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                    Abstract
An ab-initio foundation for relativistic spacetime is given, which is a conservative extension of Zermelo’s set theory with urelemente. Primitive entities are worldlines rather than spacetime points. Spacetime points are sets of intersecting worldlines. By the proper axioms, they form a manifold. Entities known in differential geometry, up to a metric, are defined and have the usual properties. A set-realistic point of view is adopted. The intended ontology is a set-theoretical hierarchy with a broad base of the empty set and urelemente. Sets generated from the empty set are mathematically interpreted, all other sets are physically interpreted.
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Appendix
Appendix
Zermelo’s set theory Z is extended to a set theory with urelemente ZU. We write
[image: ]

The usual extensionality axiom is modified to become
	
                      (SE)   [image: ]


                    
	
                                “Any sets \(x\) and \(y\) that are not urelemente are identical if they contain the same elements.”

                    

One axiom is added:
	
                      (SU)   [image: ]


                    
	
                                “The urelemente form a set.”

                    

This determines ZU. The language of ST contains an additional predicate constant \(\not \mid \). The elementary formula \(v\not \mid _{x}w\) is read “\(w\) intersects \(v\) at \(x\).” or “\(w\) intersects \(<v,x>\)”. In the following, the proper axioms of ST are given, along with several (nominal) definitions.
	
                      (P1)   [image: ])

                    
	
                             “\(w\) intersects \(v\) at \(x\) implies that \(v\) and \(w\) are worldlines and \(x\) is a real number.”

                    
	
                             “\(w\) intersects \(<v, x>\) implies that \(v\) and \(w\) are worldlines and \(x\) is a real number.”

                    


	
                      (P2)   [image: ]


                    
	
                             “Intersection of worldlines is irreflexive.”

                    

We write as an abbreviation
	
                               [image: ]


                    
	
                               “\(v\) and \(w\) mutually intersect at \(x\) and \(y\).”

                    


	
                      (P3)   [image: ]


                    
	
                            “For any worldlines \(v, w\), and any real number \(x\), if \(w\) intersects \(v\) at \(x\), then one and only one real number \(y\) exists, such that \(v\) and \(w\) mutually intersect at \(x\) and \(y\).”

                    

We write

\(\mathsf{Lea}_{vw}~xy\) for
      \(\mathsf{V}uab~((\mathsf{Isn}_vu xa \wedge \mathsf{Isn}_{wu} yb~\wedge a<b)\vee ~(\mathsf{Isn}_{vw} by\wedge x<b)\vee ~(\mathsf{Isn}_{vw}xa~\wedge a<y))\)

	
                            “A worldline leads from \(v\) at \(x\) to \(w\) at \(y\).”

                    
	
                            “A worldline leads from \(x\) on \(v\) to \(y\) on \(w\).”

                    


	
                      (P4)   [image: ]


                    
	
                            “For any two worldlines \(v\), \(w\) and any real number \(x\), there is a real number \(y\), such that a worldline exists that leads from \(y\) on \(w\) to \(x\) on \(v\).”

                    


	
                      (P5)   [image: ]
[image: ]


                    
	
                            “For any two worldlines \(v\), \(w\) and any real number \(x\), with \(w\) not intersecting \(v\) at \(x\), two sets \(a\), \(b\) exist, such that no worldline intersecting \(w\) at \(a\) or \(b\) intersects \(v\) at \(x\).”

                    


	
                      (P6)   [image: ]


                    
	
                            “For any two worldlines \(v\), \(w\) and all real numbers \(x\), \(y\), such that \(v\) and \(w\) mutually intersect at \(x\) and \(y\), and all real numbers \(a\) that are smaller than \(x\) and all real numbers \(b\) that are greater than \(y\), a worldline exists which leads from \(a\) on \(v\) to \(b\) on \(w\).”

                    


	
                      (P7)   [image: ]


                    
	
                            “For any two worldlines \(v\), \(w\) and all real numbers \(x\), \(y\), such that \(v\) and \(w\) mutually intersect at \(x\) and \(y\), and all real numbers \(b\) that are greater than \(y\), there exist a real number \(a\) greater than \(x\) and a worldline which leads from \(a\) on \(v\) to \(b\) on \(w\).”

                    


	
                      (P8)   [image: ]


                    
	
                            “For any two worldlines \(v\), \(w\) and all real numbers \(x\), \(y\), such that \(v\) and \(w\) mutually intersect at \(x\) and \(y\), and all real numbers \(a\) that are smaller than \(x\), there exist a real number \(b\) smaller than \(y\) and a worldline which leads from \(a\) on \(v\) to \(b\) on \(w\).”

                    

We write
	
                            \(\mathsf{sou}_{wv}~x\) for  \(\{y~{\vert }~\mathsf{Lea}_{wv}~ yx)\}\)


                    
	
                            “the source on \(w\) of \(x\) on \(v\)”;

                    
	
                            tar
\(_{wv}x\) for\(~\{y~\vert ~\mathsf{Lea}_{vw}~xy)\}\)


                    
	
                            “the target on \(w\) of \(x\) on \(v\)”;

                    
	
                            \(\mathsf{ina}_{wv}~x~\) for\(~\{y~{\vert }~y \in {\mathbb {R}}\wedge y\notin ~\mathsf{sou}_{wv}~x\wedge y\notin \mathsf{tar}_{wv}x)\}\)


                    
	
                            “the inaccessible section on \(w\) from \(x\) on \(v\)”;

                    
	
                            [image: ]


                    
	
                            “\(f\) smoothly and monotonously maps any \(x\) on \(v\) to the infimum of the inaccessible section on \(w\) of \(x\) on \(v\).”

                    
	
                            dpb \(_{vwxs}~f\) for \(\iota y~(\mathsf{Smm}~f~\wedge ~\mathsf{Mia}~_{wv}~f~\wedge \)


                    
	
                            \(\wedge ~\mathsf{V}! g~(\mathsf{V}! h ~(\mathsf{Mia}~_{sv}~g~\wedge \mathsf{Mia}~_{sw}~h~\wedge ~y~=~\partial (h\circ f\circ g))^\prime (g^{-1\prime } x)))\)


                    
	
                            “The derivative of the backward coordinate function \(f\) from \(v\) to \(w\) at \(x\) that is parametrized by \(s\).”

                    


	
                      (P9)   [image: ]


                    
	
                                  [image: ]


                    
	
                                  [image: ]


                    
	
                                  \(\wedge \, \mathsf{Mia}~_{tv}~f_{2} \rightarrow ~\mathsf{dpb}~_{wvxs}~f~\ne ~\mathsf{dpb}~_{wuys}~f_{1}~\wedge ~\mathsf{dpb}~_{wvxs}~f~\ne ~\mathsf{dpb}~_{tvxs}~f_{2}))\)


                    
	
                            “For any two worldlines \(v\), \(w\), if the source on \(w\) of \(x\) on \(v\) is nonempty, any backward coordinate function from \(v\) to \(w\) is a smooth and monotonous and, for all real numbers \(x\), \(y\), all backward coordinate functions \(f\) from \(v\) to \(w\), all worldlines \(u\) with which \(v\) mutually intersects at \(x\) and \(y\) and all worldlines \(t\) intersecting \(w\) at the value of \(x\) under \(f\), the first derivative of \(f\) at \(x\) parametrized by \(s\) differs both from the first derivative of the backward coordinate function from \(u\) to \(w\) at \(y\) parametrized by \(s\) and the first derivative of the backward coordinate function from \(v\) to \(t\) at \(x\) parametrized by \(s\).”

                    

We write

Cwl \(_{vw}~ux\) for \(Wv~\wedge ~ Ww~\wedge v~\ne ~w\)

     \(\wedge ~\mathsf{V} z~(\mathsf{Lea}_{vu}~zx)~\wedge ~\mathsf{V} z~(\mathsf{Lea}_{uv}~xz)~\wedge ~\mathsf{V} z~(\mathsf{Lea}_{wu}~ zx)~\wedge ~\mathsf{V} z~(\mathsf{Lea}_{uw}~xz)\)

     \(\wedge \mathsf{V}~z_{1}z_{2}~(z_{1}~\ne ~z_{2}~\wedge ~\lnot \mathsf{Lea}_{vu}~z_{1}x~\wedge ~\lnot \mathsf{Lea}_{vu}~z_{2}x~\wedge ~\lnot \mathsf{Lea}_{uv}~xz_{1}~\wedge ~\lnot \mathsf{Lea}_{uv}~xz_{2}) \)

     \(\wedge ~\mathsf{V} z_{1}z_{2}~(z_{1}~\ne ~z_{2}~\wedge ~\lnot \mathsf{Lea}_{wu}~z_{1}x~\wedge ~\lnot \mathsf{Lea}_{wu}~z_{2}x~\wedge ~\lnot \mathsf{Lea}_{uw}~ xz_{1}~\wedge ~\lnot \mathsf{Lea}_{uw}~xz_{2})\)

     “\(v\) and \(w\) are coordinate worldlines of \(x\) on \(u\).”
	
                      (P10)   [image: ]
[image: ]
[image: ]
[image: ]
\(\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \quad \,\,\wedge ~\mathsf{ina}_{wu}~x~=~\mathsf{ina}_{wt}~y)))\)
[image: ]
[image: ]
\(\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \quad \,\,\wedge ~\mathsf{ina}_{wu}~x~=~\mathsf{ina}_{wt}~y))\)))) [image: ]
\(\qquad \qquad \wedge ~t~\ne ~u~\wedge ~y~\ne ~x~\rightarrow ~\mathsf{ina}_{vu}~x~\ne ~\mathsf{ina}_{vt}~y~\wedge ~\mathsf{ina}_{wu}~x~\ne ~\mathsf{ina}_{wt}~y))\))

                    
	
                            “For all worldlines \(u\) and real numbers \(x\), there are worldlines \(v\), \(w\) and real numbers \(a\), \(b\), with \(v\) and \(w\) being coordinate worldlines of \(x\) on \(u\) and \(a\) being smaller than \(b\), such that, for all \(x_{1}\) in the inaccessible section on \(v\) of \(x\) on \(u\), there are \(y_{1}, y_{2}\) not contained in the inaccessible section on \(v\) of \(x\) on \(u\), with \(y_{1}\) being smaller than \(x_{1}\) and \(x_{1}\) being smaller than \(y_{2}\), such that the set of real numbers formed by augmenting the inaccessible section on \(v\) of \(x\) on \(u\) by the interval from any real number \(z_{2}\) between \(y_{1}\) and \(x_{1}\) to \(x_{1}\) and diminishing it by the interval from \(y_{1}\) to \(z_{2}\) is an inaccessible section on \(v\) of some real number \(y\) on some worldline \(t\), to which a worldline leads from \(a\) on \(u\) and from which a worldline leads to \(b\) on \(u\), where the inaccessible section on \(w\) of \(y\) on \(t\) is identical with the inaccessible section on \(w\) of \(x\) on \(u\), and such that the set of real numbers formed by augmenting the inaccessible section on \(v\) of \(x\) on \(u\) by the interval from \(x_{1}\) to any real number \(z_{2}\) between \(x_{1}\) and \(y_{2}\) and diminishing it by the interval from \(z_{2}\) to \(y_{2}\) is an inaccessible section on \(v\) of some real number \(y\) on some worldline \(t\), to which a worldline leads from \(a\) on \(u\) and from which a worldline leads to \(b\) on \(u\), where the inaccessible section on \(w\) of \(y\) on \(t\) is identical with the inaccessible section on \(w\) of \(x\) on \(u\) and, furthermore, such that the inaccessible sections on \(v\) and \(w\) of any real number \(y\) on any worldline \(t\) to which a worldline leads from \(a\) on \(u\) and from which a worldline leads to \(b\) on \(u\) differ from the inaccessible sections on \(v\) and \(w\) of \(x\) on \(u\), respectively.”

                    


	
                      (P11)   [image: ]                [image: ]                [image: ]                [image: ]


                    
	
                            “For all worldlines \(u\) and all real numbers \(x\), there are two real numbers \(a\), \(b\), with \(a\) being smaller than \(b\), such that, for all worldlines \(v\) intersecting \(u\) at \(x\) or being identical with \(u\), there is precisely one set of worldlines \(z\) containing \(v\) whose elements all intersect some worldline \(w\) at some real number \(y\) to which a worldline leads from \(u\) at \(a\) and from which a worldline leads to \(u\) at \(b\) and where, for every worldline \(w\) and real number \(y\), such that a worldline leads from \(u\) at \(a\) to \(w\) at \(y\) and a worldline leads from \(w\) at \(y\) to \(u\) at \(b\), there is precise one element of \(z\), which intersects \(w\) at \(y\) or is identical with \(w\).”
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