. What the representative part-of relation
consists in for that object, is not transparent, or intrinsic to the object. This fact again
highlights a crucial property of S-trees (and graphs in general): that the edge relation
is neutral. This is precisely why the tree can be said to be the structure of a structured
object: the same S-tree can be the structure of distinct complex objects, even objects
with different part-of relations.

Furthermore, in virtue of this neutrality, an S-tree can represent a partial order on a
collection of objects that do not form a structured object, since the partial order is not
itself a part-of relation. To give a vivid example, consider the tree in Fig. 15. Suppose,
as might suggest itself, that the labels represent a father and his four sons, respectively.
We may thus take the edge relation in Fig. 15 to represent for the son-of relation, but
there is no reasonable sense in which a son is part of his father. The tree faithfully
represents a small family, or part of a family, but it does so because of contingent
facts.!3 Being the father of W is a relational property of George, and is not determined
by George’s intrinsic properties.

We are now ready to pose the question: Can propositions* be structured objects?
After all, we can represent the apparent structure of a proposition* that Rab as in
Fig. 16. There is, after all, nothing wrong with the tree in Fig. 16. The root does
represent a proposition*, the proposition that Rab, and the labels of the leaves represent
what we easily can think of as the “parts” of this proposition.

Footnote 12 continued

expressions denote the same set. So, the property of sets to be intrinsically structured should not be confused
with the property that it can be determined from any correct specification (description true uniquely of the
object) of the object which the parts are.

13 Some mi ght want to say (as people did say) that it is an essential property of W to be the son of George,
but hardly anyone would claim that it is an essential property of George to be the father of W.

@ Springer

1518 Synthese (2019) 196:1501-1528

As we have just seen, however, the fact that we can represent a proposition, together
with elements from which it is intuitively formed, by means of an S-tree, this does not
entail that the proposition* is a structured object. It is a structured object only if the
edge relation of the tree represents (or can represent) a part-of relation. However, all
we know from the adequacy of the tree in Fig. 16 is that there exists some function P
from conceptual elements to propositions such that P(R, a, b) is exactly the proposi-
tion* that Rab. The edge relation of the tree then represents the relation between the
arguments, in left-to-right order, and the value, of the P function. This does not show
that the value is a structured object with arguments of the function as parts, nor indeed
a structured object at all.

In a sense, the situation is even worse, for the value of a function for some particular
argument or arguments necessarily underdetermines the function and argument(s). The
number 5 is the value of any number of functions on various number arguments, such
as 2+ 3, 12 — 7, and 10/2. The notation ‘ f(a)’ gives the impression of having a
determination of both function and argument, whereas what is denoted is just the
value, which is equally well the value g(b), etc.

The situation cannot be improved upon, on pain of circularity. This was essentially
pointed out by Dummett (1973, pp. 293-294), concerning Church’s (1951) interpre-
tation of Frege. Dummett writes

On the model of sense considered in Chapter 7, the sense of a predicate is
the criterion for recognizing that the predicate applies to a given object. The
thought expressed by the sentence which results from putting a proper name in
the argument-place of the predicate is: that the criterion may be recognized to be
fulfilled for an object which has been recognized as the bearer of the name. Now
the sense of the predicate does indeed determine, for any name whose sense is
known, what thought is expressed by the sentence which results from filling the
argument-place of the predicate with that name. But the sense of the predicate
cannot be thought of as being given by means of the corresponding function,
because if we did not already know what the sense of the predicate was, we
could not know what was the thought which was the value of the function for
the sense of some name as argument (Dummett 1973, p. 293).

Dummett claims that we cannot understand a sentence except by understanding its
syntactic constituents and the way they are combined. Against that background, Dum-
mett argues in the quoted passage, the sense of a predicate cannot be a function that
maps the sense of a term on the sense of the sentence that is formed from combining
the term and the predicate. For, in order to know which function that is, I would need to
know what value it gives for term-senses as arguments. But since I need to know that
predicate sense first in order to know the sentence sense, i.e. the value of the function,
if the sense is the function itself, I need to first know the function in order to know the
function. There is thus a circularity, framed in terms of understanding a sentence.
The corresponding circularity comes out directly, without appeal to understanding,
if we think of the thought/proposition as structured. For if the sense of a predicate F is
a function f that, for the sense of a term ¢ as argument, gives the sense of the sentence

@ Springer

Synthese (2019) 196:1501-1528 1519

F't as value, then this sense cannot also be a structured object that contains f as a part,
for f would then be defined partly in terms of itself.

Of course, we can accept a proposition as having parts provided the function that
maps the parts on the proposition is not itself a part of the proposition. For instance,
letting [-] be the sense function, assume that there is a function f that maps the
sense of F and the sense of 7 on the sense of Ft. As long as the f is distinct from
the sense of F' (and from the sense of ¢), this is not circular. However, in this case,
the underdetermination kicks in. For nothing says that f([F], [¢]) is not equal to
g([G], [u]), for some function g, predicate G and term u, or from the sense of some
completely different function applied to much more complicated arguments. With such
underdetermination, we cannot infer from the proposition [F1], even if it has parts,
what the relevant conceptual elements are that were mapped on it. Since the function
f is not determined by [F¢], we cannot rule out that what is relevant for interpretation
in some particular case is really g, [G] and [u] instead.

If we now try to stick f into the proposition as a part, in order fix the function,
then again, either f would be defined in terms of itself, and hence the circularity is
back, or else we would need a distinct function A that maps [F], [¢], and f, on some
complex that has all three arguments as parts, but then 2 would not be determined
by this complex, and hence we are back to underdetermination. We seem to be stuck
in a dilemma where underdetermination and circularity are the horns, and both are
unacceptable.'*

This cannot be the whole story, however, for it seems to rule out structured objects
altogether. It seems to rule out {a, b}, since {-} would need to be construed as a function
that maps a and b on {a, b}, and therefore it would already need to be determined what
{a, b} is for the function to be defined, even though in this case, the function is not
itself an element.

There are (at least) two ways of resolving this apparent problem. The first way
is the way of axiomatic set theories, like ZFC. On this approach, we already
assume a domain of sets over which we can quantify, and over which the rela-
tion € is defined. This domain has certain closure properties. For instance, if a
and b are sets, then, according to the Axiom of Pairing, there is a set ¢ such
that any element of c is either a or b. ¢ is thus a set that essentially has a and
b as its only members. We can regard it as structured. And we can regard {-} as
a function that maps a and b on c. Alternatively, the notation ‘{-}’ can be given
a contextual definition, which allows its elimination from any true sentence of
ZFC.

The second way is to think of {-} as a primitive operation of collecting objects
into sets of objects, an operation that is part of defining a domain of objects (like
the successor operation in arithmetic) as distinct from functions that are defined (e.g.
by recursion) over a domain already given. On this view, the set {a, b} is essentially
formed from a and b by {-}. This operation is not defined by what values it gives to

14 1n fact, this argument can be seen as supporting Russell’s argument (Russell 1903, pp. 47—48) that we
lose the essential unity of the proposition by analysing it into parts. Short of circularity, there is in general
no unique way mapping the parts on a unified proposition.

@ Springer

1520 Synthese (2019) 196:1501-1528

Fig. 17 Perhaps a structured
proposition?

P(R,a,b)

which arguments, but must be understood intensionally, prior to providing the result
of an application.

Both these approaches are applicable in the case of propositions. On the first alter-
native, then, we can assume an already given domain of structured propositions, and
a function P that maps conceptual constituents on such propositions. The problem
with this approach is that if there is one such function, there are many (P, P, ...).
For any structured proposition p there will be many such functions that give p as
value for various conceptual constituents as arguments. A proposition p does not
fix any of these functions as privileged. In short, there is underdetermination. If the
meaning [Ft] of the sentence Ft is a structured proposition, we cannot rule out
that this structured proposition has [G] and [u] as parts. Again, you cannot solve it
by sticking a function f as an additional part of the proposition, for on pain of cir-
cularity, the function that maps the parts on the proposition must be distinct from
f.

The other approach is the primitive operation approach. We then imagine a primi-
tive operation P that e.g. takes as arguments R, a, b, in that order, and gives as result
the maximally structured proposition p = P (R, a, b). On this approach, P has a priv-
ileged status with respect to P(R, a, b), for it is precisely by the application of this
operation that the proposition exists in the first place. In virtue of the privileged status
of P, there is no underdetermination. We have the structured propositions that is rep-
resented in Fig. 17, where the superscripts indicate the order between the constituents,
which are the arguments to P. The tree 777 of Fig. 17 is the structure of P(R, a, b).
And the general structure function § is defined for p. S(p) is the isomorphism class
of T17.

On the assumption of a primitive proposition-forming operation P, there is no
underdetermination. P (R, a, b) essentially is the object formed by P from R, a, and
b, in that order. For no other arguments does P give P(R, a, b) as value. Neither is
there circularity, for P, on this suggestion, is not defined extensionally, in terms of
arguments and values, but intensionally as a primitive operation that we know prior to
its application. We may ask what the edge relation in 777 corresponds to in this case,
i.e. what the relevant part-of relation is, and the answer could be that it is the relation
conceptual-constituent-of. Maybe we don’t have to understand what that more exactly
amounts to for accepting it as potentially a reasonable answer.

So, from an ontological point of view, there seems to be room for a category of
structured propositions. Let’s call them P-propositions. The question is whether they
can be propositions*.

@ Springer

Synthese (2019) 196:1501-1528 1521

5 Are P-propositions propositions*?

The defining characteristic of propositions*, from Sect. 2, was that propositions*
intrinsically have truth-conditions. And this in turn means that there is a privileged
function T that maps propositions on their proper truth-conditions, where 7 might be
identity.

We shall proceed by stipulating some restrictions on and ranking principles over
candidates for T'. Firstly, we shall require that 7' be recursively specifiable. Here this
will mean two things: that the value of T for a P-proposition p shall depend uniformly
on the structure of p, and that if p if has one or more P-propositions ¢, ..., g, as
proper parts, the value of T for p depends (uniformly) on the value of T for gy, ..., ¢.
Here we shall spell out only the atomic case, where the immediate parts of p are a
relation and individual concepts. The recursive step for complex P-propositions is not
needed for the argument below.

Secondly, we shall require that T be surjective: every proposition* is the value of
T for some P-proposition.

Thirdly, we shall require that the value of T for a P-proposition p depend only on
the constituents of p, i.e. not on concepts that are constituents in other P-propositions
but not in p.

Fourthly, we shall require that 7' be as simple as possible. In general, simplicity
should here be cashed out in terms of the recursive definitions, and it will induce a
partial order on the domain of functions from P-propositions to propositions*. In this
context, however, we only need to care about the absolutely simplest functions: the
identity function Id and the constant functions, i.e. functions which give the same value
for all arguments. We can observe immediately, that 7' cannot be constant function,
since that violates the second requirement that 7" be surjective, given that there are
more than one proposition®.

These informally stated requirements motivate the following

(T-Rest) (i) Foreachn thereisafunctioni, suchthat, where pis P(R", ay, ..., ay),
T(p) is that R" (Clin(l), . ain(n))
(ii) If possible, T is Id.

In (T-Rest-1), it is required that for some uniform ordering of the individual arguments
or the P-proposition, the value simply is the proposition* formed from relation R”
as applied to the individual arguments of the P-proposition, in that ordering. This is
motivated in part from the uniformity requirement: all P-propositions formed from
an n-ary relation and n individual concepts are mapped on a proposition™, uniformly
depending on the order between the individual arguments to P.

(T-Rest-i) is also motivated in part by the requirement that 7 be surjective. Since the
orders between the arguments to the n-place relation is 1-1 correlated with the orders
between the constituents of the corresponding P-propositions, every proposition*
formed from an n-ary relation and n arguments, hence every atomic proposition,
will be in the range of T'.

In addition, (T-Rest-i) is partly motivated by the third requirement that the value of
T depend only in the constituents of p, a condition that is clearly met.

@ Springer

1522 Synthese (2019) 196:1501-1528

Fig. 18 Perhaps a structured
proposition?

P(R',b,a)

Finally, (T-Rest-i) is partly motivated by simplicity: even if T is not identity, no
function is involved in defining 7" for atomic P-propositions other than that of selecting
the arguments to P and applying one of them to the rest.

Now for the argument. Its first step is to establish that even the restriction of 7' to
the domain of atomic P-propositions is not identity. Let’s first take a quick look at a
binary relation. Define a relation R’ from a binary relation R to the effect that for any
a, b that can be arguments to R, R’ab is true iff Rba is true. Assuming that there are
a, b such that Rab is true but Rba false, R and R’ are not identical. And the order
between a and b matters. Hence, the P-proposition P(R’, b, a), represented in Fig. 18,
is distinct from P (R, a, b).

Now, suppose that P(R, a, b) is identical to the truth-conditions that Rab and that
P(R’, b, a) is identical to the truth-conditions that R'ba. By assumption, these truth-
conditions are logically/analytically equivalent, and then by the (1) principle, they
are identical. Since the two P-propositions are not, they cannot both be identical the
corresponding truth-conditions.

Perhaps a way out is to say that P(R, a, b) is identical to the truth-conditions that
Rab while P(R’', b, a) is identical to the truth-conditions that R’ab. This avoids the
contradiction. It is of course completely ad hoc. But worse, the move is not even
applicable in more complex cases.

So assume we have six ternary relations, Ry, ..., Rg, defined to the effect that they
interlock as is given in (3):

Ry(a,c, b)

R3(b,a,c)
(3) Ri(a,b,c) iff §R4(b,c,a)

Rs(c,a,b)

Re(c, b, a)
Suppose that the order between the arguments matters in all cases. The relations are all
distinct, and supposing that the arguments are as well, we can form 36 P-propositions
but only six distinct truth-conditions. If every P-proposition is identical to some truth-
condition, it must in most cases be truth-conditions that depend on concepts distinct
from these relations and arguments. But that violates (T-Rest-i), as well as the first,

third, and fourth informal requirement that motivates it. Hence, already in the domain
of proposition formed from ternary relations, 7" is not Id.">

15 1tis possible that a more complicated definition would satisfy the uniformity condition, but then clearly
not the third and fourth requirement.

@ Springer

Synthese (2019) 196:1501-1528 1523

This leaves us with the option of a many-one function 7 from P-propositions to
truth-conditions. For instance, 7' could map both P(Ry, a, b, ¢) and P(R», c, a, b) on
the truth-conditions that Ry(a, b, ¢). The problem now is that there are several equally
good candidates for such a function 7'. For any permutation v on ordered triples, the
function T; = that R(ax(2), ax(3). ax(1)) satisfies (T-Rest-i). Hence, assuming that
(T-Rest) is both a necessary and sufficient condition, there is more than one optimal
function, and hence no uniquely privileged one.

The remaining option [short of rejecting (T-Rest-1)] is to suppose that we could add
a further requirement that would distinguish between the 7;:s. We could imagine an
additional restriction that would select the identity permutation 7r; above the others,
thus making T1(P(R, a, b, c)) = that Rabc the privileged function. But over and
above an intuitive naturalness, there is, or seems to be, no mathematical reason for
ranking 77 above the other candidates. It is not simpler in a computational sense
and does not satisfy (T-Rest-i) in any higher degree otherwise. Thus, by appeal to the
Benacerraf-style argument of Sect. 2, neither 77, nor any of the other 7;:s is privileged.
Hence, given the requirements, there is no privileged function from P-propositions to
proposition®.

The upshot is that P-propositions do not satisfy the condition of having intrin-
sic truth-conditions, (PROP2). Therefore, P-propositions are not propositions*. And
therefore, again, propositions* are not structured . Structured objects are too fine-
grained to be identical to truth-conditions, and as long as they are not, there is in
general no privileged way assigning truth-conditions to them.

Acknowledgements I have benefitted from comments at the conference in Barcelona by Manuel Garcia-
Carpintero, Marie DuZi, Peter Hanks, Bjgrn Jespersen, Lorraine Keller, Jonathan Keller, Jeff King, Bryan
Pickel, and Scott Soames, as well as from comments by two anonymous referees and from discussions
with Kathrin Gliier-Pagin. The research was supported by a grant from The Tercentenary Foundation of the
Swedish National Bank (Riksbankens Jubileumsfond) for the project Interpretational Complexity.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix 1: King’s proposal of structured propositions

In this appendix, I’'ll compare the present approach with King’s account of structured
propositions.'® King (2007) claims to have solved the problem of providing structured
propositions with truth-conditions. It goes as follows. The sentence

(4) Rebecca swims

expresses the proposition that Rebecca swims. That proposition is structured: it is a
structured fact with Rebecca and the property of swimming as components. Graphi-
cally, King represents it (2007, p. 38) as in Fig. 19. The left and right hand branches in
Fig. 19 are part of a syntactic tree (for some language L), corresponding to the syntactic

16 For reasons of space, I shall not do the same for other proposals, but the general idea should be clear.

@ Springer

http://creativecommons.org/licenses/by/4.0/

1524 Synthese (2019) 196:1501-1528

Fig. 19 The structured fact that
Rebecca swims

Rebecca* I swims*

Fig. 20 King’s fact represented
by an S-tree

construction type: called “the sentential relation R”. The ellipses are place-holders for
lexical items (of L). The vertical lines from the ellipses represent semantic relations:
Rebecca* and swims* are the semantic values. The central vertical line ending with
‘I’ represents what the syntactic construction type semantically encodes (in L), viz.
instantiation.

Not taking context dependence into account the fact represented is the fact that:

There are lexical items a and b of some language L occurring at the left and right
terminal nodes (respectively) of the sentential relation R that in L encodes the
instantiation function, where the semantic value of a is Rebecca and the semantic
value of b is the property of swimming (King 2007, pp. 37-38)

According to King, this fact is the proposition that Rebecca swims.

In his 2014, King updates the model. Relativity to assignments has been added.
The syntactic relation is existentially quantified: there is some relation satisfying the
condition. The relation now is ascription rather than instantiation.” There is also
a propositional relation, the relation that holds between the semantic values of the
syntactic leaves in virtue of the syntactic relation between the leaves.

In the revised model, the proposition is the old fact rogether with the propositional
relation’s having the relational property of encoding ascription (King 2014, p. 52).
Call this having-property H. On this updated model, the proposition is rather the pair
(Fact, H) of the old fact and the new having. Since the difference between the old and
the revised model is irrelevant to my point, I’ll focus on the original model.

In the present framework, we would let King’s structured entity be represented by
an S-tree, as in Fig. 20: The parthood relation, corresponding the edge relation of the
tree, is the relation between the components of the fact and the fact itself: that is, the
relation ...is a component of

Now, we first ask whether King’s fact as represented in Figs. 19 and 20 are structured
objects in our sense. The answer is no, since the Fact is a structured object only in
virtue of standing in a relation to some language L that has a sentence with syntactic
constituents whose interpretations are the first and third component in the Fact, and a

17 According to King (pc), there is no significant difference.

@ Springer

Synthese (2019) 196:1501-1528 1525

syntactic construction whose semantic significance is the second node. Hence, since
the current account requires the property of being a structured object to be intrinsic,
on King’s account it isn’t, the Fact is not a structured object in the present sense.

In the Appendix of King (2007), the account is spelled out slightly differently. Here,
the notions of propositions and propositional frame are introduced, and it is taken for
granted that propositions and propositional frames have argument places (and hence
some internal structure) (King 2007, p. 219). The account specifies components in
terms of the kind of the category of the syntactic units that express them, and there is
no mention of facts.

It is less clear how to read this. If King means it to remain the case that being a
conceptual element depends on being related to syntactic units of some language, then
the same conclusion as above stands. If, on the other hand, we read King’s references
to syntax as only a means of specifying propositional components whose properties
are still intrinsic to it, then propositions as spelled out in the appendix do qualify as
structured objects. As far as I can see, this second alternative is available to King.

Are King’s constructions propositions*? In the Appendix of King (2007, p. 221),
a kind of truth definition for propositions is provided. The first clause is

(5) A proposition of the form [R ol,...,0"]is true at wiff < o', ..., 0" > belongs
to exty, (R).

The others are similar, all looking like a standard truth definition for a syntactically
specified language, and thereby like a stipulation. If indeed it is a stipulation, as
it seems, then the truth definition is not privileged over alternative possible truth
definitions, in which case King’s propositions also do not have their truth conditions
intrinsically.

The reasonable conclusion therefore is that so far as they have been presented,
King’s propositions are neither structured objects (judging from the official position in
the main text), nor propositions* (judging from the truth definition in the appendix).'®

Appendix 2: Proof of Fact 1

We state the right-to-left part of Fact 1 as Fact 2 and the left-to-right part as Fact 3.

Fact2 Given a tree T = (Vp, Ep, <7, L7,v9) and a tree U = (Vy, Ey, <y,
Ly, uo),if T by (STRUC) is the structure of a complex object A, and f : Ur —> Vr
is an isomorphism, then r o f satisfies (STRUC) (i)-(iv), which makes U the structure
of A.

Proof (i) By (MLIsoi), f(uo) = vo. Hence r(f (ug)) = A, satisfying (i).
(ii) Let u;,u; € Vy, and suppose that r(f(u;)) = r(f(u;)). By clause (ii) of
(STRUC), L(f(u;)) = L(f(uj)). Since f is an isomorphism, by (MLIsoii) it
also holds that L(u;) = L(u;), satisfying (ii).
(iii) Letu;,u; € Vy, and suppose that Ey (u;, u ;). Since f is an isomorphism, by
(MLIsoii), Ey (u;, uj) iff E7(f(u;), f(u;)). By (iii), if E7(f (u;), f(u;)) then

18 For further discussion of King’s views, see Pickel (2015).

@ Springer

1526 Synthese (2019) 196:1501-1528

R(r(f (ui)), r(f(uj))).
For the second part, assume that fora, b € A*, R(a, b). By (iii) there are v;, vj €
Vr such that r(v;) = a, r(v;) = b and E7(v;, v;). Since f is an isomorphism,
by (MLIsoii) there are ug,u; € Vy such that f(ux) = v;, f(u;) = v; and
Ey(ug, up). Since r(f (ur)) = a and r(f (u;)) = b, the second condition is met.
Hence, (iii) is satisfied.
(iv) Analogous to the proof of (iii).
O

For the converse direction, we will need an additional definition, that will be applied
to sets of vertices in paths in a tree:

(CLOSE) For any relation R defined on a set M
(i) R%a, b) iff R(a, b)
(i) R¥*t1(a, b) iff there is an object ¢ such that R¥(a, ¢) and R(c, b)
(iii) RL ={a}U{b € M : Ri(a, b)}.

Fact 3 Given two ML trees T = (Vp, E7, <7, L7,v) and U = (Vy, Ey, <y,
Ly, up), if by (STRUC) both T and U are the structure of a complex object A, then
there is an isomorphism f: Vy —> Vr.

Proof Letr be a surjection from V7 to A* and s a surjection from Vi to A*. We define
amapping f: Ur — V7 inductively, as follows:

(*) (1) Let f(uo) = vo.
(2) Assumethat f(u;) = v; has already been assigned, and further that E; (17, uy)
and E7(vj, v;). Thenlet f(u;) = v; iff s(u;) = r(vj).

We show that £ is an isomorphism by induction over path length. Let f | (E!) be
the restriction of £ to the set of vertices E', i.e. to the set {u} U {u' € V,, : E'(u, u)},
according to definition (CLOSE). Then we show by induction:

Base step: f | (ESO) is an isomorphism. This is trivial, since {u € Vy
EOuy, u)} = @, it holds that ESO = {up}. As regards ug, (MLIsoi) requires the
f(uo) = vo, which is met by the definition of f.

Induction step. Assume that f* | (E},) is an isomorphism, and that Ey (u;, u). We
want to show that f | (El’jl“) is an isomorphism. We take the clauses of (MLIso) in
turn.

(i) Satisfied by the base step.

(i) By (STRUC:ii), since E (u;, uy), it holds that R(s(u;), s(ux)). By (STRUC!ii)
for T, it then holds that there are vertices v;, v; € V7 such that E7(v;, v;),
r(v;) = s(ug) and r(v;) = s(u;). Also, by the induction hypothesis, there is a
vertex vy, € Vr, such that f(ux) = vp. By clause (2) of the construction (*) of
Jor(vn) = s(ug).

There is yet no guarantee that v; = vy,. If this is true, we are done, so suppose
it is not. By clause (ii) of (STRUC), since r(v;) = r(v,) it also holds that
Lt (v;) = Lt (vp). By clause (i) of (STree), it holds that since E7(v;, v;) there
is a vertex vy € V7 such that E7(vg, v) and that L7 (vg)) = Lr(vj). By
clause (ii) of (STree), there is no more than one vertex with this property. By

@ Springer

Synthese (2019) 196:1501-1528 1527

clause (ii) of (STRUC), r(vy) = r(v;). By (2) of the definition (*) of f, since
s(up) = r(vj) = r(vg), f(u) = vg. Hence, E7(f (u;), f(ur)). By symmetry,
the converse holds as well. Hence, clause (ii) of (MLIso) is satisfied.

(iii)) Assume in addition that there is a node u, such that Ey (u,,, u;) and that
u; <y up. By the reasoning in (ii), we have s(u,) = r(f(un)), as well as

Er(f(um), f(ur)).

By clause (iv) of (STRUC), there is a vertex u; € Vy and part a € A* such
that Ey (u;, u;), Ey (i, uy), s(u;) = a, and S(a, s(u;), S(u,,)). Since Ey (u;, uy), it
follows that u; = uy, and hence that S(s(ug), s(u;), S(uy)).

By (STRUC:tii), R(s(u;), s(ug)) and R(s(uy,), Sy.k). Since T is the structure of
A, again by (STRUCiv), there are vertices vy, v;,v; € Vr such that r(vy) =
sup), r(vi) = sup), r(v;) = s(um), Er(vi,vp), Er(vj, vp), and v; <7 v;. If
fur) = vp, fQu) = v and f(uy) = vj, then f(u;) <7 f(um), and we are done.
So we don’t suppose that this is true.

Suppose instead that there are possibly distinct vertices v, vg4, v € Vr such that
Sur) = vy, fu) = vy and f(uy) = v,. By the induction hypothesis, r(f (ur)) =
s(ug), and by clause (2) of (*), r(f(u7)) = s(uy) and r(f () = s(up,), and hence
r(vp) =r(vp), r(vg) = r(v;) as well as r(v,) = r(v;). By clause (ii) of (STRUC),
L(vp) = L(vp), L(vg) = L(v;), and L(v,) = L(v;).

Then, by clause (i) of (STree), there is an isomorphism g between the subtrees
Ty and T, of T determined by v, and v, respectively such that for any v, € Ty,
L(vy) = L(g(vy)). Since, by what is said above we know that E7 (v;, vs), ET (v}, vp),
and v; <7 v;, we can infer that E7(g(v;), vp), ET(g(vj), vp), and g(v;) <7 g(v;).
It also holds that L(v;) = L(g(v;)) and L(v;) = L(g(vj)).

Since we have inferred above that L(v,) = L(v;), and L(v,) = L(v;), it fol-
lows that L(vy,) = L(g(v;)), and L(v,) = L(g(v;)). Since E7(g(v;),vp) and
E7(f(up), f(ur)), which means that E7(vy, vp), by clause (ii) of (STree), v; = v,.
Analogously, v; = v,. Hence, v; <7 v,r. Thatis, f(u;) <7 f(u,). By symmetry,
the converse holds as well. Hence, clause (iii) of (MLIso) is satisfied.

(iv) That this condition is met follows almost immediately from clause (ii) of
(STRUC).

Hence, f is an isomorphism. O

References

Bealer, G. (1993). A solution to frege’s puzzle. Philosophical Perspectives, 7, 17-60.

Benacerraf, P. (1965). What numbers could not be. Philosophical Review, 74, 47-73.

Chartrand, G., & Zhang, P. (2012). A first course in graph theory. Mineola, New York: Dover Publications.

Church, A. (1951). A formulation of the logic of sense and denotation. In P. Henle, H. M. Kallen, & S.
K. Langer (Eds.), Structure, method, and meaning: Essays in honor of Henry M. Scheffer (pp. 3—-24).
New York: Liberal Arts Press.

Cresswell, M. J. (1985). Structured meanings. the semantics of propositional attitudes. Cambridge, Mass.:
MIT Press.

Cresswell, M. J. (2002). Why propositions have no structure. Nous, 36, 643—662.

Dummett, M. (1973). Frege: Philosophy of language. London: Duckworth.

@ Springer

1528 Synthese (2019) 196:1501-1528

Duzi, M., Jespersen, B., & Materna, P. (2010). Procedural semantics for hyperintensional logic: Foundations
and applications of transparent intensional logic. Dordrecht: Springer.

Hanks, P. (2011). Structured propositions as types. Mind, 120, 11-52.

Hanks, P. (2015). Propositional content. Oxford: Oxford University Press.

Jespersen, B. (2003). Why the tuple theory of structured propositions isn’t a theory of structured propositions.
Philosophia, 31, 171-183.

Jespersen, B. (2012). Recent work on structured meaning and propositional unity. Philosophy Compass, 7,
620-630.

King, J. C. (2007). The nature and structure of content. Oxford: OxfordUniversity Press.

King, J. C. (2009). Questions of unity. In Proceedings of the Aristotelian Society CIX (pp. 257-277).

King, J. C. (2011). Structured propositions. In E. N. Zalta (Ed.), Stanford encyclopedia of philosophy. http://
plato.stanford.edu/archives/fall201 1/entries/propositions-structured/%3E.

King, J. C. (2014a). Naturalized propositions. In King, Soames, and Speaks 2014, chap. 4.

King, J. C. (2014b). Structured propositions. In E. N. Zalta (Ed.), Stanford encyclopedia of philosophy.
http://plato.stanford.edu/archives/fall201 1/entries/propositions- structured/.

King, J. C., Soames, S., & Speaks, J. (2014). New thinking about propositions. Oxford: Oxford University
Press. Electronic resource at SUB.

Lewis, D. (1970). General semantics. Synthese 22:18-67. Reprinted in Lewis, 1983, 189-232.

Lewis, D. (1983). Philosophical papers (Vol. 1). Oxford: Oxford University Press.

MacFarlane, J. (2014). Assessment sensitivity: Relative truth and its applications. Oxford: Oxford University
Press.

Pagin, P., & Pelletier, F. J. (2007). Content, context and composition. In G. Peter & G. Preyer (Eds.),
Context-sensitivity and semantic minimalism. New Essays on Semantics and Pragmatics (pp. 25-62).
Oxford: Oxford University Press.

Pagin, P., & Westerstahl, D. (2010). Pure quotation and general compositionality. Linguistics and Philoso-
phy, 33,381-415.

Pickel, B. (2015). Are propositions essentially representational? Pacific Philosophical Quarterly. doi:10.
1111/papq.12123.

Russell, B. (1903). Principles of mathematics (2nd ed.). Routledge. Available at the Internet Archive.

Soames, S. (2010). What is meaning ?. Princeton, NJ: Princeton University Press.

Soames, S. (2014). Cognitive propositions. In J. C. King, S. Soames, & J. Speaks, chap 6.

@ Springer

http://plato.stanford.edu/archives/fall2011/entries/propositions-structured/%3E
http://plato.stanford.edu/archives/fall2011/entries/propositions-structured/%3E
http://plato.stanford.edu/archives/fall2011/entries/propositions-structured/
http://dx.doi.org/10.1111/papq.12123
http://dx.doi.org/10.1111/papq.12123

	A general argument against structured propositions
	Abstract
	1 Introduction
	2 Propositions
	3 Structure
	4 Structured and unstructured objects
	5 Are P-propositions propositions*?
	Acknowledgements

	Appendix 1: King's proposal of structured propositions
	Appendix 2: Proof of Fact 1
	References

