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Abstract The Brandenburger–Keisler paradox is a self-referential paradox in epis-
temic game theory which can be viewed as a two-person version of Russell’s Paradox.
Yablo’s Paradox, according to its author, is a non-self referential paradox, which cre-
ated a significant impact. This paper gives a Yabloesque, non-self-referential paradox
for infinitary players within the context of epistemic game theory. The new paradox
advances both the Brandenburger–Keisler and Yablo results. Additionally, the paper
constructs a paraconsistent model satisfying the paradoxical statement.

Keywords Yablo’s Paradox · The Brandenburger–Keisler paradox ·
Epistemic game theory · Paraconsistent logic

1 Introduction

In this paper, we present a direct application of Yablo’s Paradox to a problem in
epistemic game theory using the language of propositional bimodal logic. Yablo’s
paradox, according to its author, is a non-self-referential paradox and it has created a
significant attention in the literature, especially from the perspectives of truth theory
and fixed-point logics. Here, we extend the discussion to theory of games and give a
Yabloesque, non-self-referential paradox within the context of epistemic game theory.

We have two specific goals in this work. The first is to apply Yablo’s argument
to a field which can provide some further insight for the discussions regarding the
self-referentiality of Yablo’s paradox. As we discuss later on, it is not entirely obvious
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whether Yablo’s paradox is genuinely self-referential. Therefore, presenting different
approaches to the paradoxwithin different formal frameworks is a reasonable direction
to pursue. Our second goal is to give a non-classical solution, that is a paraconsistent
model, for the game theoretical Yabloesque paradox. Therefore, this paper suggests
a newly formulated paradox in epistemic game theory and a paraconsistent model
for it. The two goals of the current work are closely connected both logically and
game theoretically. The logical connection is clear. We give a direct application of
paraconsistency and address the challenge of developing paraconsistent models with
immediate applications. Therefore, the current work contributes to the discussions on
the ontological possibilities of paraconsistency. Game theoretical connection, on the
other hand, suggests the possibility of developing real-life game models where such
paradoxical cases may arise. This connection offers additional tools and techniques
for game theory. From a broader perspective, therefore, our programmatic goal for
studying game theoretical paradoxes is to take a first step towards understanding
paraconsistent games—games that can have non-trivial inconsistent models where
agents may possess inconsistent knowledge or may make inconsistent moves.

The choice of epistemic game theory is not arbitrary. Some years ago, a self-
referential paradox was identified in epistemic game theory by Brandenburger and
Keisler (2006). The game theoretical contribution of the current paper is com-
plementary to the work of Brandenburger and Keisler where we now suggest a
non-self-referential paradox in epistemic game theory.

In what follows, we start with reviewing first the Brandenburger–Keisler paradox,
then Yablo’s paradox, followed by a brief overview of the literature.

1.1 The Brandenburg–Keisler paradox

The Brandenburg–Keisler paradox (‘BK paradox’, henceforth) is a two-person self-
referential paradox in epistemic game theory (Brandenburger and Keisler 2006). The
paradox arises when the following sentence is considered for two players Ann and
Bob:

Annbelieves thatBob assumes thatAnnbelieves thatBob’s assumption iswrong.

and the question if “Ann believes that Bob’s assumption is wrong”, where Bob’s
assumption is the sentence that “Ann believes that Bob’s assumption is wrong” is
considered.

If the answer to the above question is a “yes”, then Ann does believe that Bob’s
assumption is wrong, whichmeans that she believes that the statement “Bob’s assump-
tion is wrong” is wrong. Therefore, Ann believes that Bob’s assumption is correct. But,
initially she believed that this assumption was wrong. This creates a contradiction. On
the other hand, if the answer is “no”, then she does not believe that Bob’s assumption is
wrong, which means that Ann believes that Bob’s assumption is correct. However, this
contradicts the assumption that “Ann believes that Bob’s assumption is wrong”. This
is a contradiction, too. Both possible answers to the question create a contradiction.
Thus, we obtain a paradox. The BK paradox, as the above reasoning demonstrates,
can be seen as a two-person liar’s paradox. The paradox is indeed self-referential,
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expressible with a fixed-point operator (Abramsky and Zvesper 2015). The paradox
shows that players’ beliefs and assumptions cannot completely bemodeled, that is “not
every description of belief can be represented” with belief structures (Brandenburger
and Keisler 2006).

Following, there have been several attempts to represent the BKparadox in different
frameworks including a hybrid logical (Pacuit 2007), an algebraic and categorical
theoretical (Abramsky and Zvesper 2015), and a paraconsistent and non-well-founded
set theoretical (Başkent 2015) approaches. Even if the paradox was given for two
players, it can also be extended to countably-many players (Abramsky and Zvesper
2015). Furthermore, similar to various non-classical logical solutions suggested for
liar paradoxes, there has been suggested a variety of non-classicalmodelswhich satisfy
the BK paradox (Başkent 2015).

The BK paradox is formalized using a bimodal language and relational models. We
briefly review the logical framework on which we shall build our new paradox. The
model M = (Ua,Ub, Rab, Rba, V ) is called a belief model where Ua and Ub are
the set of possible worlds (sometimes called “type spaces”) for players Ann and Bob,
respectively; Rab ⊆ Ua × Ub and Rba ⊆ Ub × Ua , and V is a valuation function
defined in the standard way. The expression Rab(x, y) represents that in state x , Ann
believes that the state y is possible for Bob, and vice versa for Rba(y, x). We put
Rab(x) = {y : Rab(x, y)}, and similarly for Rba(y). At a state x , we say Ann believes
P ⊆ Ub if Rab(x) ⊆ P . It is important to note that the belief relation Ri j is given for
i �= j disallowing self-referentiality for beliefs. In other words, the self-referentiality
we consider is not directly about the beliefs of agents about themselves.

The formal language used to express the BK paradox is a propositional bimodal
language with themodalities�i j and♥i j which stand for player i’s belief and assump-
tion about player j respectively. The semantics for the interactive belief structures is
given as follows, where the Boolean cases are omitted as they are standard.

x |� �abϕ iff ∀y ∈ Ub.Rab(x, y) implies y |� ϕ

x |� ♥abϕ iff ∀y ∈ Ub.Rab(x, y) iff y |� ϕ

The assumption modality is worth revisiting. It can be argued that the assump-
tion modality, as it stands, does not precisely express what is usually meant by an
assumption in formal sciences and game theoretical reasoning. Rather, it suggests a
form of belief, a strongest belief perhaps.1 Reading the assumption modality as the
“strongest belief” does not affect our results in this work. Nevertheless, for pragmatic
reasons, we will adhere to the original terminology and call the relevant modality as
the assumption modality.

Based on this framework, it was shown that not every configuration of beliefs and
assumptions are representable in belief models, such as the BK paradox (Branden-

1 The original formulation of the BK paradox uses the term assumption to describe strongest beliefs. These
are the beliefs that perfectly match with the set of accessible states from the current one. Therefore, it can be
suggested that the term assumption is slightly misleading. Even if that is not our concern for the purposes of
the current work, there is some truth in this argument. In order not to make terminology more complicated,
we chose to stick to the current naming conventions for the modalities. I am thankful to Eric Pacuit for
drawing my attention to this point.
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burger and Keisler 2006). We refer the reader to the original work for the technical
details of the impossibility result.

1.2 Yablo’s paradox and its impact

Yablo’s Paradox, according to its author, is a non-self referential paradox (Yablo 1985,
1993). The paradox is given by considering the following sequence of sentences.

S1 : ∀k > 1, Sk is untrue,

S2 : ∀k > 2, Sk is untrue,

S3 : ∀k > 3, Sk is untrue,

...

By using reductio, Yablo shows that every sentence Sn is untrue. Then, “the sen-
tences subsequent [his emphasis] to any given Sn are all untrue, whence Sn is true
after all!”, which is a contradiction (Yablo 1993). Here, the infinitary nature of the
paradox is essential as each finite set of Sn is satisfiable.

The scheme of this paradox is not new. To the best of our knowledge, the first
analysis of a paradox with the same pattern was suggested by Yuting (1953).

The paradox received significant attention in the literature, including a truth theo-
retical debate over whether it is genuinely a self-referential paradox. However, it is not
our focus here to discuss the truth-theoretical conditions of the paradox. Nevertheless,
we hope that the game theoretical analysis will have some potential to shed light on
the truth theoretical debate. Notwithstanding, in what follows we briefly review some
of the discussions on the paradox.

Ketland showed that the paradox is ω-inconsistent and gave a general scheme
for Yablo-like sentences with ω-inconsistency (Ketland 2005). Furthermore, Barrio
showed that Yablo’s Paradox in first-order arithmetic has a model and not inconsistent,
but it is ω-inconsistent (Barrio 2010). It is easy to see how. Since every finite set of
Sn sentences is satisfiable, then, by compactness there exists a model for the Yablo
sentences. By ω-inconsistency, it can be argued that the model we are looking for is a
non-standard model of arithmetic. We will discuss categoricity in due time.

The relation between liar-like circular paradoxes and Yablo’s paradox received
significant attention as the aforementioned relation is far from being trivial. As Hardy
puts it “Is Yablo’s paradox Liar-like? In some ways yes, and in other ways no” (Hardy
1995). Priest, however, offers another analysis regarding the infinitary language that
it requires, and suggests a reading of the paradox that does indeed involve circularity
(Priest 1997). Sorensen disagrees and point out the hierarchical view of Tarskian
truth theory arguing that Yablo’s paradox in effect “exploit[s] an alternative pattern
of semantic dependency” (Sorensen 1998). Beall extends the discussion on the self-
referentiality of the paradox and argues on the non-circularity of the paradox even if he
thinks that Sorensen’s arguments do not address Priest’s point accurately (Beall 2001).

There have been a variety of applications of Yablo’s paradox in logic. Goldstein
presents a set theoretical Yabloesque paradox for class membership (Goldstein 1994).
A further interesting application of Yablo argument is Goldstein’s investigation of
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the concept by using Fibonacci sequences to illustrate the under-specification of the
truth conditions of he paradox (Goldstein 2006) Leitgeb, on the other hand, sug-
gests a Yabloesque paradox for non-well-founded definitions which underlines the
set theoretical limitations of the logical toolbox (Leitgeb 2005). Picollo discusses
the paradox from a second-order logical perspective generalizing the ω-inconsistency
results (Picollo 2013). Another line of generalization is concerned with the non-well-
foundedness of Yablo sentences and relates it to similar discussions in foundational
set theory (Bernardi 2001). Non-well-founded Yablo chains form a topological space
which can be viewed as the underlying idea of Bernardi’s topological approach to the
paradox (Bernardi 2009). Cook, on the other hand, considers Yablo’s paradox and
gives Curry-like versions of the paradox (Cook 2009). Beall, moreover, gives a non-
modal Yabloesque curry paradox which initially triggers Cook’s approach which we
have mentioned (Beall 1999).

A recent monograph byCook discusses the paradox at length providing both further
philosophical insight and a detailed overview of the literature (Cook 2014). Cook con-
siders two broad issues. The first is understanding the paradox by examining “whether
the Yablo paradox (or some modification of it) is genuinely non-circular, or whether
the non-circularity is merely apparent” [Cook (2014), §1]. The second is to study if
it is possible to “apply the general Yabloesque pattern to other paradoxes, replacing
each circular paradox with a non-circular Yabloesque analogue, thereby eliminating
the need to make use of circular constructions altogether” which he calls as “the
Generalizibility Question” [ibid]. Our study, therefore, provides a direct response to
the “Generalizibilty Question” by presenting a game theoretical paradox with the
Yabloesque pattern.

∗
In this paper, we reformulate Yablo’s paradox in an epistemic game theoretical con-

text complementing and extending the BK paradox. Our semantic approach directly
relates the discussion to both truth theories and epistemic game theory, thus helps
unravel the complications that paradoxes create in both fields. Moreover, as the stan-
dard language of epistemic game theory is modal, our analysis can be viewed as a
bimodal extension of the Yablo paradox.

In the following, we first introduce the argument, followed by its formalization.
Before proving the impossibility result, we discuss an instantiation of the paradoxical
sentence for illustrative purposes. Consequently, we present a brief discussion on how
the new paradox relates to major issues in logic. Finally, we propose a paraconsistent
model for the paradoxical sentence, observing underwhich conditions the newparadox
can be satisfied.

2 A non-self referential epistemic game theoretical paradox

2.1 The argument

Let us consider the following sequence of assumptionswhere numerals represent game
theoretical players.
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A1 : 1 believes that ∀k > 1, k’s assumption Al about ∀l > k is untrue,

A2 : 2 believes that ∀k > 2, k’s assumption Al about ∀l > k is untrue,

A3 : 3 believes that ∀k > 3, k’s assumption Al about ∀l > k is untrue,

...

The above set of statements is slightly complicated (especially, compared to the
Yablo sentences). So, first we present an informal argument which shows why and
how the above set of sentences is paradoxical.

What does the above statement mean in an epistemic game theoretical framework?
First of all, it is a game with ω-many players as the statement is ω-inconsistent. It is
not difficult to imagine a situation that can illustrate the situation game theoretically.
Let us give an example similar to Sorensen (1998). While discussing Yablo’s paradox,
Sorensen gives the well-known queue example, which is the Yablo argument in a dual
form. He considers an infinite queue of students where each students think “Some of
the students behind me are now thinking an untruth” [ibid]. Sorensen shows that this
is a paradoxical situation.

Now, similarly, imagine a queue of players, where players are conveniently named
after numerals, holding beliefs about each player behind them, but not about them-
selves. In this case, each player i believes that each player k > i behind them has an
assumption about each other player l > k behind them, and i believes that each k’s
assumption is false. This statement is perfectly perceivable for games, and involves a
specific configuration of players’ beliefs and assumptions, which is expressible in the
language. However, as we shall show, similar to Yablo’s paradox and the BK paradox,
this configuration of beliefs is impossible. Moreover, the paradox is more complex
than Sorensen’s.

It is so because, for example, Student 7 is certainly subject to some students’
beliefs in more than one way, and the relation between different students with assump-
tions about Student 7 is strong, perhaps too strong. For instance, it is believed
by Student 3 what Student 5 assumes about Student 7 is untrue. Moreover, it is
also the case that Student 4 believes what Student 6 assumes about Student 7 is
untrue. This is where the assumption modality makes a formal difference and asso-
ciates the assumptions of Student 5 and 6 with each other. The assumption modality
precisely identifies the set of possible worlds at which the assumption is true. By
doing so, the assumptions of Student 5 and Student 6 about Student 7 are satisfied
at the very same set of possible worlds to which they both have access. There-
fore, since the same sentence is assumed by different students in the queue, the
same set of possible worlds are forced to be available to all these students by the
definition of the assumption modality. This setup introduces an additional level of
formal and semantical complexity to the paradox which cannot be eliminated by
replacing the problematic part with a predicate (such as untrue). The reason stems
from the interactive nature of the paradox and how different students assuming the
same untruth are identified using the semantics of the assumption modality. As
we shall discuss later on, the assumption modality is indispensable in this version
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of the paradox as the paradoxical situation does not appear using only the belief
modality.2

Now, we can observe why the set of sentences given at the beginning of this section
is not self-referential. For each n ∈ ω, the predicates in An ranges over m > n, but
not over n. The sentence An does not contain any predicate about player n.3

Let us start with an informal semantic argument. Now, for a contradiction, assume
An is true for some n. Therefore, player n believes that ∀k > n, k’s assumption is
untrue. In particular, player n + 1’s assumption is untrue. In other words, n + 1’s
assumption

An+1 : n + 1 believes that ∀k > n + 1, k’s assumption Al about ∀l > k is untrue.

Therefore, n + 1 believes that for some k′ > n + 1, what k′ assumes about some
l ′ > k′ is true. But, this combination of players k′ and l ′, both of which are bigger than
n + 1, thus n, is accessible from n by means of the belief-assumption modalities. We
assumed An is true, which entails that what k′ assumes about some l ′ > k′ is untrue.
Contradiction. The choice of n was arbitrary, so each An in the sequence is untrue.

However, if each An is untrue, they can be assumed untrue in some model. But,
if for all n, n’s assumption is untrue, then A1 is indeed true. Yet, we just argued that
each An is untrue. Contradiction. Thus, the paradox has no model.

Some remarks about the above reasoning are in order. First, the initial inconsis-
tency occurs since players whose numerals are large enough can be accessed by the
modalities both from the sentence which was initially assumed true and from the
sentence that is assumed to be untrue (by the initially assumed true sentence). And
this creates a contradiction, similar to Yablo’s original arguments. This fact relates
the paradox to non-well-foundedness as observed by Yuting (1953). Moreover, it is
important to note that the informal argument above requires non-finite resources to
prove the contradiction. Our semantic approach, however, shows that the infinitary
set of sentences given above has no classical model, reasoning at the level of meta-
language.4 In what follows, we shall set aside the proof theoretical and computational
concerns and follow a semantical approach to argue that there is no classical model
for our paradox.

Next,more importantly, in game theory, players are entitled to have their ownbeliefs
and two players may coherently have contradictory beliefs. However, notice that the
above contradiction is a contradiction about the truth of a statement, not about the
belief of some truth.

2 In Sorensen (1998), Sorensen’s queue example uses the modality think in an informal way. It is not
clear if it can be formalized or if it can have a complete semantics in a modal or first-order framework.
From a formalist perspective, the current paper supplements Sorensen’s approach by introducing additional
formal elements to the discussion. The beliefs and assumptions discussed in this paper are not just doxastic
elements but also well-defined modal operators with clear semantics and proof theory.
3 As argued by Priest, the sentences contain quantification ∀m > n which may be viewed self-referential
(Priest 1997).
4 I am grateful to the referee for bringing this matter to my attention.
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2.2 Formal matters

Let us be more formal now.
The Yabloesque Brandenburger–Keisler paradox (‘YBK Paradox’, henceforth)

requires ω-many players i ∈ I . The syntax of this language is given in the Backus–
Naur form as follows for a set of propositional variables P:

ϕ := p | ¬ϕ | ϕ ∧ ϕ | �i jϕ | ♥i jϕ

where p ∈ P and i �= j for i, j ∈ I with |I | = ω. The disjunction and implication are
taken as abbreviations in the standard way.

The extended belief model is a tuple M = ({Ui }i∈I , {Ri j }i �= j∈I , V ) where Ri j ⊆
Ui × U j and V is a valuation function defined in the standard way. As before, the
expression Ri j (x, y) represents that in state x , the player i believes that the state y
is possible for player j . As before, we prevent (a trivial form of) self-reference by
disallowing players having beliefs about themselves. This is indeed one of the points
of paraconsistent approaches to the classical BK paradox (Başkent 2015).

The semantics for the modal operators is given as follows in a similar way.

x |� �i jϕ iff ∀y ∈ U j .Ri j (x, y) implies y |� ϕ

x |� ♥i jϕ iff ∀y ∈ U j .Ri j (x, y) iff y |� ϕ

For a formula ϕ in the language given, |ϕ| denotes the set of states which satisfies ϕ.
Formally, |ϕ| = {w ∈ ∪i∈IU i : w |� ϕ}. Additionally, |ϕ|i = {w ∈ Ui : w |� ϕ}.We
call |ϕ|M the extension of ϕ in model M . We omit the superscript when it is obvious.

Now, we can formalize the YBK paradox in extended belief models by considering
the following sequence of assumptions Ai :

A1 :=
∧

k>1

�1k

{
∧

l>k

♥kl¬Al

}

A2 :=
∧

k>2

�2k

{
∧

l>k

♥kl¬Al

}

A3 :=
∧

k>3

�3k

{
∧

l>k

♥kl¬Al

}

... (1)

In the above set of sentences, each assumption Ai is associated with player i and
numerals identify the players. By using semantical methods, wewill now show that the
above configuration of beliefs is (classically) impossible—that is there is no standard
model for the infinite set of sentences given in Statement 1 above.

Here, A1 is the assumption that the player 1 believes that all the other players k > 1
believe that k’s assumption Al about player l > k is untrue. Similarly, for all other
players.
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Following the ideas suggested in the informal proof we have given earlier, we
assume that An is true for some n at some state w ∈ Un . That is w |� An . Explicitly,
we have

w |�
∧

k>n

�nk

{
∧

l>k

♥kl¬Al

}

where ¬An is given as follows:

¬An =
∨

k>n

♦nk

{
∨

l>k

¬♥kl¬Al

}

For clarity, let us specify the semantics of ¬♥i j¬ϕ which appears in ¬An :

x |� ¬♥i j¬ϕ iff ∃y∈U j .[(Ri j (x, y)∧y |� ϕ)∨(¬Ri j (x, y)∧y |�¬ϕ)]

2.3 An illustrative instantiation

As we mentioned earlier, first we will exemplify how the argument runs in order to
make our formal reasoning easier to follow. For this reason, let us first take n = 3 as
a work-out case, before giving it for an arbitrary n. When necessary, for clarity in the
notation we will write �n·m for �nm—and similarly for Rnm .

Let w |� A3. Therefore, w |� ∧
k>3 �3·k{∧l>k ♥k·l¬Al}. Let us spell this out.

w |�
∧

k>3

�3·k
{

∧

l>k

♥k·l¬Al

}

w |� �3·4 (
♥4·5¬A5 ∧ ♥4·6¬A6 ∧ ♥4·7¬A7 ∧ . . .

)
∧

�3·5 (
♥5·6¬A6 ∧ ♥5·7¬A7 ∧ ♥5·8¬A8 ∧ . . .

)
∧

...

In particular, for example, w |� �3·4♥4·7¬A7 and w |� �3·5♥5·7¬A7. Therefore,
it can be seen that for all 3 < a < 7, w |� �3·a♥a·7¬A7. Simply put, from agent
3, through each other agent between 3 and 7, it is possible to reach ¬A7 via belief-
assumption chain. We simply focused on player 7 and his assumption A7, but the
argument works for any player n > 4 in our example.

The contradiction simply occurs when A7 is hit by two different players in two
different ways. In order to see it, consider A5 (which can also reach A7 by a belief-
assumption chain). So, we have

w |� �3·4♥4·5¬A5
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where ¬A5 is given as follows:

∨

k>5

♦5·k
{

∨

l>k

¬♥k·l¬Al

}
.

Therefore, for all v, if R3·4wv then v |� ♥4·5¬A5. Then, for all u, R4·5vu if and
only if u |� ¬A5. The use of the assumption modality here is crucial. It associates the
set of states that falsifies A5 with what is accessible from v with R4·5.

Spelling this out, we have the following.

u |� ♦5·6 [
¬♥6·7¬A7 ∨ ¬♥6·8¬A8 ∨ . . .

]
∨ ♦5·7

×
[
¬♥7·8¬A8 ∨ ¬♥7·9¬A9 ∨ . . .

]
∨ . . . (2)

The first disjunct in Sentence 2 (that is ♦5·6[¬♥6·7¬A7 ∨ . . . ]) suggests that there
is a t such that R5·6ut and t |� ¬♥6·7¬A7 ∨ ¬♥6·8¬A8 ∨ . . . .

However, this is impossible. The first disjunct (¬♥6·7¬A7) cannot be the case at t .
Because it reduces to the following.

t |� ¬♥6·7¬A7,

iff ∃y ∈ U 7
[(

R6·7(x, y) ∧ y |� A7

)
∨

(
¬R6·7(x, y) ∧ y |� ¬A7

)]

But, this is impossible by our earlier observation: there is a state accessible via R6·7
that satisfies¬A7, and all the states accessible from u satisfies A7 due to the definition
of the ♥ modality.

The argument can easily be extended to other disjunct in Statement 2 and their
disjuncts. Thus, Statement 2 cannot have a consistent model. Therefore, each An is
false. As we observed earlier, then Ans are also true by definition. This is the paradox.5

2.4 The proof

Let us now go back to the formal argument. In what follows, we shall present a
semantical approach to show how the set of sentences in Sentence 1 cannot have a
standard model.

We first start with the following lemmata where ≡ denotes the logical equivalence
in the usual sense.

Lemma 2.1

1. ♥i jϕ → �i jϕ

2. ♥i j (ϕ ∧ ψ) ≡ ♥i jϕ ∧ ♥i jψ

5 As pointed out by one of the referees of this journal, it is important to notice the non-finitistic nature of
this reasoning in this argument. We show that there is no classical model for the given sentence, not proving
a contradiction—which would require non-finitistic resources obviously.
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3. �i j (♥ jkϕ ∧ ♥ jlψ) ≡ �i j♥ jkϕ ∧ �i j♥ jlψ .
4. ♦i j (♥ jkϕ ∨ ♥ jlψ) ≡ ♦i j♥ jkϕ ∨ ♦i j♥ jlψ

5. ♥i j (� jkϕ ∧ � jlψ) ≡ ♥i j� jkϕ ∧ ♥i j� jlψ

Proof The proofs follow immediately from the semantical definitions and the basic
facts for the modal operators. ��

Lemma 2.2 If w |� An, then for all p, q with n < p < q; w |� �np♥pq¬Aq.

Proof The proof follows immediately from the semantical definitions of the modali-
ties, An and Lemma 2.1. ��

Lemma 2.2 has some interesting consequences. For example, if w |� A3, then we
have bothw |� �3·4♥4·6¬A6 andw |� �3·5♥5·6¬A6. If there is a v such thatwR3·4v,
then R4·6(v) = |¬A6|. Moreover, if there is another v′ �= v such that wR3·4v′, then
R4·6(v) = |¬A6| = R4·6(v′). Similar argumentation shows that R5·6(u) = |¬A6| =
R5·6(u′) for some u, u′ with wR5·6u. We can generalize this result as follows.

Theorem 2.3 If w |� An, then for all p, p′, q with n < p < q and n < p′ < q; we
have Rpq(v) = Rp′q(v′) for all v ∈ U p and all v′ ∈ U p′

.

Proof By Lemma 2.2, we observe that w |� An implies both w |� �np♥pq¬Aq and
w |� �np′♥p′q ′¬Aq for n < p < q and n < p′ < q ′.

Then, ∀v ∈ U p, wRnpv implies that v |� ♥pq¬Aq . However, the last statement
means that ∀u.(vRpqu ↔ u |� ¬Aq). Then, we observe that |¬Aq | = Rpq(v).
Similarly, ∀v′ ∈ U p′

,wRnp′
v implies that v′ |� ♥p′q¬Aq which yields that Rpq(v) =

Rp′q(v′). The choices of v and v′ were arbitrary, thus the result follows. ��

Corollary 2.4 If w |� An, then �np♥pqϕ ↔ �np′♥p′qϕ for n < p < q and
n < p′ < q.

Now, assume that w |� An for some arbitrary n. Game theoretically, this means
that player n believes that all the other players after him assume that the assumptions
of each player after them are false.

We can rewrite w |� An as follows:

w |�
∧

k>n

�nk

{
∧

l>k

♥kl¬Al

}

where ¬An is given as follows:

¬An =
∨

k>n

♦nk

{
∨

l>k

¬♥kl¬Al

}
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Explicitly, we have the following for w |� An :

w |� �n·n+1
(
♥n+1·n+2¬An+2 ∧ ♥n+1·n+3¬An+3 ∧ . . .

)
∧

�n·n+2
(
♥n+2·n+3¬An+3 ∧ ♥n+2·n+4¬An+4 ∧ . . .

)
∧

... (3)

Now, similar to considering the Cantorian diagonal formula for the BK para-
dox, let us take the very first conjunct (after a quick application of Lemma 2.1) in
Sentence 3:

w |� �n·n+1♥n+1·n+2¬An+2

Spelling out ¬An+2, we obtain:

w |� �n·n+1♥n+1·n+2{
♦n+2·n+3

(
¬♥n+3·n+4¬An+4 ∨ ¬♥n+3·n+5¬An+5 ∨ . . .

)
∨

♦n+2·n+4
(
¬♥n+4·n+5¬An+5 ∨ ¬♥n+4·n+6¬An+6 ∨ . . .

)
∨

...

}

After arbitrarily many applications of Lemma 2.1, the above sentence implies the
following.

w |� �n·n+1♥n+1·n+2♦n+2·n+3¬♥n+3·n+4¬An+4 ∨
�n·n+1♥n+1·n+2♦n+2·n+3¬♥n+3·n+5¬An+5 ∨
. . . ∨
�n·n+1♥n+1·n+2♦n+2·n+4¬♥n+4·n+5¬An+5 ∨
�n·n+1♥n+1·n+2♦n+2·n+4¬♥n+4·n+6¬An+6 ∨
. . . ∨
... (4)

This is thefirst conjunct�n·n+1♥n+1·n+2¬An+2 of An that is assumed to be satisfied
at w.
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Now, we will show that each and every disjunct in Sentence 4 is falsified. Let us
start with the first disjunct. The following statement

�n·n+1♥n+1·n+2♦n+2·n+3¬♥n+3·n+4¬An+4

appearing in Sentence 4 means that

∀v.∀u.∃t.(
wRn·n+1v →

(
vRn+1·n+2u ↔

(
uRn+2·n+3t ∧ t |� ¬♥n+3·n+4¬An+4

)))
(5)

But, by Theorem 2.3, this is impossible because for all l such that n < l < n + 4,
�n·l♥l·n+4¬An+4. In particular, for l = n + 3. Therefore, any state that can see a
Un+4-state contradicts the first disjunct in Sentence 4. Specifically, atw, the statement
�n·n+3♥n+3·n+4¬An+4 can be satisfied at a t such that t |� ♥n+3·n+4¬An+4. If t
accessed from the intermediate state is unique, this is necessarily a contradiction.
Witnesses contradicting the Sentence 5 can be multiplied.

This method easily generalizes to each and every disjunct in Sentence 4 and then
to each and every conjunct in Sentence 3. The choice of n was arbitrary, thus each An

in Statement 1 fails.
So far, this simply shows that the configuration of beliefs and assumptions about

players given in Statement 1 is false.
But, if each Ai is false then each ¬Ai is true. Then, ♥kl¬Al for each l > k is

satisfiable in some model: simply add a state xl intoUl which is accessible from some
Uk state such that xl |� Al . Thus,

∧
l>k ♥kl¬Al is satisfiable in some model. In a

similar way, make every state in Uk that can see a Ul state accessible from U 1 for
each k > 1. This makes

∧
k>1 �1·k{∧l>k ♥kl¬Al} satisfiable. But, that is A1 which

we previously thought false. Contradiction.
Therefore, the configuration of beliefs and assumptions about players given in

Statement 1 is semantically impossible—it cannot have a classical model.
This is a non-self-referential extension of the Brandenburger–Keisler paradox to

ω-many players in a Yabloesque fashion.

2.5 Discussion

The formal results we have presented so far have some immediate relevance to various
major issues in logic and games, such as ω-categoricity and infinitary games. Without
any doubt, these issues are deep and complicated, and they have been argued for or
against countless times within the context of Yablo’s paradox. In what follows, we
only consider the issues that are directly relevant to our current work, highlighting the
fact that the YBK paradox suggests further insights for these issues. While doing so,
we will also identify some open questions in the subject, promising future research
directions. Furthermore, the following discussion gives it a context when we present
a paraconsistent model for the paradox.
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2.5.1 Assumption modality and the diagonal formula

Assumption modality ♥i j is essential in the construction of the paradox. Without it,
it is not possible to generate the YBK paradox. For example, the following set of
sentences about players’ beliefs is not inconsistent.6

A′
1 :=

∧

k>1

�1k

{
∧

l>k

�kl¬A′
l

}

A′
2 :=

∧

k>2

�2k

{
∧

l>k

�kl¬A′
l

}

A′
3 :=

∧

k>3

�3k

{
∧

l>k

�kl¬A′
l

}

... (6)

The belief modality in the above set of sentences generates distinct belief states which
falsify the assumption without associating them with each other. In other words, for
example, if A′

4 is false at some state accessible by �2·4 this does not associate it to the
states that falsify the very formula but accessible by �3·4. The reason for that is the
weak semantics of the belief modality (compared to that of the assumption modality).

More formally, as Yablo also argued, what we would have in this case is a “down-
ward facing tree with ω branches descending from each node” which satisfies the
A′ sentences, as illustrated below (Yablo 2004). We leave the details to the reader to
construct such a tree model for Sentence 6.

•

•

•

• • . . .

•

• • . . .

. . .

•

•

• • . . .

•

• • . . .

. . .

. . .

This case, however, is compatible with Sorensen’s queue example (Sorensen 1998).
Particularly, from Sorensen’s queue sentence “Some of the students behind be are now
thinking an untruth”, it can be obtained the sentence “Some of the students behind
me are now thinking about an untruth that the students behind them are thinking”. As

6 In order to prevent any possible confusion, we denote the following assumptions with A′
n instead of An .

123



Synthese (2018) 195:441–464 455

these thoughts and beliefs are not necessarily associated to each other in any way due
to the lack of “assumptions”, Sentence 6 can be viewed as a nested, infinitary Sorensen
queue.

This remark is essential. Because it produces another unsatisfiable (not paradoxical)
sentence akin to Cantor’s sentence. Using nested queues, it is possible to construct a
model where the Cantor sentence and Sentence 6 cannot simultaneously be satisfied.
In an informal way, let us consider the set of sentences in Sentence 6 as follows where
Fx ·y denotes the assumptions (here A′s).

�1·2�2·3F1·2,2·3 ∧ �1·2�2·4F1·2,2·4 ∧ �1·2�2·5F1·2,2·5 ∧ . . .

�1·3�3·4F1·3,3·4 ∧ �1·3�3·5F1·3,3·5 ∧ �1·3�3·6F1·3,3·6 ∧ . . .

...

�n·k�k·k+1Fn·k,k·k+1 ∧ �n·k�k·k+2Fn·k,k·k+2 ∧ �n·k�k·k+3Fn·k,k·k+3 ∧ . . .

... (7)

If a model M is constructed to satisfy Sentence 6, we can generate a diagonal sentence
δ such that M �|� δ. The sentence δ is defined by taking the diagonal of the above set
of sentences following the Cantorian methodology. Therefore, δ is given as follows.

δ := ¬�1·2�2·3F1·2,2·3 ∧ ¬�1·3�3·5F1·3,3·5
∧ · · · ∧ ¬�n·n+1�n+1·n+3Fn·n+1,n+1·n+3 ∧ . . .

Notice that δ is indeed simultaneously unsatisfiable (classically) in a model M
satisfying the Sentence 7. The first conjunct of δ refutes the first sentence, the second
conjunct refutes the second sentence, and the nth conjunct in δ refutes the nth sentence
in the Sentence 6.

This procedure is very common. Indeed, a similar approach for Yablo’s paradox
was also given by Cook (2014).

Finally, the following result sums up the discussion.

Theorem 2.5 Let M be a belief model. Let M |� A′
i for each i ∈ ω where A′

i =∧
k>i �i ·k{∧l>k �k·l¬A′

l}. Then, there exists a sentence δ such that M �|� δ.

The Sentence δ is essential to construct the Gödelian self-referentiality using the
truth predicate in the standard way. The truth theoretical narration of this discussion
falls outside the scope of this work, thus omitted.

Nevertheless, the above discussion immediately relates the YBK paradox to ω-
categoricity.

2.5.2 Categoricity

As argued by Ketland, the Yablo sentences are not satisfiable on the standard model of
arithmetic, thus they are “ω-inconsistent” (Ketland 2005). This observation suggests
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that the YBK paradox can be satisfied in a game model with ω + 1 players, a non-
standard model for the game. As every finite set of Ans in Sentence 1 are satisfiable,
by compactness, there must exist a model for the YBK sentences.

For completeness of our arguments, let us first see how every finite set of Ans
are satisfiable. In the original Yablo’s paradox, this is an easy task. For a finite set of
Yablo sentences {S f (1), . . . , S f (n)}where f is an strictly increasing injective indexing
function, a model can be given as follows. As f is strictly increasing, the sentence
with the highest index is S f (n). Let S f (n) be true. Therefore, for each k > f (n), Sk is
untrue. Then, let all the other S f (i) for i < n be false. As f (i) < f (n) for i < n, S f (i)

cannot hold for i < n as S f (n) is true. In conclusion, in a finite set of Yablo sentences,
simply let the sentence with the highest index be true, then the rest will be false. This
is a model for a finite set of Yablo Sentences.

For the YBK sentences, we reason similarly. Given a finite set of assumptions
{A f (1), . . . , A f (n)} where f is an strictly increasing injective indexing function, we
force A f (n) be true and the rest false. Thus, every finite set of Ans are satisfiable, and
as we argued, then there exists a non-standard model of the YBK paradox, which can
be constructed similarly as in Ketland (2005). The details of this procedure is very
similar to the Yablo case and left to the reader.

The significant contribution of Ketland’s work is that it gives uniform schemes for
Yablo’s paradox (Ketland 2005). It is thus important to see if the YBK paradox fits in
any of these schemes. The uniform homogeneous Yablo scheme which Ketland gives
is as follows.

∀x[ϕ(x) ↔ ∀y(ψ(y, x) → ¬ϕ(y))]

Let us start with the following generalization to obtain the Uniform Homogeneous
Yablo–Brandenburger–Keisler scheme.

∀x[ϕ(x) ↔ ∀y(ψ(y, x) ∧ ∀z(ξ(z, y) → ¬ϕ(z)))]

The above sentence is obtained by considering the additional relation (the assump-
tion modality) as a precondition for the paradoxical result. Pursuing this line
of generalization, we obtain the following uniform Yablo–Brandenburger–Keisler
scheme for the YBK paradox.

∀x, y, z1, z2, . . .
[
ϕ(x) ↔

(
ψ(y, x) ∧

∧
(ξ(zi , y) → ¬ϕ(zi ))

)]
(8)

The above scheme indeed replaces the free variable y in Ketland’s version with a
vector (y, z1, . . . )with taking care of the additional predicate relations. The scheme in
Sentence 8 raises the possibility of using different modal operators, as opposed to the
assumption modality, to have a paradoxical situation similar to the YBK paradox. We
leave inquiring about the possibility of this interesting theoretical direction to future
work.

Similarly, the schemes presented above relate the discussion to curryesque iterations
of the paradoxes.AsBeall observed, a non-modal version ofYabloesqueCurry paradox
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can be given (Beall 1999). Beall’s version of the paradox can be summarized as follows
for n ≥ 1:

λn := If for all λi for i > n are true, then 1 = 0.

It is not possible to obtain a curryesque YBK paradox directly from the scheme in
Sentence 8. By careful substitution, we obtain the following where λ(i, n) denotes the
formula λi for all i > n.

∀n, i.

[
λ(n) ↔ (λ(i, n) ∧

∧

i>n

(λ(i) → ¬λ(i)))

]

The above formula reduces to the following as
∧

i>n λ(i) = λ(i, n).

∀n, i.[λ(n) ↔ (λ(i, n) → ¬λ(i))]

The above sentences still use the negation symbol and are not in the Curry form.
Therefore, constructing a curryesque version of the YBK paradox is a natural next
step for this project. In order to do justice to the subject, we leave it for future work.

The topic of ω-consistency has been discussed not only from the view point of
cardinality but also from the perspectives of first- and second-order logics and their
proof theories. As observed by Barrio and Picollo in various occasions, Yablo’s para-
dox behave differently in first- and second-order languages (Barrio 2010; Barrio and
Picollo 2013; Picollo 2013). This difference stems from the compactness theorem
and relates heavily to the categoricity results of truth theories and the failure of
well-foundedness principle (Forster 2004). These observations constitute a significant
discussion regarding whether ω-categoricity should be required from truth theories,
either in first- or second-order case.Moreover, it clarifies the differences between proof
theoretical and semantical approaches to the mathematical analysis of paradoxes.

YBK paradox opens up a new direction for these discussions and relates the
truth theoretical debate to a game theoretical framework. The relation between ω-
categoricity and game theoretical rationality, for example, is an unexplored and
intriguing direction, which we leave for future work.

It is however an open question whether the first- or second-order formalizations
of the YBK paradox would behave differently or whether the YBK sentence (or even
the BK sentence) would not be paradoxical in second-order logic. The mathematical
complexity of this research direction relies on van Benthem’s theorem regarding the
identification between bisimulation invariance of first-order logic and modal logic.
Since a similar bisimulation invariance result is given between the second-order logic
and modal fixed-point languages, a second-order reiteration of the YBK paradox nec-
essarily requires a modal fixed-point language. In conclusion, the arguments we have
presented so far demonstrates the logical breadth and depth of the YBK paradox and
identifies some open questions in the field to stimulate future research.
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2.5.3 Infinite games

Mathematical approaches for omega-consistency focuses heavily on the formal aspects
of the paradox. However, in this work the YBK paradox is formulated within the
context of game theory. Therefore, the “game theoretical” aspects of the paradox raise
some important issues for infinitary games.

Similar to Leitgeb’s example, players possessing Yabloesque beliefs about other
players are indeed infinitary: “[their] mental capacities are infinite in two respects:
(1) they are able to bear in mind infinitely long linguistic items, and (2) they can
hold infinitely may linguistic items before their minds” (Leitgeb 2005). Therefore,
our games may be found unreasonable.

This is a valid criticism. Yet, this relates to even broader issues in logic and games,
including epistemic omniscience (if an agent knows ϕ, he knows its deductive closure)
and common knowledge (which has an infinitary definition). Briefly put, our approach
is no exception to the problems of defining simple and foundational concepts in a
logical framework.

Additionally, as it was underlined several times earlier, limitations of set theory
(including the well-foundedness principle) affects the way the paradoxes are formal-
ized, and game theoretical paradoxes are no exception (Heifetz 1996; Başkent 2015).
Therefore, creating infinitary chains of beliefs and assumptions, with or without well-
foundedness, seems to be a problematic point as non-well-founded set theory do not
seem to remedy self-referential paradoxes (Moss 2005).

Moreover, the YBK paradox enjoys a kind of exhaustiveness which is game theo-
retically not immediate to give an account for. As it is formulated in Sentence 1 and
observed further in Lemma 2.2, the paradox forces each player to have beliefs about
every other player after him in such a way that these players will have assumptions
about all the players after them. This seems too much to ask for game theoretically.
Or is that so?

On the contrary, it is relatively easy to find game theoretical examples discussing
self-referentiality and/or non-well-foundedness. Another simple game theoretical
example, similar to Sorensen’s, for the YBK paradox might be a queue of people
waiting to check-in to Hilbert’s Hotel. The Hotel is thought of having infinitely many
number of rooms, precisely ω-many. Then, it can be imagined that the people anx-
iously waiting to check in to the hotel may have beliefs about the other people waiting
behind them. Moreover, those beliefs can reasonably contain some assumptions about
these people. For example, a player i can believe that some other person j > i behind
him may assume that he himself will get the last room with a perfect view, so that
∀k.k > j will have an assumption that their rooms will not have a perfect view. The
YBK paradox then appears if their beliefs and assumptions are arranged in the way
given in Sentence 1. Notice, however, this is very similar to Priest’s claim about the
self-referentiality of the Yablo paradox that is each person in the queue has the same
thought (Priest 1997).

Infinitary games do not only appear within the context of logic. A more mathemati-
cally sophisticated paradoxical game is the hypergame paradox discussed by Zwicker
(1987). Let us consider the paradox from Bernardi and D’Agostino (1996):
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Consider games between two players A and B. We use the word ‘game’ in
two different meanings, to denote both a game in general and any particular
competition between A and B. Given a game G, we will say ‘a game of G’, to
denote a single competition which proceeds according to the rules of G. Call a
game G founded if every game of G must terminate after finitely many moves,
that is, following the rules, it is impossible for a game of G to go on for ever,
even if a priori there is no fixed bound on the lengths of games of G.

Now, define the hypergame as follows: player A chooses a founded game G,
then player B makes the first move in G and the game continues according to
the rule of G. (Of course, there are simple winning strategies for A, but we
are not concerned with them - in fact, we only specify legal moves, while the
result of the game, who wins and who loses, has no importance.) Does this game
have an end? Since G is founded, the answer is obviously ‘yes’. In other words,
hypergame is a founded game. As a consequence, in a game of hypergame,
player A can choose the hypergame itself as a founded game, giving B the right
to choose the founded game. But, if B decides to be as bizarre as A and also
chooses hypergame, and A in turn repeats ‘let’s play hypergame’, and so on, we
get an unfounded game in which both players move according to the rules of a
founded game.

Therefore, there are games and game theoretical situations involving infinitaryness
and non-well-foundedness, and more importantly they appear quite naturally. The
YBK paradox presents an interesting example regarding similar issues, with much
more mathematical and logical sophistication.

The mathematical aspects of the YBK paradox are related to various other issues in
logic, including fixed points. As we argued regarding the ω-(in)consistency, Yablo’s
paradox (and perhaps also the YBK paradox) produce different results in first- and
second-order cases (Picollo 2013). First- and second-order logics relate to modal
paradoxes in a special way. The reason is that the bisimulation invariant fragment
of first-order logic is indeed the classical modal logic, and the bisimulation invariant
fragment of second-order logic is precisely the modal fixed-point logic. This immedi-
ately raises the possibility of representing the YBK paradox with modal-fixed points.
Such extensions fall outside the scope of the current paper, thus left for future work.

Within this tradition, Bernardi’s program investigates the mathematical con-
nection between infinitary (that is non-founded games) and fixed-points (that is
self-referentiality) in depth (Bernardi and D’Agostino 1996; Bernardi 2001). Such
approaches give infinitariness a deeper conceptual meaning and relate it directly to
non-well-foundedness in set theory. In fact, it is argued in Bernardi and D’Agostino
(1996) that the method of diagonalization arises from self-referential paradoxes, as
also argued in Yanofsky (2003). Nevertheless, this pattern is more familiar and much
older than it looks. More generally, a single-page paper by Yuting gave essentially
a similar paradox already in Yuting (1953). Yet, as mentioned in a footnote in Yut-
ing (1953), the scheme of this paradox can be traced back to Quine’s Mathematical
Logic of 1951. What Yuting discussed was to give a paradox using non-well-founded
sequences, which is, in fact, the basic idea behind most of such paradoxes. Indeed,
such an approach was also given to analyze the BK paradox (Başkent 2015).
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Now, what is important for our purposes is the fact that both the BK paradox and the
liar paradox can be expressed by fixed-points. In paraconsistent logic, which allows
non-trivial inconsistencies, there are certain structures that can work with such fixed-
points and express inconsistencies in a sound way (Başkent 2015). In what follows,
we consider topological spaces as a working case of such structures and construct a
model that satisfies the YBK paradox, extending the use of topological models for
paraconsistency from self-referential paradoxes to non-self-referential ones. This ties
up the discussion and concludes the formal treatment of the YBK paradox by using a
formal structure that has strong mathematical precision for various systems of logic
and their semantics as well as for fixed-points.

3 A paraconsistent model

Our semantical treatment and the discussionwhich followed it establish theYBKpara-
dox as a genuine and complex paradox. However, from a non-classical logical view
point, this is not the end of the story. It is important to observe how an inconsistency-
tolerant system can model the paradox. Our formal approach therefore sheds lights on
the debate whether Yablo’s paradox (or the YBK paradox) is indeed self-referential.
From a pragmatic perspective, our work complements an earlier attempt which sug-
gested a paraconsistent model for the BK paradox (Başkent 2015). By applying the
similar constructions to the YBK paradox, we verify the formal strength of paracon-
sistent game models which serves our general agenda of understanding paraconsistent
games.

We will work with topological models which generate natural models for paracon-
sistent logics (Goodman 1981). What makes topological models stronger is that they
are versatile. With some intuitive assumptions, they can give semantics for (classical)
modal logics, intuitionistic logic and paraconsistent logic.

It is, however, important to note how our approach differs fromBernardi’s (Bernardi
2009, 2001). A natural approach to logical paradoxes is to study them by using fixed-
points.AsYablo-like paradoxes can be viewed as an infinite sequences of 0s and 1s, this
collection of sequences can be considered as a topological space. Thus, a topological
investigation of truth-value sequences and their fixed-points relate the paradox directly
to topological paradoxes.

Our line of research, however, is semantical. Topological spaces can also be viewed
as the underlining structure for the extensions of logical formulas, which in turn create
a paradox. Thus, replacing the formulas with their topological and set theoretical
extensions promises a more structural analysis of the paradox and the role of logic in
these paradoxes. This is the direction we are pursuing in this work.

Let us start with definitions. Given a non-empty set S, a collection of subsets σ of
S is called a topology if it satisfies the following conditions:

• S and ∅ are in σ ,
• σ is closed under arbitrary unions and finite intersections.

We call the tuple (S, σ ) a “topological space”. The elements of σ are called “opens”
while their complements are “closeds”. The interior operator Int(·) for a set O returns
the largest open set contained in O . Similarly, the closure operator Clo(·) for a set K
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returns the smallest closed set containing K . For a set O , the boundary of O is defined
as Clo(O) − Int(O) and denoted as ∂(O).

Topological spaces are central in various approaches to paraconsistent logics and
their algebraic structures. For example, Lawvere discussed the role of boundary oper-
ator in co-Heyting algebras, which can be viewed as the algebraic structures of some
paraconsistent logics (Lawvere 1991). From a topological perspective, the boundary
operator ∂(O) is essential to give semantics for paraconsistent logics in topological
spaces (Goodman 1981; Mortensen 2000; Başkent 2013).

In the topological semantics for the classical modal logic, the operators Int and
Clo are identified by � and ♦ modalities as follows: |�ϕ| := Int(|ϕ|). That is,
the extension of a �ϕ is defined as the interior of the extension of ϕ. Similarly,
we put |♦ϕ| := Clo(|ϕ|). Therefore, in classical logic, modal operators necessarily
generate open or closed sets. Nevertheless, ground formulas (formulas with no modal-
ities appearing in them) do not necessarily generate opens or closeds sets in classical
logic.

But it is possible to stipulate that the extensions of propositional variables to be
closed sets. This stipulation works well with conjunction and disjunction as the finite
intersection (and respectively, the union) of closed sets is closed. However, negation
has to be handled carefully as the complement of a closed set is not necessarily closed,
but open. Therefore, we define a special negation, a paraconsistent negation, ∼ as the
closure of the complement. Then, what we obtain is a co-Heyting algebra (Başkent
2013, 2015).

Now we construct a paraconsistent model for the YBK paradox. For agent i , we
take the corresponding non-empty type space Si and define topologies with closed sets
σi . For example, for Player 3, the type space will be denoted by S3 with a topology
σ3. In order to make this approach interactive, we define a function si j ⊆ Si × S j

which associates states for player i with the states of j . For example, for player i , at
states from Si , si j returns a closed set K ∈ σ j . We write si j (w, K ) means that at state
w ∈ Si , player i believes that states k ∈ K are possible for j .

The model is a tuple ({Si }i∈I , {σi }i∈I , {si j }i, j∈I , V )where V is a valuation defined
in the standard way. The syntax for this system is similar to what we have given
in Sect. 2.2, and restated here with the paraconsistent negation symbol ∼ which we
discussed above and for p ∈ P where i �= j ∈ I :

ϕ := p | ∼ϕ | ϕ ∧ ϕ | �i jϕ | ♥i jϕ

The dual modalities are defined as usual with the paraconsistent negation.
The paraconsistent topological semantics for this language is given as follows for

negation and the modal operators as the Booleans are standard. For a set X , the
complement of X will be denoted by Xc.

|∼ϕ| = Clo(Kc)

|�i jϕ| = {w ∈ Si : ∃K ∈ σ j with s
i j (w, K ) and K ⊆ |ϕ|}

|♥i jϕ| = {w ∈ Si : ∃K ∈ σ j with s
i j (w, K ) and K = |ϕ|}
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For easy read, we give the semantics for the modalities in the traditional sense as
follows.

w |� �i jϕ iff ∃K ∈ σ j with si j (w, K ) → ∀v ∈ K .v |� ϕ

w |� ♦i jϕ iff ∀K ∈ σ j with si j (w, K ), ∃v ∈ K such that v |� ϕ

w |� ♥i jϕ iff ∃K ∈ σ j with si j (w, K ) ↔ ∀v ∈ K .v |� ϕ

Now we construct a topological paraconsistent models for the YBK paradox. Let
us reconsider the set of modal formulas given in Sentence 1.

A1 :=
∧

k>1

�1k

{
∧

l>k

♥kl¬Al

}

A2 :=
∧

k>2

�2k

{
∧

l>k

♥kl¬Al

}

A3 :=
∧

k>3

�3k

{
∧

l>k

♥kl¬Al

}

...

We will construct a model and a possible world w in it that satisfy the above set of
formulas step by step starting with player 1 and A1. Now, for player 1, take w1 ∈ S1
and consider A1. For each k > 1, construct K1k ∈ σk such that s1k(w1, K1k) and
each vk ∈ K1k satisfies

∧
l>k ♥kl∼Al . Therefore, for each l > k, there existsUkl that

skl(vk,Ukl) such that every ul ∈ Ukl if and only if ul ∈ |∼Al |. Let us unravel ∼Al as
follows:∼Al = ∨

p>l ♦lp{∨q>p ∼♥pq∼Aq}. This is a disjunctive statement. As our
goal is to construct a counter-model, we will try to satisfy only one of the disjuncts
and nested-disjuncts.

Now at ul , include (ul , K1p)in slp for all p > l. Thus, we have slp(ul , K1p). By
construction of A1 (hence of each Ai ), each vp ∈ K1p satisfies

∧
q>p ♥pq∼Aq , hence

♥pq∼Aq for each q > p. Similarly, include (vp, xq) for each xq ∈ ∂(|Aq |) into s pq

in a way that s pq(vp, ∂(|∼Aq |)). Thus, vp |� ∼♥pq∼Aq ∧♥pq∼Aq . We constructed
a model in which we have w1 |� A1.

This methodology can be extended inductively for each assumption Ai which in
turn builds the counter-model that satisfy each and every formula in Sentence 1. We
skip the technical details of this straight-forward generalization process. The crucial
observation is that the extension of a♥-formula uniquely identifies with the extension
of the formula in question. However, some of the points in that extension may also
satisfy the negation of the formula in question in paraconsistent models. This makes
it quite straight-forward to construct the counter-model.

Bernardi defines unfounded chains for a sequence (xn)n∈ω and a function f , if
f xn+1 = f xn for every n (Bernardi 2001). The curious task of studying unfounded
chains in paraconsistent topologies within epistemic game theoretical framework is
left for future work.

So far, whatwe have achieved is to set up an adequatemodel inwhichYBKsentence
can be satisfied. This point supports both the paraconsistent and modal agendas by
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suggesting an inconsistency-friendly system in game theory and a direct application
of modal logic of games, respectively.

4 Conclusion

Paradoxes of game theory are intriguing both for philosophical logic and epistemic
game theory. The current work relates closely to philosophical logic by extending the
discussion on interactive paradoxes and the theory of truth, and to epistemic game
theory by presenting an interesting epistemic game theoretical paradox. However, it
is perfectly possible to view the YBK paradox as a modal logical argument, stripping
it from its epistemic game theoretical content. Therefore, our presentation can very
well be considered as a modal extension of Yablo’s paradox.

It is important to note that the formal discussionwe have presented here is illuminat-
ing for seeingwhetherYablo’s paradox is indeed self-referential or not, echoingPriest’s
arguments. The versionwe developed does not look self-referential at first glance, akin
to the original paradox, yet Priest’s arguments regarding the self-referential nature of
the paradox somehow crystallizes here when we develop the counter-models.

The way we developed the game theoretical reading of Yablo’s paradox by no
means suggest that our method is the only way to obtain a multi-player iteration of
Yablo’s paradox or the only way to obtain a non-self-referential variation of the BK
paradox. The plurality of such possibilities already point out a wide variety of future
work possibilities which may shed some light on the algebraic or structural analysis
of non-self-referential paradoxes.

An interesting direction to pursue along these lines is developing a Curryesque
epistemic game theoretical paradox in which negation and falsity predicates are not
used. The relation between the Curry and Yablo paradoxes are studied heavily (for
instance, see Cook (2009)), therefore it remains to study its impact and applications
of Yablurry paradoxes (as Cook calls them in Cook (2009)) in games.
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