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                    Abstract
Philosophers typically rely on intuitions when providing a semantics for counterfactual conditionals. However, intuitions regarding counterfactual conditionals are notoriously shaky. The aim of this paper is to provide a principled account of the semantics of counterfactual conditionals. This principled account is provided by what I dub the Royal Rule, a deterministic analogue of the Principal Principle relating chance and credence. The Royal Rule says that an ideal doxastic agent’s initial grade of disbelief in a proposition \(A\), given that the counterfactual distance in a given context to the closest \(A\)-worlds equals \(n\), and no further information that is not admissible in this context, should equal \(n\). Under the two assumptions that the presuppositions of a given context are admissible in this context, and that the theory of deterministic alethic or metaphysical modality is admissible in any context, it follows that the counterfactual distance distribution in a given context has the structure of a ranking function. The basic conditional logic V is shown to be sound and complete with respect to the resulting rank-theoretic semantics of counterfactuals.
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                    Notes
	Another example is provided by the discussion between Lewis and Stalnaker versus Kratzer and Pollock about the semantic principle of Comparability according to which, roughly, any two worlds can be compared with respect to their similarity to the actual world. Cf. Lewis (1981, Sect. 5) and references therein.


	I do not want to say that experimental philosophers hold that truth is a matter of democracy. If anyone is aware of the unreliability of intuitions, they are. What I want to say is that knowledge of how intuitions are distributed across various populations will not settle the philosophical issue at hand.


	I side with Lewis and Stalnaker against Kratzer and Pollock regarding comparability.


	Here is the idea. Once the ideal doxastic agent is certain of the relevant counterfactuals, the Royal Rule requires her to hold onto her conditional beliefs when she receives new, but admissible information. Given the relevant counterfactuals no additional information that is admissible may affect her conditional beliefs. Given the relevant counterfactuals the ideal doxastic agent’s conditional beliefs are stable across all admissible information. Stable true beliefs are better than mere true beliefs in a way that is similar to how safety (Williamson 2000) makes knowledge better than mere true belief. My plan is to show that obeying the Royal Rule is a means to attaining the cognitive goal of stably holding true beliefs. This will justify the Royal Rule, and thereby also the derived semantics for counterfactuals, to the extent that one desires this cognitive goal.


	Here I am following Stalnaker (1996, §4) who suggests that Lewis’ Humean supervenience assumption should not be viewed as a contingent thesis. If one did, one would have to restrict the scope of the universal quantifier to some proper subset of \(W\) (including the actual factual world).


	The situation is somewhat similar in Bayesianism, where betting ratios or fair betting ratios minimally are used to measure degrees of belief, and maximally are used to define them (Eriksson and Hájek 2007). Whatever the exact relation between (fair) betting ratios and degrees of belief, the former are the central notion in the best known argument in favor of Bayesianism, the Dutch Book Argument.


	Strictly speaking Stalnaker (1998) is representing contexts by a Kripke semantics with an accessibility relation between worlds that is serial as well as transitive and Euclidian, but not necessarily reflexive. These requirements translate into deontic (serial), doxastic (transitive plus Euclidian), and alethic (reflexive) respectability.


	In this connection I may perhaps repeat that I do not intend the Royal Rule to be accepted on intuitive grounds and because it seems plausible, even in this one clinically clean case. As stressed in the introduction, like every normative principle the Royal Rule has to be justified by proving it to be the means to some end. Such a means-end relationship between the Royal Rule and some pertinent epistemological goal still has to be established.


	As an aside, note that history up to an arbitrary time \(t\), whether complete or not, is an alethically respectable context.


	As another aside, note that Lewis’ assumptions about admissibility, when translated into my account, entail but are not entailed by the assumption that \(T_u\) is admissible.


	To be sure, if we have Humean supervenience of deterministic alethic modalities on non-modal facts, a modal proposition such as \(A\,\square \!\!\!\rightarrow C\) amounts to a factual proposition, and then \(\,\square \!\!\!\rightarrow \) can be iterated indefinitely. In this case the above inference from non-iterability to non-propositionality is valid.


	Strictly speaking it is not typicality or normality, but rather what statisticians call the mode(s) of a sample that provide(s) evidence for counterfactuals. Since talk of the mode of a sample misleadingly suggests a connection to modalities, I have formulated the above in terms of typicality.


	The idea to derive completeness from Lewis’ completeness results and the finite model property is due to Leitgeb (2012a, b).
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Appendix: Logical considerations
Appendix: Logical considerations
Let us first consider system C2 from Stalnaker (1968). Let \({\mathcal {L}}_0\) be the smallest set that contains a given countable set of propositional variables \(PV\) and is closed under the classical connectives \(\lnot , \wedge , \vee \), and \(\supset \). Let \({\mathcal {L}}_1\) be the smallest set containing \({\mathcal {L}}_0\) and \(\alpha \,\square \!\!\!\rightarrow \beta \) for any two \(\alpha ,\beta \) from \({\mathcal {L}}_0\). Let \(\mathcal L\) be the smallest set that contains \({\mathcal {L}}_1\) and is closed under the classical connectives. Finally, let \({\mathcal {L}}^+\) be the smallest set containing \(PV\) (or any of the above mentioned languages) that is closed under the classical connectives \(\lnot , \wedge , \vee , \supset \) plus \(\,\square \!\!\!\rightarrow \).
So the language \(\mathcal{L}\) is built up form a countable set of propositional variables in the usual way, with the only exception that \(\alpha \,\square \!\!\!\rightarrow \gamma \) is a well-formed formula if and only if
                  \(\alpha \) and \(\gamma \) are well-formed formulae and do not contain an occurrence of
                  \(\,\square \!\!\!\rightarrow \). \(A,B,C,\ldots \) are the sets of models in which \(\alpha ,\beta ,\gamma ,\ldots \) are true. Ranking functions are defined on some finitary/\(\sigma \)-/complete field over the set of models of \(\mathcal L, M_\mathcal{L}\).
The rules of inference of C2 are Modus Ponens and Necessitation, both of which preserve validity.
$$\begin{aligned}&\mathbf{RI \ 1} \vdash \alpha ,\quad \vdash \alpha \supset \beta \quad \Rightarrow \quad \vdash \beta \\&\mathbf{RI \ 2} \vdash \alpha \quad \Rightarrow \quad \vdash \Box \alpha . \end{aligned}$$

The axiom schemata of C2 are St 1–St 7, all of which are valid except for Conditional Excluded Middle St 5 and Weak Centering St 6.
$$\begin{aligned}&\mathbf{St \ 1} {\hbox {All \ tautologies \ are \ axioms.}}\\&\mathbf{St \ 2} \Box \left( \alpha \supset \gamma \right) \supset \left( \Box \alpha \supset \Box \gamma \right) \\&\mathbf{St \ 3} \Box \left( \alpha \supset \gamma \right) \supset \left( \alpha \,\square \!\!\!\rightarrow \gamma \right) . \end{aligned}$$


                  St 1 is trivially validated, because classical logic is presupposed. As to St 2 and St 3, suppose \(\Box \left( \alpha \supset \gamma \right) \) is true at \(w_u\) in \(c\) relative to \(r_u\). This means that \(\lnot \left( \alpha \supset \gamma \right) \,\square \!\!\!\rightarrow \left( \alpha \supset \gamma \right) \) is true at \(w_u\) in \(c\) relative to \(r_u\), i.e. \(\left( A\cap \overline{C}\right) ^{r_{uc}}\subseteq \overline{A}\cup C\). Since \(\left( A\cap \overline{C}\right) ^{r_{uc}}\subseteq A\cap \overline{C}\), this can only happen if \(\overline{A}\cup C=Mod_\mathcal{L}\), i.e. \(A\subseteq C\). For St 2 suppose that \(\Box \alpha \) is true at \(w_u\) in \(c\) relative to \(r_u\). This means \(\overline{A}^{r_{uc}}\subseteq A\) and since \(\overline{A}^{r_{uc}}\subseteq \overline{A}\), this can only happen if \(A=Mod_\mathcal{L}\). Consequently \(C=Mod_\mathcal{L}\) and hence \(\overline{C}^{r_{uc}}\subseteq \overline{C}=\emptyset \) and hence \(\overline{C}^{r_{uc}}\subseteq C\), which means that \(\Box \gamma \) is true at \(w_u\) in \(c\) relative to \(r_u\). For St 3 we have \(A^{r_{uc}}\subseteq A\subseteq C\), which means that \(\alpha \,\square \!\!\!\rightarrow \gamma \) is true at \(w_u\) in \(c\) relative to \(r_u\).
$$\begin{aligned} \mathbf{St \ 4} \diamond \alpha \supset \left( \left( \alpha \,\square \!\!\!\rightarrow \beta \right) \supset \lnot \left( \alpha \,\square \!\!\!\rightarrow \lnot \beta \right) \right) . \end{aligned}$$

Suppose \(\diamond \alpha \) and \(\alpha \,\square \!\!\!\rightarrow \beta \) are true at \(w_u\) in \(c\) relative to \(r_u\), i.e. \(A^{r_{uc}}\not \subseteq \overline{A}\) and \(A^{r_{uc}}\subseteq B\). It follows that \(\emptyset \ne A^{r_{uc}}\cap A\subseteq A^{r_{uc}}\subseteq B\), and hence that \(A^{r_{uc}}\not \subseteq \overline{B}\), i.e. that \(\lnot \left( \alpha \,\square \!\!\!\rightarrow \lnot \beta \right) \) is true at \(w_u\) in \(c\) relative to \(r_u\).
$$\begin{aligned} \mathbf{St \ 5} (\mathbf{Conditional \ Excluded \ Middle}) \left( \alpha \,\square \!\!\!\rightarrow \left( \beta \vee \gamma \right) \right) \supset \left( \alpha \,\square \!\!\!\rightarrow \beta \right) \vee \left( \alpha \,\square \!\!\!\rightarrow \gamma \right) . \end{aligned}$$

Conditional Excluded Middle St 5 is not valid. Consider the language \(\mathcal L\) over the two propositional variables \(p\) and \(q\). \(Mod_\mathcal{L}=\left\{ w_{pq},w_{p\lnot q},w_{\lnot pq},w_{\lnot p\lnot q}\right\} \). Let \(c\left( u\right) =Mod_\mathcal{L}\times \left\{ R\right\} \) for all \(u\in Mod_\mathcal{L}\times R\), and let \(u^*=\left( w_{u^*},r_{u^*}\right) \) with \(w_{u^*}=w_{pq}\) and \(r_{u^*c}\left( \left\{ w\right\} \right) =0\) for all \(w\in Mod_\mathcal{L}\). \(p\,\square \!\!\!\rightarrow q\vee \lnot q\) is true at \(w_{u^*}\) in \(c\) relative to \(r_{u^*}\), but both \(p\,\square \!\!\!\rightarrow q\) and \(p\,\square \!\!\!\rightarrow \lnot q\) are false at \(w_{u^*}\) in \(c\) relative to \(r_{u^*}\). This is so because \(P^{r_{u^*c}}=P\) and \(Q^{r_{u^*c}}=Q\) and \(\overline{P}^{r_{u^*c}}=\overline{P}\) and \(\overline{Q}^{r_{u^*c}}=\overline{Q}\), and hence \(P^{r_{u^*c}}\subseteq Q\cup \overline{Q}=Mod_\mathcal{L}\) while \(P^{r_{u^*c}}\not \subseteq Q\) and \(P^{r_{u^*c}}\not \subseteq \overline{Q}\).
	
                      
                        St 6
                        (Weak Centering)
                        \(\left( \alpha \,\square \!\!\!\rightarrow \beta \right) \supset \left( \alpha \supset \beta \right) \).

                    

Weak Centering St 6 is not valid. Let \(\mathcal L, M_\mathcal{L}\), and \(c\) be as before, and let \(u^*=\left( w_{u^*},r_{u^*}\right) \) with \(w_{u^*}=w_{p\lnot q}\) and \(r_{u^*c}\left( \left\{ w_{p\lnot q}\right\} \right) =1\) and \(r_{u^*c}\left( \left\{ w\right\} \right) =0\) for all \(w\in Mod_\mathcal{L}\) with \(w\ne w_{p\lnot q}\). \(p\,\square \!\!\!\rightarrow q\) is true at \(w_{u^*}=w_{p\lnot q}\) in \(c\) relative to \(r_{u^*}\), but \(p\supset q\) is false at \(w_{u^*}=w_{p\lnot q}\) in \(c\) relative to \(r_{u^*}\). This is so because \(P^{r_{u^*c}}=\left\{ w_{pq}\right\} \) and \(Q=\left\{ w_{pq},w_{p\lnot q}\right\} \), and hence \(P^{r_{u^*c}}\subseteq Q\) while \(\left\{ w_{p\lnot q}\right\} \not \in P\supset Q=\overline{P}\cup Q\).
	
                      
                        St 7
                        \(\left( \left( \alpha \,\square \!\!\!\rightarrow \beta \right) \wedge \left( \beta \,\square \!\!\!\rightarrow \alpha \right) \right) \supset \left( \left( \alpha \,\square \!\!\!\rightarrow \gamma \right) \supset \left( \beta \,\square \!\!\!\rightarrow \gamma \right) \right) \).

                    

Suppose \(\left( \alpha \,\square \!\!\!\rightarrow \beta \right) \wedge \left( \beta \,\square \!\!\!\rightarrow \alpha \right) \) is true at \(w_u\) in \(c\) relative to \(r_u\), i.e. \(A^{r_{uc}}\subseteq B\) and \(B^{r_{uc}}\subseteq A\). This implies \(A^{r_{uc}}=\left( A\cap B\right) ^{r_{uc}}\) and \(B^{r_{uc}}=\left( A\cap B\right) ^{r_{uc}}\), and so \(A^{r_{uc}}=B^{r_{uc}}\). It follows that \(B^{r_{uc}}\subseteq C\) if \(C^{r_{uc}}\subseteq C\), i.e that \(\left( \alpha \,\square \!\!\!\rightarrow \gamma \right) \supset \left( \beta \,\square \!\!\!\rightarrow \gamma \right) \) is true at \(w_u\) in \(c\) relative to \(r_u\).
Strong Centering St 8 is a consequence of St 1–7 and RI 1–2.
	
                      
                        St 8
                        (Strong Centering)
                        \(\left( \alpha \wedge \gamma \right) \supset \left( \alpha \,\square \!\!\!\rightarrow \gamma \right) \).

                    

Strong Centering St 8 is not valid. Let \(\mathcal L, M_\mathcal{L}, c\), and \(u^*\) be as in the countermodel to Conditional Excluded Middle St 5. \(p\wedge q\) is true at \(w_{u^*}=w_{pq}\) in \(c\) relative to \(r_{u^*}\), but \(p\,\square \!\!\!\rightarrow q\) is not, because \(P^{r_{u^*c}}=P\not \subseteq Q\).
In Lewis’ (1973) terminology C2 is the system VCS. VCS results from the basic conditional logic V by adding St 5, St 6, and St 8. Lewis’ “official logic of counterfactuals” (Lewis 1973, p. 132) is the system VC, which results from V by adding Weak Centering St 6 and Strong Centering St 8. The system VW results from V by adding Weak Centering St 6.
The system V consists of the rules of inference R 1–3 and the axiom schemata L 1–5, where \(\equiv \) is the material biconditional, \(\Box \alpha \) is defined as \(\lnot \alpha \,\square \!\!\!\rightarrow \alpha \), and \(\diamond \alpha \) is defined as \(\lnot \Box \lnot \alpha \).
	
                      
                        R1
                        \(\vdash \alpha ,\quad \vdash \alpha \supset \beta \quad \Rightarrow \quad \vdash \beta \)
                      

                    
	
                      
                        R2
                        \(\vdash \beta _1\wedge \cdots \wedge \beta _n\supset \gamma \quad \Rightarrow \quad \left( \alpha \,\square \!\!\!\rightarrow \beta _1\right) \wedge \cdots \wedge \left( \alpha \,\square \!\!\!\rightarrow \beta _n\right) \supset \left( \alpha \,\square \!\!\!\rightarrow \gamma \right) \)
                      

                    
	
                      
                        R3
                        \(\vdash \alpha \equiv \beta \quad \Rightarrow \quad \vdash \gamma \equiv \gamma \left[ \beta /\alpha \right] ,\)
                      

                    

where \(\gamma \left[ \alpha /\beta \right] \) results from \(\gamma \) by substituting \(\alpha \) for some occurrence of \(\beta \) in \(\gamma \).
	
                      
                        L 1 Truth-functional tautologies.

                    
	
                      
                        L 2
                        \(\alpha \,\square \!\!\!\rightarrow \alpha \)
                      

                    
	
                      
                        L 3
                        \(\Box \gamma \supset \left( \alpha \,\square \!\!\!\rightarrow \gamma \right) \)
                      

                    
	
                      
                        L 4
                        \(\lnot \left( \alpha \,\square \!\!\!\rightarrow \lnot \beta \right) \supset \left( \left( \alpha \wedge \beta \,\square \!\!\!\rightarrow \gamma \right) \equiv \left( \alpha \,\square \!\!\!\rightarrow \left( \beta \supset \gamma \right) \right) \right) \).

                    


                  V is sound and complete with respect to the rank-theoretic semantics of counterfactuals. To state and prove this result some technical terminology has to be introduced, though I will ignore contexts in order to avoid unnecessary complications. \(\left( W,{\mathcal {A}}_W,R,\Omega ,\varphi \right) \) is a rank-theoretic model for \(\mathcal L\) just in case \(W\) is a non-empty set of factual worlds, \({\mathcal {A}}_W\) is an algebra over \(W\) such that \(\varphi \left( \alpha \right) \in {\mathcal {A}}_W\times \left\{ R\right\} \) for every \(\alpha \) from \({\mathcal {L}}_0, R\) is a set of ranking functions \(r:{\mathcal {A}}_W\rightarrow \mathbb {N}\cup \left\{ \infty \right\} , \Omega \subseteq W\times R\) is such that for each \(w\in W\) there is at least one
                  \(r\in R\) such that \((w,r)\in \Omega \), and \(\varphi :{\mathcal {L}}\rightarrow \wp \left( \Omega \right) \) is an interpretation function such that for all \(\alpha ,\beta \) from \(\mathcal L\):
	
                      1.
                      
                        
                          \(\varphi \left( p\right) \in \left( \wp \left( W\right) \times \left\{ R\right\} \right) \cap \Omega \) if \(p\in PV\)
                        

                      
                    
	
                      2.
                      
                        
                          \(\varphi \left( \lnot \alpha \right) =\Omega \setminus \varphi \left( \alpha \right) \)
                        

                      
                    
	
                      3.
                      
                        
                          \(\varphi \left( \alpha \wedge \beta \right) =\varphi \left( \alpha \right) \cap \varphi \left( \beta \right) \)
                        

                      
                    
	
                      4.
                      
                        
                          \(\varphi \left( \alpha \,\square \!\!\!\rightarrow \beta \right) =\left\{ u=\left( w_u,r_u\right) \in \Omega :f\left( \varphi \left( \alpha \right) \right) ^{r_{u}}\times R\subseteq \varphi \left( \beta \right) \right\} \),

                      
                    

where \(f\left( \varphi \left( \alpha \right) \right) =\left\{ w\in W:\exists r:\left( w,r\right) \in \varphi \left( \alpha \right) \right\} \).

                  \(\left( W,{\mathcal {A}}_W,R,\Omega ,\varphi \right) \) is a Humean rank-theoretic model for \({\mathcal {L}}^+\) just in case \(W\) is a non-empty set of factual worlds, \({\mathcal {A}}_W\) is an algebra over \(W\) such that \(\varphi \left( \alpha \right) \in {\mathcal {A}}_W\) for every \(\alpha \) from \({\mathcal {L}}^+, R\) is a set of ranking functions \(r:{\mathcal {A}}_W\rightarrow N\cup \left\{ \infty \right\} , \Omega \subseteq W\times R\) is such that for each \(w\in W\) there is exactly one
                  \(r=r_w\in R\) such that \(\left( w,r_w\right) \in \Omega \), and \(\varphi :{\mathcal {L}}^+\rightarrow \wp \left( W\right) \) is an interpretation function such that for all \(\alpha ,\beta \) from \({\mathcal {L}}^+\):
	
                      1.
                      
                        
                          \(\varphi \left( p\right) \in \wp \left( W\right) \) if \(p\in PV\)
                        

                      
                    
	
                      2.
                      
                        
                          \(\varphi \left( \lnot \alpha \right) =W\setminus \varphi \left( \alpha \right) \)
                        

                      
                    
	
                      3.
                      
                        
                          \(\varphi \left( \alpha \wedge \beta \right) =\varphi \left( \alpha \right) \cap \varphi \left( \beta \right) \)
                        

                      
                    
	
                      4.
                      
                        
                          \(\varphi \left( \alpha \,\square \!\!\!\rightarrow \beta \right) =\left\{ w\in W:\varphi \left( \alpha \right) ^{r_{w}}\subseteq \varphi \left( \beta \right) \right\} \).

                      
                    

Every Humean rank-theoretic model \({\mathcal {M}}^+=\left( W^+,{\mathcal {A}}_{W^+},R^+,\Omega ^+,\varphi ^+\right) \) for \({\mathcal {L}}^+\) can be reduced to a rank-theoretic model \({\mathcal {M}}=\left( W,{\mathcal {A}}_W,R,\Omega ,\varphi \right) \) for \({\mathcal {L}}\) as follows. Let \(W=W^+\) and \({\mathcal {A}}_W={\mathcal {A}}_{W^+}\cap \left\{ \varphi ^+\left( \alpha \right) :\alpha \in {\mathcal {L}}_0\right\} \). Take any \(r^+_w\in R^+\) and restrict it to \({\mathcal {A}}_W\), i.e. \(r_w\left( A\right) =r^+_w\left( A\right) \) if \(A\in {\mathcal {A}}_W\) and undefined otherwise. This gives us \(R\). Let \(\Omega \) be the set of all pairs \(\left( w,r_w\right) \) with \(r_w\) resulting from \(r^+_w\) as indicated. Since for each \(w\in W^+=W\) there is exactly one \(r^+_w\in R^+\) it immediately follows that there is at least one \(r_w\in R\) for each \(w\in W\). Finally, let \(\varphi \left( \alpha \right) =\varphi ^+\left( \alpha \right) \times R\) for \(\alpha \in {\mathcal {L}}\) to obtain \(\varphi :{\mathcal {L}}\rightarrow \wp \left( \Omega \right) \). It is routine to check that \(\alpha \in {\mathcal {L}}\) is true in the Humean rank-theoretic model \({\mathcal {M}}^+\) just in case \(\alpha \) is true in the rank-theoretic model \({\mathcal {M}}\). Consequently each set \(L\) of sentences from \(\mathcal L\) that has a Humean rank-theoretic model also has a rank-theoretic model.
Soundness is easily checked—especially since we are ignoring contexts. R 1 is RI 1. R 3 is trivial, because classical logic is presupposed. As to R 2, suppose \(\vdash \beta _1\wedge \cdots \beta _n\supset \gamma \), i.e. \(B_1\cap \cdots \cap B_2\subseteq C\). If \(\left( \alpha \,\square \!\!\!\rightarrow \beta _1\right) \wedge \cdots \wedge \left( \alpha \,\square \!\!\!\rightarrow \beta _n\right) \) is true at \(w_u\) relative to \(r_u\), then \(A^{r_u}\subseteq B_1\), and \(\ldots \), and \(A^{r_u}\subseteq B_n\) and so \(A^{r_u}\subseteq B_1\cap \cdots \cap B_n\subseteq C\), which means that \(\alpha \,\square \!\!\!\rightarrow \gamma \) is true at \(w_u\) relative to \(r_u\), for any universe \(u=\left( w_u,r_u\right) \).

                  L1 is St1. L2 follows from St1, RI2, and St3. L3 follows from St3. As to L4, suppose \(\lnot \left( \alpha \lnot \,\square \!\!\!\rightarrow \beta \right) \) is true at \(w_u\) relative to \(r_u\). This means that \(A^{r_u}\not \subseteq \overline{B}\). Suppose first that \(\alpha \wedge \beta \,\square \!\!\!\rightarrow \gamma \) is true at \(w_u\) relative to \(r_u\). This means that \(\left( A\cap B\right) ^{r_u}\subseteq C\). If \(w_u\in A^{r_u}\cap \overline{B}\), then \(w_u\in \overline{B}\cup C\). If \(w_u\in A^{r_u}\cap B\), then \(w_u\in \left( A\cap B\right) ^{r_u}\subseteq C\). Therefore \(A^{r_u}\subseteq \overline{B}\cup C\), which means that \(\alpha \,\square \!\!\!\rightarrow \left( B\supset \gamma \right) \) is true at \(w_u\) relative to \(r_u\). Now suppose \(\alpha \,\square \!\!\!\rightarrow \left( \beta \supset \gamma \right) \) is true at \(w_u\) relative to \(r_u\). This means that \(A^{r_u}\subseteq \overline{B}\cup C\). If \(w\in \left( A\cap B\right) ^{r_u}\cap A^{r_u}\), then \(w_u\in A^{r_u}\cap B\), and so \(w_u\in C\). If \(w_u\in \left( A\cap B\right) ^{r_u}\cap \overline{A^{r_u}}\), then \(r_u\left( A\right) <r_u\left( A\cap B\right) \) and so \(A^{r_u}\cap B=\emptyset \), contradicting \(A^{r_u}\not \subseteq \overline{B}\). Therefore \(\left( A\cap B\right) ^{r_u}\subseteq C\), which means that \(\alpha \wedge \beta \,\square \!\!\!\rightarrow \gamma \) is true at \(w_u\) relative to \(r_u\).
This shows that the system V on the language \(\mathcal L\) is sound with respect to the rank-theoretic semantics of counterfactuals and, consequently, that the system V on the language \({\mathcal {L}}^+\) is sound with respect to the Humean rank-theoretic semantics of counterfactuals.
Let us now establish completeness.Footnote 13 It follows from Lewis (1973, Chap. 6) that each V-consistent set \(L^+\) of sentences from \({\mathcal {L}}^+\) has a model \({\mathcal {M}}^*=\left( W,\left( \$_w\right) _{w\in W},\varphi \right) \), where for each \(w\in W, \$_w\subseteq \wp \left( W\right) \) is a set of spheres (around \(w\)), i.e. \(\$_w\) is nested and closed under arbitrary unions and intersections. Since V has the finite model property with respect to Lewis’ semantics, we can assume \(W\) to be finite. For each \(w\in W, \$_w\) is of the form \(S_0\cup S_1\cup \cdots \cup S_{w_n}\), where any two \(S_i\) and \(S_j\) are disjoint and \(\bigcup _{0\le i\le j}S_i\) is the \(j\)-th sphere (around \(w\)). For \(w'\in W\), define \(r_w\left( \left\{ w'\right\} \right) =i\) if \(w'\in S_i\), and let \(r_w\left( A\right) =\min \left\{ r_w\left( \left\{ w'\right\} \right) :w'\in A\right\} \). Each \(r_w\) defined in this way is a regular ranking function on \(\wp \left( W\right) \). Let \({\mathcal {A}}_W=\wp \left( W\right) , R=\left\{ r_w:w\in W\right\} \), and \(\Omega =\left\{ \left( w,r_w\right) :w\in W\right\} \). \({\mathcal {M}}^+=\left( W,{\mathcal {A}}_W,R,\Omega ,\varphi \right) \) is a Humean rank-theoretic model. For \(\alpha \in {\mathcal {L}}^+\) let \(j_\alpha \) be the smallest number (if any) such that \(\varphi \left( \alpha \right) \cap S_{j_\alpha }\) is non-empty. By definition \(\varphi \left( \alpha \right) ^{r_w}=S_{j_\alpha }\cap \varphi \left( \alpha \right) \). Therefore \(\alpha \in L^+\) is true in \(w\) in \({\mathcal {M}}^*\) in Lewis’ sense just in case \(\alpha \) is true in \(w\) in \({\mathcal {M}}^+\) in our sense.
Now suppose \(L\) is a V-consistent set of sentences from \({\mathcal {L}}\). Close \(L\) under the classical connectives \(\lnot , \wedge , \vee , \supset \) plus \(\,\square \!\!\!\rightarrow \) to obtain a set of sentences \(L^+\) from \({\mathcal {L}}^+\). By the above, \(L^+\) has a Humean rank-theoretic model \({\mathcal {M}}^+\). Reduce \({\mathcal {M}}^+\) to obtain a rank-theoretic model \({\mathcal {M}}\) for \({\mathcal {L}}\) as shown above. This completes the proof for

                  
                    Theorem 2
                  

                  
                    V restricted to \(\mathcal L\) is sound and complete with respect to the rank-theoretic semantics of counterfactuals. V on the full language \({\mathcal {L}}^+\) is sound and complete with respect to the Humean rank-theoretic semantics of counterfactuals.

                Call a (Humean) rank-theoretic model \(\left( W,{\mathcal {A}}_W,R,\Omega ,\varphi \right) \)
                  weakly/strongly centered just in case each \(r_u\in R\) is such that \(r_u\left( \left\{ w\right\} \right) =0\) if/iff \(w=w_u\). Then it holds that

                  
                    Theorem 3
                  

                  
                    VW restricted to \(\mathcal L\) is sound and complete with respect to the weakly centered rank-theoretic semantics of counterfactuals. VW on the full language \({\mathcal {L}}^+\) is sound and complete with respect to the weakly centered Humean rank-theoretic semantics of counterfactuals.

                
                  
                    Theorem 4
                  

                  
                    VC restricted to \(\mathcal L\) is sound and complete with respect to the strongly centered rank-theoretic semantics of counterfactuals. VC on the full language \({\mathcal {L}}^+\) is sound and complete with respect to the strongly centered Humean rank-theoretic semantics of counterfactuals.
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