Skip to main content
Log in

Informal versus formal mathematics

  • Original Paper
  • Published:
Synthese Aims and scope Submit manuscript

Abstract

We discuss Kunen’s algorithmic implementation of a proof for the Paris–Harrington theorem, and the author’s and da Costa’s proposed “exotic” formulation for the PNP hypothesis. Out of those two examples we ponder the relation between mathematics within an axiomatic framework, and intuitive or informal mathematics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aronson, S. (2003). Is P vs. NP formally independent? In L. Fortnow (Ed.), The computational complexity column. The paper can be found at http://www.cs.uchicago.edu/f̃ortnow/beatcs

  • Baker T., Gill J., Solovay R. (1975). Relativizations of the P = ?NP question. SIAM Journal of Computing 4: 431

    Article  Google Scholar 

  • Beklemishev, L. (1997). Provability and reflection. Lecture Notes for esslli’ 97.

  • Ben-David, S., & Halevi, S. (1991). On the independence of P vs. NP. Technical Report # 699, Technion.

  • Chaitin, G. (1987a). Information-theoretic limitations of formal systems. In Information, randomness & incompleteness. World Scientific.

  • Chaitin, G. (1987b). Information, randomness & incompleteness. World Scientific.

  • da Costa N.C.A., Doria F.A. (1991). Undecidability and incompleteness in classical mechanics. International Journal Theoretical Physics 30, 1041–1073

    Article  Google Scholar 

  • da Costa, N. C. A., & Doria, F. A. (2002). Barebones—notes on complexity and the P = ?NP question. unpublished, IEA–USP.

  • da Costa, N. C. A., & Doria, F. A. (2003). Consequences of an exotic definition for PNP. Applied Mathematics and Computation, 145, 655; da Costa, N. C. A., & Doria, F. A. (2005). Addendum to: ‘Consequences of an exotic definition for PNP’. Applied Mathematics and Computation (to appear).

    Google Scholar 

  • da Costa N.C.A., Doria F.A. (2004). On set theory as a foundation for computer Science. Bull. Section of Logic, Łodz 33: 33–40

    Google Scholar 

  • da Costa, N. C. A., & Doria, F. A. (2005). Computing the future. In K. Vela Velupillai (Ed.), Computability, complexity and constructivity in economic analysis. Blackwell.

  • da Costa, N. C. A., & Doria, F. A. (2006). Some thoughts on hypercomputation. To appear in Doria, F. A., & Costa, J. F., Hypercomputation – special issue. Applied Mathematics and Computation, 178, 83–92.

  • da Costa, N. C. A., Doria, F. A., & Bir, E. (2007). On the metamathematics of P vs. NP. Applied Mathematics and Computation (to appear).

  • DeMillo, R. A., & Lipton, R. J. (1979). Some connections between computational complexity theory and mathematical logic. In Proceedings of the 12th Annual ACM Symposium on the Theory of Computing (pp. 153–159).

  • DeMillo, R. A., & Lipton, R. J. (1980). The consistency of PNP and related problems with fragments of number theory. In Proceedings of the 12th Annual ACM Symposium on the Theory of Computing (pp. 45–57).

  • Doria, F. A. (2000). Talk at the Brazilian logic symposium on his joint work with N. C. A. da Costa on computational complexity.

  • Feferman S. (1960) Arithmetization of metamathematics in a general setting. Fundamental Mathematics 49: 35

    Google Scholar 

  • Feferman S. (1962). Transfinite recursive progressions of axiomatic theories. Journal of Symbolic Logic 27, 259

    Article  Google Scholar 

  • Fortune S., Leivant D., O’Donnell M. (1983). The expressiveness of simple and second-order type structures. Journal of ACM 38, 151–185

    Article  Google Scholar 

  • Franzen T. (2004). Transfinite progressions: A second look at completeness. Bulletin of Symbolic Logic 10, 367–389

    Article  Google Scholar 

  • Guillaume, M. (Sept. 2000—Aug. 2002). E-mail messages to N. C. A. da Costa and F. A. Doria.

  • Hartmanis, J., & Hopcroft, J. (1976). Independence results in computer science. SIGACT News, 13.

  • Joseph, D., & Young, P. (1980). Independence results in computer science? Proceedings of the 12th Annual ACM Symposium on the Theory of Computing (pp. 58–69).

  • Joseph D., Young P. (1981). Fast programs for initial segments and polynomial time computation in weak models of arithmetic. STOC Milwaukee 1981, 55–61

    Google Scholar 

  • Kaye, R. (1991). Models of Peano arithmetic. Clarendon Press.

  • Kleene S.C. (1936). General recursive functions of natural numbers. Mathematische Annalen 112, 727

    Article  Google Scholar 

  • Kleene, S. C. (1967). Mathematical logic. Wiley.

  • Kowalczyk W. (1982). A sufficient condition for the consistency of PNP with Peano Arithmetic. Fundanemta Informaticae 5, 233–245

    Google Scholar 

  • Kreisel G. (1951). On the interpretation of non–finitist proofs, I and II. Journal of Symbolic Logic 16, 241

    Article  Google Scholar 

  • Kreisel G. (1952). On the interpretation of non–finitist proofs, I and II. Journal of Symbolic Logic 17, 43

    Article  Google Scholar 

  • Kreisel, G. (1969). Informal rigor. In J. Hintikka (Ed.), The philosophy of mathematics. Oxford.

  • Kunen K. (1995). A Ramsey theorem in Boyer–Moore logic. Journal of Automated Reasoning 15, 217–230

    Article  Google Scholar 

  • Longo, G. (2002). On the proofs of some formally unprovable propositions and prototype proofs in type theory. Lecture Notes in Computer Science, 2277, 160–167 (Springer).

  • Machtey, M., & Young, P. (1979). An introduction to the general theory of algorithms. North-Holland.

  • Paris, J., & Harrington, L. (1977). A mathematical incompleteness in Peano arithmetic. In J. Barwise (Ed.), Handbook of mathematical logic. North-Holland.

  • Rogers Jr., H. (1967). Theory of recursive functions and effective computability. McGraw–Hill.

  • Shoenfield J. (1959). On a restricted ω-rule. Bulletin Academie Polonaise des Sciences, Serie Sciences Mathematiques 7, 405–407

    Google Scholar 

  • Smoryński, C. (1985). Some rapidly growing functions. In L. A. Harrington et al. (Eds.), Harvey Friedman’s research on the foundations of mathematics. Elsevier.

  • Smoryński, C. (1989). The incompleteness theorems. In J. Barwise (Ed.), Handbook of mathematical logic. North-Holland.

  • Smoryński, C. (1991). Logical number theory, I. Springer.

  • Suppes P. (2002). Representation and invariance of scientific structures. CSLI Publications, Stanford

    Google Scholar 

  • Turing A. M. (1939). Systems of logic based on ordinals. Proceedings of the London Mathematical Society Serie, 2, 45, 161.

  • Wainer S.S. (1970). A classification of the ordinal recursive function. Archiv Mathematik Logik 18, 136

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Antonio Doria.

Additional information

The author is Visiting Researcher at IEA/USP, Professor of Communications, Emeritus, at the Federal University in Rio de Janeiro, and a full member of the Brazilian Academy of Philosophy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doria, F.A. Informal versus formal mathematics. Synthese 154, 401–415 (2007). https://doi.org/10.1007/s11229-006-9126-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11229-006-9126-9

Keywords

Navigation