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In this work, the first of a series, we study the nature of informal inconsistency in physics, focusing mainly on the foundations of quantum theory, and appealing to the concept of quasi-truth. We defend a pluralistic view of the philosophy of science, grounded on the existence of inconsistencies and on quasi-truth. Here, we treat only the ‘classical aspects’ of the subject, leaving for a forthcoming paper the ‘non-classical’ part.
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                                    1 Introduction
We begin with by distinguishing between inconsistencies within a certain formal system (formal inconsistencies) and what we call informal inconsistencies. The former, as its name indicates, appear when we have two theses \(\alpha \) and \(\lnot \alpha \) in a suitable formal system whose language contains a symbol of negation, \(\lnot \). The informal inconsistencies are difficult to characterize, but they can be roughly classified in two groups: the real inconsistencies and the semiotic ones da Costa (1980, pp. 204–205). Semiotic inconsistencies may be thought of as expressing certain incompatibilities between concepts, assertions, hypothesis, or even theories, and arise from semiotic factors of either syntactical, semantical, or pragmatical nature. The real ones are linked to the belief of some philosophers that there are ‘true contradictions’ in the world (Priest 2006). To put things in their right place, let us introduce some terminology.
A formal theory \(T\) whose language contains a symbol of negation (say, ‘\(\lnot \)’) is inconsistent if it has two contradictory theses.Footnote 1 Thus, if the underlying logic of \(T\) is adjunctive (the conjunction of two formulas \(\alpha \) and \(\beta \) can always be performed, leading to a new formula \(\alpha \wedge \beta \)), then \(T\) possess a thesis that is the conjunction of two formulas, one of which is the negation of the another, i.e., a contradiction. In most logical systems inconsistency implies triviality (any closed formula of \(T\) is provable) due to the validity of Scotus’ law \((\alpha \wedge \lnot \alpha ) \rightarrow \beta \), for any \(\beta \) or, more generally, in terms of a deductive rule, \(\alpha , \lnot \alpha \vdash \beta \). These definitions basically concern well-formulated theories, in principle formalizable, whose underlying logics are fixed. However, the notion of inconsistency is also applied to informal theories (not fully axiomatized), like those of common physics (to which we restrict our analyses), but of course it could be extended to biology and human sciences as well. It is well known that most of physical theories, informally elaborated, are inconsistent; this happens, for instance, when inconsistent theories are combined in the same context (as in the cases of Bohr atom and plasma theory). Interesting enough, this type of informal inconsistency, generally of a semiotic nature, does not hamper the scientific practice. With the above notation, we can express also ‘real’ inconsistencies, say by saying that a real inconsistency is found when we have two propositions \(\alpha \) and \(\lnot \alpha \) about ‘real’ objects satisfying Tarski’s T schema. The problem consist in finding contradictions in the world; we remain skeptical about that.


2 A general schema for empirical theories
As we have mentioned earlier, it is not necessary to have a contradiction for expressing an inconsistency, but it suffices to have two contradictory thesis or assumptions. But, as we have said, our concern here is with informal inconsistencies as they appear in the practice of the physicist. Let us be more precise.
Most of physical theories are only informally stated, if we understand by formal a theory that has its language, underlying logic and postulates (axioms, or axiom schemata, and inference rules) explicitly stated. Really, in the standard approaches, the most we can find are some assumptions that work as axiom-sketches, generally equations, as Maxwell’s equations for the electromagnetic field, or Einstein’s equations for general relativity (GR), which with a certain parsimony can be read as general ‘postulates’ of the informal theory, although no primitive concepts and postulates are explicitly presented. In other words, the axiomatic method is not used in its full detail. For sure we can say that it is not a task for the scientist to present these details, and we tend to agree with this opinion. Thus we can broadly distinguish between the scientist’s realm from the logician’s (and perhaps from the philosopher’s) as suggested in Fig. 1. Broadly speaking, while scientists are generally interested in the relationships among the informal theory, the empirical data, and the world, the logician is generally interested in the relationships among the informal theories, their axiomatization/formalization and the study of the abstract models of these theories. Of course this schema does not fit all cases in either field of investigation, but provides a rough distinction between the interests of these two groups. Let us explain what we mean with the schema sketched in the Fig. 1.
Fig. 1[image: figure 1]
The general schema of physical theories
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              Most of scientists apparently seen to be realists, believing in the existence of a man-independent reality which, following Bernard d’Espagnat we shall call ‘Reality’ (R) with capital a ‘R’ (d’Espagnat 2006, 2009). Let us accept this claim. But for us, as for d’Espagnat, this Reality remains veiled; with a Kantian flavour, we will say that the Reality remains unknown. The most we can experience is an Empirical Reality (ER), given to us by our sensations and experiences with the external world. Some scientists and even philosophers may postulate that the actual ‘Reality’ is this phenomenological reality ER (so identifying R and ER), but we shall make the distinction, for we believe that ER changes with the progress of science and with our capacity to understand our surroundings, while R changes due to other factors (human action, the natural evolution of the universe). In order to deal with the empirical reality ER, scientists elaborate ‘theories’, which here we shall prefer to name informal theories or (informal) mathematical models (MM), since we shall reserve the name ‘theory’ to be used in another stage of this development. First of all it is interesting to recognize that there may be several (potentially, an infinity of) mathematical models of a certain portion of reality we may be interested in. Let us fix one of them, a particular MM. When we enter MM, we enter mathematics. Usually scientists use the mathematics they know, or then they learn what is necessary (Einstein’s well known case) or even they develop what they need (as Newton did). MM is elaborated both from data coming from ER, so as from the scientist’s expertize and intuition. It is important to realize that the formulation of a MM depends on mathematics, not only due to the fact that in empirical domains we generally need to consider statistics and random errors, but also to express concepts, hypotheses and laws, so as for introducing ideal elements, sometimes not taken ‘directly’ from ER. Really, physicists introduce concepts like the Higgs boson, so as other ‘theoretical concepts’ like momentum, which are expressed by mathematical rules.
The scientist, we can say, remains studying the relationships between her mathematical models, the empirical reality and, indirectly, Reality itself. To some physicists such as Einstein, it was a presupposition that Reality can be known only by using mathematical devices. Other thinkers, such as Schrödinger, believe that Reality is a kind of construction of ours, based on some ‘invariants’ we form due to evolution (Bitbol 1996). This point does not concern us here. The important fact is that we do have informal theories, that is, informal mathematical models the scientist works with. From the foundational point of view, we can think of a MM as a mathematical structure, suitably described to cope with the data from ER, so as with our intuitions and perceptions about R.
In systematizing a MM, we arrive to a theory stricto sensu (T), as we will use this word to designate an at least axiomatized version of MM. By ‘systematization’ we mean to apply the axiomatic method. Let us exemplify. Classical particle mechanics was proposed informally (not axiomatically), due at first to a cluster of eminent scientists. We can look at a version of this informal theory in a standard book such as Arnol’d (1978). Later, McKinsey, Sugar and Suppes proposed one of its possible axiomatizations, not completely formalized (McKinsey et al. 1953). If we wish, we can continue the process of systematization in order to get better and better formal versions of it. The axiomatic or the formal version of an informal theory or mathematical model will be called a theory (T) of the informal mathematical model. Of course this terminology is not a widespread one, but it is useful for our discussion and it is easy to go back to the old terminology if necessary (for we usually call MM a theory too).
Thus we shall also distinguish between the axiomatization of a certain informal theory from its formalization. In axiomatizing a MM, we assume that we are systematizing certain aspects of Reality. To do that, we select some primitive concepts and propositions, providing what we call the specific postulates of the the theory that corresponds to the informal theory MM. This is what usually is done even in mathematics; suffice to think of the postulates for groups, topological spaces, Euclidian geometry and so on. In the empirical sciences, we may think of the axiomatization of classical particle mechanics mentioned above, or in the various axiomatizations of the continuum mechanics by Walter Noll (Ignatieff 1996), etc. Of course in every theory there are theorems, which are derived using a non explicit logic, but generally assumed (without due justification) to be classical logic. In an axiomatization, we generally presuppose some things, such as certain other theories the analyzed theory makes use of, such as the theory of real numbers and the differential and integral calculus, among others, in the case of classical particle mechanics. Let us call these theories the ‘step theories’. This point was very well characterized by Suppes (2002). Since we can suppose that all these step theories can also be axiomatized, we can say that in an axiomatic version there is just one implicit assumption: the theory’s underlying logic.
Formalization means more. It requires to describe the underlying logic, what we can do by presenting a language, the grammatical rules for formation of formulas, etc., according to the usual standards. For the purposes of science, the logic must be a logic including a mathematics, say higher-order logic or, as it is more usual, a set theory. Really, in general we shall need concepts like differential manifolds, Lie algebras and so on, which demand a mathematical environment to be developed. Other alternatives than set theory are in use, for instance category theory, but we shall keep concerned here with set theory, since it is the most usual in the practice of the philosopher of science. An important question generally not discussed is the following: what kind of assumptions are we assuming when we formalize (or axiomatize) a certain informal theory? As we shall see, in considering this question we shall be able to enter into the main part of this paper.
But before going to this point, let us comment on Fig. 1 a little bit more. Any theory (T) of the mathematical model (recall that there are infinitely many potential T’s for a given MM), mainly in its formalized form, becomes an abstract entity, to which we can ascribe an interpretation. Really, we need to postulate that T and MM fit one another, for it would be practically impossible to prove that T captures precisely all the (informal) assumptions and concepts used in MM. In addition, since MM is only informally stated, we cannot use the techniques of logic to prove that, such as to reproduce MM inside T, to show that they are logically connected structures, and so on. When constructing an axiomatic or formal version of some informal field, we are constructing an independent theory, for even the concepts we use, and that resemble those of the informal theory, say ‘organism’ and ‘environment’ in biology or ‘electron’ and ‘potential’ in physics, could be replaced by other concepts, subjected to the prescribed postulates of the axiomatic/formalized theory, and after such exchanges, the axiomatic/formal theory does not change at all, for it becomes ‘abstract’; this point was emphasized by Hilbert, as it is well known. Furthermore, given a certain T, there are potentially infinitely many interpretations which satisfy its postulates, namely, the models of T. Of course we wish that MM, adequately formulated, will be one of them, the intended model of T. But most of the models are just abstract models, and are (apparently) not linked with experience. As a theory with models, T may be either categorical (all models are isomorphic), or it may have models that are not isomorphic one another. This will depend not only on the theory’s own characteristics, but also on its underling logic, as we shall see in the next section. The results got from the study of the models of T, so as from T itself, or even from MM, may be re-interpreted in terms of the Reality R, and so the scientist may say that her theory explains (or not explains) a part of R. The connections between a theory (MM, T or even their models—indicated by ‘A’ in the above figure) and between ER and R are difficult problems. Generally, we need to assume some connection rules, more or less in the sense described by Carnap and other logical positivists.
The reference to the logical positivism should not entail that we agree in ruling out metaphysical assumptions from science. By the way, we believe in the opposite view, namely, that we cannot eliminate all the metaphysical hypotheses from science. Nor even from mathematics and logic, but this is another story. In analyzing the data in ER, and in order to formulate MM, we are, as Einstein told Heisenberg, full of theory; “It is the theory which decides what can be observed”, said Einstein Heisenberg (1989, p. 10), which for sure incorporated a background taken from previous experiences.Footnote 2 We shall be back to this point below in order to see how inconsistencies enter science, and in particular enter physics.


3 On our implicitly logical and mathematical assumptions
In order to be more precise, let us note that, according to the above section, the axiomatic basis of a theory T encompasses three levels of postulates:
	
                    (i)
                    
                      the (strictly) logical postulates, say those of classical first-order logic with identity, for simplicity

                    
                  
	
                    (ii)
                    
                      the set-theoretical postulates, say those of first-order ZF set theory, on which we can built usual mathematics.

                    
                  
	
                    (iii)
                    
                      the specific postulates, depending on the particular field being analyzed. These postulates are sentences of the language of ZF enriched by additional concepts and terms referring to the supposed empirical domain. For instance, it may contain terms like ‘electron’, ‘velocity’, ‘gene’, ‘learning’, etc.

                    
                  

As we said above, there are alternatives to this schema depending on our needs, say by joining (i) and (ii) in just one schema of higher-order logic (thus weakening then);Footnote 3 or we could use a second-order logic in (i) and a second-order ZF in (ii). But our schema is quite general for the present discussion, and conforms itself with most of the assumptions (usually implicit ones ) made by philosophers of science.
3.1 Internal and external approaches
We have basically two alternatives to present (i)–(iii). The first one we call the internal approach, or semantic approach. In this case, we work within a mathematical framework, say first-order ZF proper. This enables us to left implicit the postulates (i) and (ii), and just present those of level (iii). We usually follow this route in standard mathematics and in the empirical sciences, although this is sometimes not taken into account by philosophers. Soon we shall see the consequences of such presupositions. In presenting the postulates (iii), we can equivalently present what Suppes called a set-theoretical predicate (Suppes 2002; Costa and Chuaqui 1988). The structures which satisfy these postulates (or equivalently, the set-theoretical predicate) are set-theoretical structures, the models of the theory. They are abstract models (see again the Fig. 1), and one of them is generally taken as the intended model, reflecting MM and, indirectly, the corresponding part of R represented by MM. These models are models of (iii), but of course we could not prove that they are models of (ii) inside ZF, for once their postulates encompass the ZF postulates; otherwise, we would be getting a model of ZF within ZF, which we know to be impossible due to Gödel’s second incompleteness theorem (if ZF is consistent) (Fig. 2).
Fig. 2[image: figure 2]
The internal (or semantic) approach: the specific axioms of T are sentences of \(\mathcal {L}_{ZF}\), and the models of T are set-theoretical structures built in ZF. All is developed within ZF (this does not hold for ZF proper, if consistent)
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                For instance, take classical particle mechanics (CPM) as indicated above. According to McKinsey et al. (1953), a system of particle mechanics is a 5-tuple \(\Gamma = \langle P, T, m, s, f \rangle \) where \(P\) is a non-empty set (the ‘particles’), \(T\) is an interval in the set of real numbers (say expressing an interval of time), \(m\) is a function from \(P\) to \(\mathbb {R}^+\) so that if \(p \in P\), then \(m(p)\) is the mass of \(p\), \(s\) is a function from \(P \times T\) in \(\mathbb {R}^3\), so that \(s(p,t)\) is a vector expressing the position of the particle \(p\) at time \(t\), \(f\) is a function with domain \(P \times T \times I\), where \(I\) is a set of positive integers, so that \(f(p,t,i)\) is a vector representing the forces acting on \(p\) at \(t\). All these concepts are subjected to kynematical and dynamical axioms which do not matter us here, Suppes (2002, Chap. 7). It is not difficult to find models for these postulates. Yet we do not present them here, it is easy to acknowledge that they are just mathematical structures without having necessarily any connection to a field of knowledge in Reality (R). But other models may constitute (as we believe) a map of parts of R [this is discussed in Suppes (2002)]. Of course this presentation makes use of mathematics (ZF set theory if we wish, and classical logic).Footnote 4 But they are not explicitly stated, becoming implicit. The models of CPM are structures like \(\Gamma \) above, and are set-theoretical constructs, really structures in ZF. The models, then, within this schema, are set-theoretical structures and what we can infer from them will depend on the underlying logic and on the axioms of set theory. Let us just mention an example. In non-relativistic quantum mechanics, position and momentum operators are quite relevant. In the Hilbert space \(L^2(\mathbb {R})\) of the equivalence classes of square integrable functions, they are unbounded operators. Just to recall, if \(A\) is a linear operator, then \(A\) is unbounded if for any \(M > 0\) there exists a vector \(\alpha \) such that \(|| A(\alpha ) || > M || \alpha ||\). Otherwise, \(A\) is bounded. But R. Solovay proved that if ZF is consistent, and if DC stands for the axiom of dependent choice, then it follows that ZF (without the axiom of choice) plus DC has a model in which each subset of the real numbers is Lebesgue measurable.Footnote 5 Let us call ‘Solovay’s axiom’ (AS) the statement that “Any subset of \(\mathbb {R}\) is Lebesgue measurable”. Then, in the theory ZF+DC+AS (termed ‘Solovay’s set theory’), it can be proven that any linear operator is bounded—see Maitland Wright (1973). Thus, if we use Solovay’s theory instead of standard ZF to build quantum structures, the mathematics of quantum mechanics would be different from the standard one.
Another example also involving Solovay is the following one. One of the fundamental theorems in functional analysis is Gleason’s theorem (it does not matter us here to formulate it), which is relevant in quantum mechanics. The theorem implies the existence of certain probability measures in separable Hilbert spaces. Solovay obtained a generalization of the theorem also for non-separable spaces, but it was necessary to assume the existence of a gigantic orthonormal basis whose cardinal is a measurable cardinal (see Chernoff 2009). But the existence of such cardinals cannot be proven in ZF set theory (supposed consistent). Thus, in order to get the generalization, we need to extend ZF. These examples show that for certain considerations, it is extremely important to consider the mathematical framework we are working in.
This also tells us that the word semantics must be carefully used because we are really working within a mathematical framework (in the case, the ZF set theory proper), and then the postulates, the models, etc. are expressed in its syntax. In other words, that what philosophers call the semantic approach to theories [for instance, Costa and French 2003; Suppes 2002] would also be called the syntactic approach to theories. As a remark, even Tarski’s ‘semantic’ conception of truth is syntactic in a strong sense, for it is formulated within the framework of a certain metamathematics, and depends on this metamathematics (for instance, we should ensure that we can express things like the recursive definition of satisfaction).
The second alternative to axiomatization we call the external approach. In this case, we list the postulates (i), (ii) and (iii), and do not ask for models, but just derive consequences of these postulates, which we (informally) interpret as telling us things about ER and R. In mathematics, this is the approach of Bourbaki. To him, to do mathematics is essentially to write formulas in a paper according to certain rules he gives us in his book on set-theory (Bourbaki 1958). There is no semantics in the usual sense. Even the concept of truth is syntactical; a certain proposition is true if there is a proof of it, and it is false if its negation has a proof. So, in most theories, there are formulae which are neither true nor false. In this sense, Bourbaki’s mathematics is classical, but its metamathematics is not, being constructive in a certain sense.
However, in presenting the postulates of a theory, we are committed to a certain mathematics too. For instance, usually we tend to say that the language has infinitely many individual variables. But, what should we understand by ‘infinitely many’? As it is well known, there are different and non-equivalent definitions of ‘infinite’. Which one should we consider? If we choose one of them, we should justify why this one in particular. (Of course, these questions should interest the philosopher of science). Anyhow, if we are assuming a mathematics, are we not back to the internal approach? In other words, can we formulate a theory without any proper commitments to logic and set theory?
Of course, in order to write down the postulates of T, we reason in a proposed language, use logic and concepts of set theory. We need firstly to recognize signals, to distinguish things, compose them, etc. We still use numbers, definitions by recursion, and so on. Thus, there is always a minimal nucleus we start with, more or less constructive, which we use to formulate the basic things we need. If pressed, we could say that this nucleus could be formally equivalent to a fragment of intuitionistic mathematics, and we go on by making it complex until we arrive at a certain logic and a mathematics, say the classical ones. Thus, to follow our example, by ‘infinitely many’ individual variables, we simply mean that we can have as many individual variables as we wish. The other concepts can be interpreted in a more complex but similar way. In this sense, we are not presupposing a mathematics, but we are working informally.
So, it seems that the external approach would be preferred, for no commitment to a defined metamathematics would be in order. But, in stating (i)–(iii), this intuitive appeal to mathematics and logic ceases, and we become committed to a logic (given by (i)) and a mathematics (given by (ii)). These ‘intuitive logic and methamatics’ can be used for certain purposes only, say in the case of dealing with objects of our surroundings or even with abstract objects such as numbers, but for more advanced topics, they are not enough. As remarked earlier, from postulates (i)–(iii) we derive propositions from assumed hypotheses, and get the theorems of the theory. The theory becomes a collection of sentences of a certain language. Above we made reference to Bourbaki in mathematics; in physics, Ludwig’s approach to quantum mechanics runs quite similarly, based on Bourbaki’s species of structures in a purely syntactic way (Ludwig 1985). Interesting as this approach can be, it demands a great appeal to the underlying language, logic and mathematics, and does not fit the pragmatic views of the physicists.
It is important to realize that in this approach, we need to state all the theory’s postulates, including those of logic and the underlying mathematics. As Suppes recognized, this would entail an Herculean effort to systematize, say, general relativity, since it depends on several step theories, such as tensor calculus, linear and multilinear algebra, differentiable manifolds, pseudo-Riemannian geometry and so on, whose axiomatization will be the ‘prolegomena’ to the physical theory proper, really a mathematical encyclopedia. This is what Suppes called the intrinsic characterization of a theory Suppes (2002, p. 3).
Thus, as Suppes has emphasized, it is ‘more economic’ to work as the first approach suggests, that is, presupposing a set theory (and its underlying logic). This was resumed by him saying that in considering foundations, we should turn to mathematics (some mathematics, say ZF) and not to metamathematics (to the external approach). Thus, it seems to be more interesting to assume a mathematics, say first-order ZFC set theory (but of course we could use other theories as well) and work within it. Suppes, as it is well known, works in an informal set theory, so it is not necessary to explicit neither the logic nor the set theory. Then, although he says that “[a]s far as I can see, most problems of central importance to the philosophy of science can be discussed in full detail by accepting something like a standard formulation of set theory, without questioning the foundations of mathematics” Suppes (2002, p. 1), but most does not mean all, and there are interesting questions to be dealt with if we pay attention to the compromises assumed when we opt for a certain metamathematical basis, as our above examples seen to show.
As examples of such situations, suppose we arrive at a conclusion that ZF seems is no more adequate to be the ground of our science. For instance, this would be the case if we find true contradictions (Priest 2006). Another would be to strongly belief Birkhoff and von Neumann, who claimed that quantum mechanics would demand a non standard (‘quantum’) logic. (In this particular setting, let us recall that the realm of quantum logic was erected from their seminal work, but although it has profound connections with quantum physics, quantum logics progressed as the algebraic study of certain lattices without direct appeal to the foundations of quantum theory proper (for instance, see Dalla Chiara et al. (2004)). As is well known, some attempts to develop quantum mechanics from a non-classical logic were developed, for instance, by Reichenbach (1998). Recently, other alternatives have been advanced; see Domenech et al. (2009), Domenech et al. (2009), French and Krause (2006).
In situations such as those above, we need to acknowledge that there are different alternatives suggesting the use of deviant logics and mathematics in the realm of science. Let us consider this issue in the specific case of inconsistencies.Footnote 6
                


4 Inconsistencies
Let us consider once more Fig. 1. Inconsistencies may appear in this schema in several ways. We shall consider them in turn.

                
                  Assumption 1
                

                
                  The inconsistencies are in R That Reality is inconsistent is the thesis of some Hegelians—da Costa (1980, Chap. 3)—and (as far as we understand them) of Dialetheists Priest (2006), and can be called real inconsistencies. It is a quite difficult question (to us) to know if this thesis holds in the real world. In our opinion, the most we can say (up to now) is that there may exist sentences \(\alpha \) and \(\lnot \alpha \)
                  referring to a portion of R that are both regarded as true by some thinkers. But this poses the problem in other levels of our schema (MM and T).

              
                
                  Assumption 2
                

                
                  The inconsistencies are in ER This can be thought of as leading us to epistemic inconsistencies, for they may result either from errors of the measurement apparatuses or from our difficulties in reading them. In fact, in classical mechanics the observable are functions from the state space to the set real numbers. Each measurement, due to the imprecision of the apparatuses, lies within a certain interval of radius \(\epsilon > 0\) (which gives the precision of the apparatus). Thus, the following situation may occur [as it was detailed in Dalla Chiara and Toraldo di Francia (1981)]. Suppose Newton’s second law \(\vec {F}=m\vec {a}\). The observables corresponding to these three quantities, when considered measuring the correspondent concepts in a physical object (say, a little rock) have intervals of possible values, say \((f-\frac{\epsilon _1}{2},f+\frac{\epsilon _1}{2})\), \((m-\frac{\epsilon _2}{2},m+\frac{\epsilon _2}{2})\) and \((a-\frac{\epsilon _3}{2},f+\frac{\epsilon _3}{2})\) respectively. And (what is important), due to possible imprecisions in the measures, which lead physicists to consider scale errors, any value in any one of these intervals can be accepted as the values of the corresponding quantities. We express things like these by saying, for instance, that when a meter stick has marks at 1 mm intervals and we find our measurement lying between 12.6 and 12.7 cm, that the length is 12.65 cm, or better, that it is 12.65 \(\pm \) 0.05 cm. It is recognized that scale errors are not mistakes in measurements. For sure, we could say that, in our example, any value between 12.6 and 12.7 would be useful for certain purposes.Footnote 7
                

              Thus, we may found three values, say \(f_1\), \(m_1\) and \(a_1\) in each interval, so that \(f_1=m_1 \cdot a_1\). So, we may write \(\models \vec {F}=m\vec {a}\). But since there are other possible (and acceptable) values, there exist other values \(f_2\), \(m_2\) and \(a_2\), also in each interval, so that \(f_1 \not = m_1 \cdot a_1\), but this also entails that \(\models \vec {F} = m\vec {a}\) for the values are valid due to the accepted errors. How can we deal with both situatitons, \(\vec {F}=m\vec {a}\) and \(\vec {F} \not = m\vec {a}\) within the scope of classical logic? This is a typical case of an inconsistency at the level of ER entailing questions on MM and T.

                
                  Assumption 3
                

                
                  The inconsistencies are in MM Typical of some cases that may be found in the literature, such as Bohr’s theory of the atom, plasma theory and many others [see Costa and French (2003) for examples]. This situation is related to a possible assumption about either R or ER, for if we believe that R is contradictory or that ER provides us with inconsistencies, it would be quite normal to expect that our theories would be inconsistent as well. In both cases, we can continue to proceed informally, although inconsistently, as physicists do when using, say, Bohr’s theory. Apparently, they work within a part of the theory where the presence of inconsistencies does not matter for practical purposes, and when they appear, the scientist may provide ad hoc changes to deal with them (which, strictly speaking, would entail a modification in the corresponding theory T). At the level of MM, these modifications are not relevant, due to the informal characterization of the mathematical model. The ‘new’ theory looks like the older one, and the scientist does not explicitly state the change of theory (in most cases this exchange is not perceived even by them). Perhaps we can say that part of present day physics, in certain sense, proceed this way when ‘joins’ MMs, or try to embed an informal mathematical model within another one, even not paying attention to possible ‘hidden’ inconsistencies, which in general will appear only after the development of the theory T proper. A typical case may be the attempts to find a Grand Unified Theory (GUT) whose aim is to embed the gauge group of the Standard Model (of particle physics), composed by \(U(1)\), \(SU(2)\), \(SU(3)\) into a larger gauge group. One of the candidates is \(SU(5)\), called the Georgi-Glashow theoryThalapilli (2006). No one knows if this new informal mathematical model (MM), once axiomatized, will present inconsistencies, but due to the difficulties in joining the ‘parts’ in a unified theory, if the whole is inconsistent, perhaps the better way to deal with the subject would be to leave these ‘parts’ as they are (since they work well within their limits) and accept that they may be used as complementary parts of the whole (we remark that \(SU(5)\) still present problems). In this sense, a physical ‘theory’ could consist of several ‘parts’, perhaps inconsistent one another, but ‘locally consistent’.

              In other works, we propose a way to consider ‘complementary’ propositions, an idea that also fits for theories. We shall not treat the details here, but we would like just to say that in using a kind of paraconsistent logic called paraclassical logic it seems is possible to surmount this difficulty da Costa and Krause (2006). However this will need the consideration of the next level, T.

                
                  Assumption 4
                

                
                  The inconsistencies are in T We know today that quantum field theory (roughly, the unification of quantum mechanics with special relativity) and general relativity are logically incompatible. Suppose we have a well founded theory of quantum gravitation linking quantum physics (QFT) and general relativity (RG) as we know them today. If this is right, these MMs are inconsistent each other, and the unified theory would be necessarily inconsistent. Since the apparent aim is to avoid triviality, its underlying logic has to be a kind of paraconsistent logic, that is, the great (unified) theory, or Theory of Everything (TOE) would be paraconsistent (see below).

              

5 Inconsistencies and quasi-truth
Let us turn now to the specific case of physics, giving some details on a way of understanding the dealing with inconsistencies within this domain. We shall sketch a way to deal with inconsistencies by using the concept of quasi-truth (Mikenberg et al. 1986; Costa and French 2003). Suppose \(\Delta \) is a domain of knowledge in R we would like to investigate. According to the above exposition, we approach \(\Delta \) by a MM, and without loss of generality, by means of a corresponding theory T. As some of the examples above show (for instance, the classical particle mechanics case), we can think of either MM or T in terms of set-theoretical structures \(\mathfrak {A}\). However, we may suppose that we have not all the informations about \(\Delta \), so that some of the relations holding among the elements of the domain of \(\mathfrak {A}\) would be partial, that is, supposing that \(R\) is a binary relation, then for some \(a\) and \(b\) in the domain, we simply do not know either \(aRb\) or \(\lnot aRb\) holds. Of course this is usual in empirical domains; in standard extensional mathematics (that one built in ZF), all relations are usually total.
To elaborate \(\mathfrak {A}\), we assume certain basic facts given either by empirical data or from hypothetical assumptions we make about the domain. Let us collect these informations in a set \(\mathsf {P}\) of basic propositions we accept as true in the standard Tarskian sense in \(\mathfrak {A}\). Then, our partial structure is something like
$$\begin{aligned} \mathfrak {A} = \langle D, (R_i)_{i \in I}, \mathsf {P} \rangle \end{aligned}$$

                    (1)
                

where \(I\) is a set of indices that name the \(n\)-ary partial relations \(R_i\) defined on \(D\).
We extend the partial structure \(\mathfrak {A}\) to a total structure \(\mathfrak {B}\) in which all relations of \(\mathfrak {A}\) are total. To do that, we need to assume further conditions expressed in a new set of propositions \(M\) which bring informations that lack in \(\mathfrak {A}\). A necessary and sufficient condition for \(\mathfrak {A}\) to be extended to total structure \(\mathfrak {B}\) is that \(M \cup \)
                \(\mathsf {P}\) be consistent (Mikenberg et al. 1986). Intuitively speaking, the new presupositions collected in \(M\) must not contradict the basic propositions represented by \(\mathsf {P}\). When we get such a \(\mathfrak {B}\), we say that \(\mathfrak {B}\) is normal relative to \(\mathfrak {A}\), or that it is an \(\mathfrak {A}\)-normal structure.
Let \(\alpha \) be a sentence of the language of \(\mathfrak {A}\). We say that \(\alpha \) is quasi-true in
                \(\mathfrak {A}\)
                relative to an
                \(\mathfrak {A}\)-normal structure
                \(\mathfrak {B}\), in symbols
$$\begin{aligned} \mathfrak {A} \models _q^{\mathfrak {B}} \alpha , \end{aligned}$$

                    (2)
                

if \(\alpha \) is true in \(\mathfrak {B}\) in the standard Tarskian sense (\(\mathfrak {B} \models \alpha \)).
The interesting fact is that the language of \(\mathfrak {A}\) may contain two contradictory propositions \(\alpha \) and \(\lnot \alpha \), so that \(\alpha \) is quasi-true in \(\mathfrak {A}\) relative to an \(\mathfrak {A}\)-normal structure \(\mathfrak {B}\) while \(\lnot \alpha \) is quasi-true in \(\mathfrak {A}\) relative to another \(\mathfrak {A}\)-normal structure \(\mathfrak {B}^\prime \)(see Fig. 3).
Fig. 3[image: figure 3]
A partial structure \(\mathfrak {A}\) and two \(\mathfrak {A}\)-normal extensions \(\mathfrak {B}\) and \(\mathfrak {B}^\prime \). Here, \(\alpha \) is quasi-true in \(\mathfrak {A}\) relative to \(\mathfrak {B}\), while \(\lnot \alpha \) is quasi-true in \(\mathfrak {A}\) relative to \(\mathfrak {B}^\prime \)
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              Of course it is not possible that both \(\alpha \) and \(\lnot \alpha \) be quasi-true in \(\mathfrak {A}\) relative to a same \(\mathfrak {A}\)-normal structure \(\mathfrak {B}\), and the necessary and sufficient condition mentioned above proves this fact.
To exemplify in a sketched way a situation like this one, we can reason as follows. Suppose that \(\mathfrak {A}\) describes the ‘old’ quantum theory (that one originated with Planck, Einstein and Bohr) and previous to the developments made after 1920. In this MM, which we suppose is formulated axiomatically within a theory T, there are two complementary concepts, namely, particle and wave. A particle is not a wave, and a wave is not a particle; thus, if \(\alpha \) stands for ‘a certain physical object behaves like a particle’, then \(\lnot \alpha \) is ‘the supposed quantum object does not behave like a particle’ (entailing that it behaves like a wave). Adequately formulated, both views can be extended to a suitable theory that incorporates each view as its basic assumption, vis, a particle mechanics and a wave mechanics, say Bohm’s theory and Schrödinger’s original theory. Although in each one there are particles and waves, this dichotomy does not refer to the same situations and preparation. For more details, see Holland (1993), Prugovecki (1981, §IV.3.3).
We can regard both Bohm’s theory and Schrödinger’s theory as ‘extensions’ of the old quantum mechanics, and in each one of them the above propositions \(\alpha \) and \(\lnot \alpha \) hold in turn, but not in each one of them separately.


6 Conclusions
What we are defending here is, in fact, a pluralistic approach to the logical foundations of science. As we have said in da Costa and Krause (2008), a wide field of empirical knowledge may be theoretically ‘perceived’ from different points of view, or ‘perspectives’, each of them capturing part of the field from a certain point of view, subjected to a previous background (of the scientist). These distinct perspectives are in general informally systematized (as a mathematical model, MM, in the above schema), that is, out of axiomatization or formalization, as most physical theories are presented. But each informal theory can be axiomatized, or even formalized, and this is made in different ways, giving rise to the corresponding Ts. Furthermore, each axiomatized theory (say by presenting its set-theoretical predicate) has distinct mathematical models (structures that satisfy the postulates of the theory, their abstract models A). Of course we can distinguish among subclasses of this class of models, say by selecting those which are empirically adequate (van Fraassen) or intensional (Adams) (Fraassen 1980; Suppes 2002). These models, only in part, and indirectly given by some informal semantics (assumed even implicitly by the physicist, via certain rules of connection), apparently reflect the original empirical field ER. We can say that the chosen theory (informal, axiomatized or a model) stands for the ‘theory of the field’ only indirectly, say by means of experiences, and only indirectly it refers to R (or to \(\Delta \) of the previous section). But other people may choose another perspective, i.e, another informal theory, axiomatized theory and a corresponding model as the intensional one which may fit her interpretive preferences. Out of a debate, normally (but not always) sustained by the empirical evidence, it is difficult to defend a perspective in detriment of another one. This is in part what makes science so rich. These different perspectives may require distinct logic and mathematical frameworks, but no one will be able to prove, without comparison with experience, that her perspective is the ‘true’ one. Thus, experience is important in this view, and hence semantics, that is, the way to link theory with ‘the world.’
Thus, as we have said in da Costa and Krause (2008),

                
                  “[C]oncerning science, we might suppose that the ‘non-classical views,’ grounded on non-classical logics and mathematics, are in a certain sense as licit as the ‘classical’ one, and only pragmatic criteria, or the evolution of science itself will show the right way to look to our intended field of knowledge, although we strongly believe that even in the future there will be no ”right way” to theorize about a certain (sufficiently wide) field. So, how to deal with such a plethora of possibilities? This is our final remark: at the end, as a supra meta-rule, there is a kind of constructive activity. The different perspectives may act as pieces of a mosaic we use to cover the terrain (the field of knowledge under analysis). We join the parts as a child does with her corner puzzle.”

                


              Due to the possible inconsistencies among these different views, the ‘logic of the whole’ would be a paraconsistent one (da Costa et al. 2007), and the concept of truth is replaced by that of quasi-truth.



                                

                        
                    

                    Notes
	Below we shall distinguish also between axiomatized and formal theories. The former (which can be also called ‘material (or informal) axiomatics’) can be though of as formal in potentia, so we shall remain speaking in terms of the latter.


	Sometimes even ideological ideas enter the scenario. The history of science is full of examples of this kind; just remember Lysenko’s genetic. But it is a task for the scientific practice to discipline these situations. Of course, Einstein’s case cannot be compared with these pathological ideological situations.


	In the sense that higher-order logic (theory of types) is, in a certain sense, strictly weaker than ZF set theory.


	Suppes himself worked always within informal set theory, so he could presuppose the step-theories as given in advance.


	DC is not sufficient to prove that there are nonmeasurable subsets of the real numbers.


	Another interesting point that deserves investigation and to which we have dedicated some works is related to the concepts of identity, individuality and their relation to sets, for assuming that some quantum objects are entities without individuality (according to a possible interpretation), their collections cannot be sets such as those in ZF; for details, see French and Krause (2006).


	A typical example is the value of the dipolar momentum of the electron, experimentally measured as \(1.00115965219 \pm 0.00000000001\) times the combination of constants given by Dirac; see t’Hooft (2001, p. 72).
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