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Abstract Recent semantic approaches to scientific structuralism, aiming to make
precise the concept of shared structure between models, formally frame a model as a
type of set-structure. This framework is then used to provide a semantic account of
(a) the structure of a scientific theory, (b) the applicability of a mathematical theory
to a physical theory, and (c) the structural realist’s appeal to the structural continu-
ity between successive physical theories. In this paper, I challenge the idea that, to
be so used, the concept of a model and so the concept of shared structure between
models must be formally framed within a single unified framework, set-theoretic or
other. I first investigate the Bourbaki-inspired assumption that structures are types of
set-structured systems and next consider the extent to which this problematic assump-
tion underpins both Suppes’ and recent semantic views of the structure of a scientific
theory. I then use this investigation to show that, when it comes to using the concept
of shared structure, there is no need to agree with French that “without a formal
framework for explicating this concept of ‘structure-similarity’ it remains vague, just
as Giere’s concept of similarity between models does …” (French, 2000, Synthese, 125,
pp. 103–120, p. 114). Neither concept is vague; either can be made precise by appealing
to the concept of a morphism, but it is the context (and not any set-theoretic type) that
determines the appropriate kind of morphism. I make use of French’s (1999, From
physics to philosophy (pp. 187–207). Cambridge: Cambridge University Press) own
example from the development of quantum theory to show that, for both Weyl and
Wigner’s programmes, it was the context of considering the ‘relevant symmetries’ that
determined that the appropriate kind of morphism was the one that preserved the
shared Lie-group structure of both the theoretical and phenomenological models.
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1 Introduction

Recent semantic approaches to scientific structuralism (Da Costa, Bueno, & French,
1997; Da Costa & French 1990; French & Da Costa 2000; French 1999, 2000), aiming to
make precise the concept of shared structure between models, formally frame a model
as a type of set-structure. This framework is then used to provide a semantic account
of (a) the structure of a scientific theory, (b) the applicability of a mathematical theory
to a physical theory,1 and (c) the structural realist’s appeal to the structural continuity
between successive physical theories. In this paper, I challenge the idea that, to be so
used, the concept of a model and so the concept of shared structure between models
must be formally framed within a single unified framework, set-theoretic or other.

I first investigate the Bourbaki-inspired assumption that structures are types of
set-structured systems and next consider the extent to which this problematic assump-
tion underpins both Suppes’ and recent semantic views of the structure of a scientific
theory. I point out that, mathematically speaking, there is no reason for our continuing
to assume that structures and/or morphisms are ‘made-up’ of sets. Thus, to account for
the fact that two models share structure we do not have to specify what models, qua
types of set-structures, are. It is enough to say that, in the context under consideration,
there is a morphism between the two systems, qua mathematical or physical models,2

that makes precise the claim that they share the appropriate kind of structure.
I then use this investigation to show that when it comes to using the concept

of shared structure — to account for the structure of scientific theories, the appli-
cability of a mathematical theory to a physical theory, and the structural continuity
between successive theories—there is no need to agree with French that “without a for-
mal framework for explicating this concept of ‘structure-similarity’ it remains vague,
just as Giere’s concept of similarity between models does…” (French, 2000, p. 114).
Neither concept is vague; either can be made precise by appealing to the concept
of a morphism, but it is the context (and not any set-theoretic type) that determines
the appropriate kind of morphism.3 I make use of French’s (1999) own example

1 In accounting for applicability, this use also attempts to frame Redhead’s (1975, 1980, 1995) concept
of ‘surplus structure’. See page 9 and footnote 21.
2 There are at least three ways to go here. First, one might take a model itself at face value, viz., to
be understood, in the Tarskian sense, as an interpretation that makes a set of sentences true without
adding that a model is a set-theoretic entity. Second, one might offer, along the lines of van Fraassen,
a state-space account of what is meant by mathematical model, so that a physical model is a model
(in the Tarskian sense) of a mathematical model qua a state-space. Finally, one might forego giving an
account of models per se and instead offer an account of what is meant by the term ‘structured system’
so that one may then consider a model as a specific kind of structured system. In Landry and Marquis
(2005), for example, we formally frame the concept of an abstract, mathematically, structured system
in category-theoretic terms, i.e., as a kind of cat-structured system. I am not suggesting, however, that
one of these three ways is preferable to the other; I am only pointing out that none of these requires
us to take models as types of set-structures or types of set-structured systems.
3 I thus take the concept of a morphism at face value, i.e., as a map between two kinds of structured
systems, qua mathematical or physical models, where, as explained in footnote 2, there are at least
three options other than taking models themselves as types of set-structures. For example, one could
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from the development of quantum theory to show that, for both Weyl and Wigner’s
programmes, it was the context of considering the ‘relevant symmetries’ that deter-
mined that the appropriate kind of morphism was the one that preserved the shared
Lie-group structure of both the theoretical and phenomenological models.4

2 The Bourbaki Beginnings

The semantic view of scientific theories is typically presented as the view that the
structure of a scientific theory is captured by the collection of its models. As is well
known, the semantic view was first suggested as an alternative to the syntactic view.
Instead of linguistically characterizing a theory as a partially interpreted calculus,
and having to appeal to rules (or definitions) to connect this ‘linguistic entity’ to the
world, one characterizes a theory as a collection of models and appeals to the shared
structure between these theoretical models and models of the phenomena. What is
less known,5 however, is that there is more to the semantic view than the slogan that
a theory is a collection of models, or a family of structures.6 As first presented by
Suppes, the semantic view is framed by set theory: it is only when we frame a theory
by a set-theoretic predicate that we can make use of the semantic view and so extract

Footnote 3 continued
use category theory to provide a formal framework for the concept of an abstract structured system
and too for the concept of a morphism as a map between such cat-structured systems, but that is quite
beside my point here. My point is that, regardless of formal frameworks, it will be a specific context
that determines what kind of morphism is appropriate. For example, in the context of speaking about
the shared structure of systems structured by space-time theories the appropriate kind of morphism
is a diffeomorphism, and this regardless of what a diffeomorphism is, i.e., regardless of whether it is
a function between set-theoretic elements or an arrow between category–theoretic objects. Note also
that if we narrow this context we must likewise narrow the kind of morphism. For example, while
for generally relativistic theories the morphism between the dynamically possible models will be any
diffeomorphism, for specially relativistic theories the morphism between models will be a restricted
kind of diffeomorphism called a Poinçare transformation and for Newtonian Mechanics it will be
another restricted kind diffeomorphism called a Galilean transformation. The groups of Poinçare and
Galilean transformations being subgroups of the diffeomorphism group.
4 The attention to use/context is thus intended to be amenable to the Cartwright, Shomar, and Suarez
(1995) view of the importance of ‘phenomenological’ models, but, contra Suarez (2003, 2004), it does
not go as far as rejecting ‘isomorphism’ accounts of shared structure. Rather it seeks to present a
‘morphism’ account of shared structure wherein the morphism that preserves the appropriate kind of
structure is determined by the use/context and not by a presumption that any one type of morphism
is, or is not, the type that makes precise the concept of shared structure and, in so doing, fixes its use
for any context.
5 Of course, the set-theoretic, even Bourbaki, underpinnings of some accounts of the structure of
scientific theories are both explicitly made and well-known. See, for example, Sneed (1981) and
Stegmüller (1979).
6 For accounts of a scientific theory as a family of structures see van Fraassen (1980, 1987), French
and Da Costa (2000) and French, (1999, 2000). Note, however, that van Fraassen, in distinguishing the
Tarski-Suppes ‘set-theoretic’ approach from the Weyl-Beth ‘state-space’ approach and in adopting the
latter, is not committed to the use of set theory as “the canonical form for the formulation of theories”
(van Fraassen, 1980, pp. 65–66). But he does claim that “[t]he general concepts [of isomorphism and
embeddability] used in the discussion of empirical adequacy… pertain to scientific theories conceived
in either way” (Ibid., 67).
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the claim that the connection between the theory and the phenomena can be captured
in terms of the same structure7 of their respective models. As Suppes claims:

[w]hen a branch of empirical science is stated in exact form, that is, when the
theory is axiomatized within a standard set-theoretical framework, the familiar
question raised about models of the theory in pure mathematics [to make precise
the concept of same structure in terms of isomorphisms between models] may
also be raised for models of the precisely formulated empirical theory. (Suppes,
1960, p. 295)

What Suppes is after, then, is a means by which we can characterize the structure
of a scientific theory so that we may use this to account for the applicability8 of a
mathematical theory to a set of phenomena in terms of their shared structure. For
example, in the case of applying numbers to ‘things’ like mass, distance or force,

the mathematical task is… to establish that any mathematical model is isomor-
phic to some numerical model of the theory. The existence of this isomorphism
between models justifies the application of numbers to things. We cannot liter-
ally take a number in our hands and apply it to a physical object. What we can
do is to show that the structure of a set of phenomena under certain empirical
operations is the same as the structure of some set of numbers under arithmetical
operations and relations. The definition of isomorphism of models in the given
context makes the intuitive ideas of same structure precise. (Suppes, 1967a, pp.
58–59)

Suppes’ argument for the necessity of using a set-theoretic framework can be recon-
structed as follows:

1. We need the concept of same structure between models to talk about the appli-
cability of a mathematical theory to the theory of the phenomena.9

2. We need to present theories as collections of models to forgo the problems tradi-
tionally associated with the syntactic view’s account of applicability.

3. We need to mathematize both the concept of model and the concept of same
structure to make their meaning precise.

4. The best way to mathematize both the concept of model and the concept of
shared structure is via set theory.

Therefore,

5. We need to formally frame a theory by a set-theoretic predicate to make use of
the precise (mathematical) concept of (i) a model as a type of set-structure, and
(ii) same structure expressed as an isomorphism between models so characterized.

7 Note here that Suppes’ seeks to formalize the concept of same structure in terms of isomor-
phisms. As we will see, the focus of recent semantic approaches, specifically those of French and
Da Costa, is to formalize the broader concept of shared structure in terms of some other kind
of morphism, e.g., in terms of homeomorphisms or partial isomorphisms.
8 Suppes also uses isomorphism between models to give an account of reductionism: one theory T1
reduces to another theory T2 if it can be shown that for any model of T1 it is possible to construct an
isomorphic model within T2 (see Suppes, 1960, pp. 295–296; 1967a, p. 59).
9 I use the phrase ‘theory of the phenomena’ to capture the Suppesian idea (see Suppes, 1960, 1962)
that data models are used to present the phenomena as experimentally structured, i.e., as structured
by the ‘theory of the experiment’. This so that the applicability of a mathematical theory to the theory
of the phenomena can be accounted for in terms of the same structure of the theoretical and data
models.
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Overall, my aim in this paper is to investigate the grounds for this conclusion and to
challenge its acceptance by some as an essential component of the semantic view.

Let us begin with the assumption that a model is a type of set-structure. That Suppes
makes such an assumption is clear:

… a model of a theory may be defined as a possible realization in which all valid
sentences of the theory are satisfied, and a possible realization of the theory is
an entity of the appropriate set-theoretical structure. (Suppes, 1962, p. 252).

Surely, the first part of this characterization is the now familiar Tarskian concept of
a model, but why does Suppes feel the need to add that a model is “an entity of the
appropriate set-theoretical structure”? To understand this addition, we must appreci-
ate two things: one, that the set-theoretic foundationalist programme for mathematics
is in full swing and, two, that one such programme, viz., that undertaken by Bour-
baki, construed all structures as types of set-structures.10 Suppes’ use of both of these
programmes is evidenced by his claim that:

… there is no theoretical way of drawing a sharp distinction between a piece of
pure mathematics and a piece of theoretical science. The set-theoretical defini-
tions of the theory of mechanics, the theory of thermodynamics, the theory of
learning, to give three rather disparate examples, are on all fours with the defi-
nitions of the purely mathematical theories of groups, rings, fields, etc. From the
philosophical standpoint there is no sharp distinction between pure and applied
mathematics, in spite of much talk to the contrary. (Suppes, 1967b, pp. 29–30).

The hidden presumption here is that the theory of groups, rings and fields can
be reduced to, or unified by, the theory of sets, so that any mathematical theory, as
expressed by its axioms, can be represented by its models qua types of set-structures.
Forgoing the set-theoretic foundationalist’s agenda, I want to point out that, math-
ematically speaking, there is no reason for our continuing to assume that structures
and/or the morphisms between them are ‘made-up’ of sets. There is no reason to
presume that set theory founds mathematics or that only set theory can provide the
formally precise concept of structure. Indeed, as has been argued elsewhere,11 cat-
egory theory can be used to provide both; but this claim is quite beside my point
here. My point is simply this: to make precise the concept of shared structure between
models, we do not need to specify what models are qua types of set-structures, nor
what morphisms are qua maps between such types.

3 The French connection

My objective for this section is to show that, to account for the fact that two models
share structure and to make philosophical use of this fact, it is not necessary to specify
what models are qua types of set-structures. It is enough to say that, in the context

10 It is debatable whether Bourbaki intended their programme to be foundationalist in the sense of
calling for a reduction of all of mathematics to set theory, or whether they intended it to provide a
unification of the concept of structure. I thank Dan Isaacson for this point.
11 See Landry and Marquis (2005).
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under consideration, there is a morphism between the two structured systems (math-
ematical or physical) that makes precise the claim that they share the appropriate
kind of structure. I turn to consider, then, the extent to which recent approaches to
scientific structuralism needlessly, and problematically, continue to presume a set-the-
oretic underpinning. Since such presumptions are most explicitly made in the shared
works of Da Costa and French, I place my focus here. For example, Da Costa and
French (1990), make clear their connection to Bourbaki:

[i]n a certain strong sense it can be said that the axiomatic method defines the
essence of mathematics… and with the work of the Bourbaki group it can be
further claimed that this method reached perhaps its highest level of devel-
opment… For Bourbaki, to axiomatize a mathematical theory was no more
or less that to define a kind, or species, of structure in set-theoretic terms.
(Da Costa & French, 1990, p. 252)

They go on to claim that the Bourbaki concept of a mathematical structure is purely
syntactic,12 but find hope in Suppes’ semantic approach, which, as we have seen,
begins with the claim that to axiomatize a theory is to define a set-theoretical predi-
cate and, yet, a theory is the collection of its (isomorphic) models. Relying, then, on
the work of Da Costa and Chuaqui (1988), which has “convincingly argued that these
set-theoretical predicates can be identified with the Bourbaki species of structures”
(Da Costa & French, 1990, p.253), they next claim that, given this identification,

[a] scientific theory may thus be characterized by a set-theoretic predicate in such
a way as to connect this approach with standard mathematical model theory…
So, to axiomatize is to define a set-theoretical predicate… and the structures
which satisfy this predicate are the models of the theory. That is, when a theory
is formalized in this way, the mathematical structures which satisfy the predicate
are the models of this predicate, or the structures of this species of structure.
(Da Costa & French, 1990, pp. 253–254)

In their 1990 paper, Da Costa and French put this set-theoretic frame for a semantic
view of the structure of scientific theories to work to provide an account of ‘pragmatic
structures’ in terms of set-theoretic ‘partial structures’. These are then used to offer
an account of ‘pragmatic truth’, which is itself used both to inform the semantically
framed empiricist/realist debate (as set out by, for example, Friedman, 1983; Giere,
1985; van Fraassen, 1980, 1985) and to offer a description of the role of analogy with
the aim of distinguishing between iconic13 and mathematical models and show too
how the partial structures approach can account for the use of both in science.

In subsequent papers, French uses this set-theoretic framework to provide a seman-
tic account of

12 I, however, doubt this claim. Bourbaki’s aim was axiomatic but it was not syntactic; identifying
models, in the sense of Tarski, was as important as identifying ‘species of structures’. This because
their aim was not to supply a foundation for what mathematics is about; rather, it was to characterize
an architectonic for mathematical structure. To this end, set theory was used to provide a taxonomy
of the various types of structure in terms of ‘species’ of set-structures.
13 An iconic model, taken in terms of Hesse (1963), Achinstein (1968), Suppe (1977) and Redhead
(1980), is a concrete physical system that functions as an icon for another system in such a way that the
properties that hold of the first can be said to hold, perhaps by analogy, of the second. For example,
the solar system is often taken as an iconic model for the orbital theory of the atom. See also Suppes
(1967b, pp. 290–291) where he characterizes the concept of an iconic model as a ‘physical model’ or,
equally, as the ‘physicists’ concept’ of a model and further explains how it, like mathematical models,
can be formalized in terms of set-theoretic models.
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(i) the applicability of a mathematical theory to a physical theory by appealing
to a type of morphism to make precise the claim that their models (as set-
theoretically framed ‘structures’) share the same structure.

(ii) the ontic14 structural realist’s appeal to the structural continuity between succes-
sive physical theories, again by appealing to a type of morphism to make precise
the claim that their models (again, as set-theoretically framed ‘structures’) share
the same structure.

Bringing these two uses together, Da Costa et al. (1997) seek to account for the struc-
ture of various kinds of space-time theories with the aim of offering the structural
realist conclusion that “there is a common underlying structure — spatio-temporal
in this context — about which we can come to know more and more. The appropri-
ate representation of this structure, we believe, is in set-theoretic terms.” (Da Costa
et al. 1997, p. 277) In sum, attempts to formally frame the concept of shared structure
between theories (either between mathematical and physical theories or between suc-
cessive physical theories) by appealing to types of morphisms between their respective
models (as types of set-theoretic ‘structures’) have been made in terms of:

(a) homeomorphisms between models qua types of lattice structures (Da Costa
et al., 1997),

(b) partial isomorphisms between models qua partial structures in a function-space
(French, 1999), and

(c) partial homomorphisms between models qua partial structures (French, 2000).

What remains open for discussion, and what underlies much of the realist/empiricist
structural realism debates, is the question of whether we are to read the appropriate
kind of structure from the world or from the theory.15 Forgoing this question for the
moment, what the success of the use of shared structure, in either case, is taken to
rely upon is an attempt to make this concept formally precise. As noted, it is assumed
that “without a formal framework for explicating this concept of ‘structure-similarity’
it remains vague…” (French, 2000, p. 114). What recent attempts to formally frame
this concept have in common is that they seek to specify the kind of shared struc-
ture at work in terms of some type of morphism16 between models as some type of
set-structure.

14 See page 11 for an albeit brief distinction between ontic and epistemic structural realism.
15 For example, for the ontic structural realist like French the appropriateness of the models of a
theory is supposed to rely upon ‘how the world is’; the structure of the phenomena qua “nothing but
structure” tells us that the world and the models (both data and theoretical models) share the same
kind of structure. In contrast, for a structural empiricist like van Fraassen (1999), the models of a
theory (if they are embeddable) tell us not about the structure of ‘the world’, but rather speak to the
appropriateness of the theory for making claims about what we can know about the structure of the
phenomena, i.e., it tells us about the empirical adequacy of the theory.
16 Note that van Fraassen too makes this assumption; in his 1970, he makes use of isomorphisms
between models as state-spaces (interpreted by Beth semantics); and in his 1980, he makes use of the
embeddability of empirical substructures into theoretical structures, again as state-spaces. Yet, while
his semantic approach seeks to formally frame the concept of shared structure in terms of some type
of morphism, he (see footnote 6) remains open to the possibility that there may be frameworks other
than set-theoretic. So while van Fraassen is committed to formally framing the concept of shared
structure as some type of morphism, he is not committed to the Bourbaki/Suppesian claims that to
do so (i) a model need be formalized as a type of set-structure or (ii) a theory need be formalized by
a set-theoretic predicate.
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In contrast to such attempts, I want to distinguish between semantic accounts that
consider what the concept of shared structure is (what the appropriate type of struc-
ture is for formally framing the concept of shared structure in terms of some type of
morphism) and those that consider what the presence of shared structure tells us (what
the appropriate kind of structure is for characterizing the use of shared structure in
terms of some kind of morphism as determined by some context), and to place focus
on the latter. In so doing, we say simply that two models share structure if there exists
a morphism between them that preserves the ‘appropriate kind’ of structure, regard-
less of our having to specify this kind as a precise type of morphism. Moreover, we
note that the ‘appropriate kind’ of structure depends on the details of the particular
task at hand.17 Thus, what shared structure tells us cannot be ascertained by looking
at the types of set-structures (or types of morphisms): the philosophical proof of the
efficacy and utility of appeals to shared structure is in the scientific pudding, not the
mathematical recipe.

In response, then, to French’s (2000) claim, I want to suggest that neither ‘struc-
ture similarity’ nor ‘similarity’ is vague; both can be made precise by appealing to
the concept of a morphism, but it is the context (and not the set-theoretic type) that
determines the appropriate kind of morphism. I now turn to making use of French’s
own example from the development of quantum theory to demonstrate that, for both
Weyl and Wigner’s programmes,18 it was the context of considering the ‘relevant
symmetries’ that determined that the appropriate kind of morphism was the one that
preserved the shared Lie-group structure of both the theoretical and phenomenolog-
ical models.

4 Shared structure and applicability

In two papers (1999, 2000), French seeks to account for the role of group theory in
quantum mechanics by appealing to the concept of shared structure, as formalized by
some type of morphism, between models qua types of set-structures. In both papers,
his aim is to show, by example, that the applicability19 of a mathematical theory to a
physical theory can be represented by employing

a model-theoretic framework in which ‘physical’ structures are regarded as
embedded in ‘mathematical’ structures… this then allows the possibility of rep-
resenting the relation of mathematics to physics in terms of embedding a theory
T in a mathematical structure M′, in the usual set-theoretic sense of there exist-
ing an isomorphism between T and a sub-structure M of M′. (French, 1999, pp.
187–188)

In particular, in his 1999 paper, French attempts to show that the shared structure
between group theory and quantum mechanics can be formally expressed in terms

17 One might think that this contextualization of the concept of shared structural runs the risk of
trivializing it, yet what I am pointing out here is that it is the use of the concept that determines the
appropriate kind and so characterizes its meaning in the given context; this as opposed to taking the
formalism as that which both defines its meaning as a type of set-structure and thereby justifies its use
in all contexts.
18 See Mackey (1993) for a more in-depth analysis of both the Weyl and Wigner programmes.
19 Two types of applicability are herein considered; applicability in the sense of presenting a theory
and in the sense of representing the phenomena. The focus of French (1999) is on the latter, while
French (2000) considers both in terms of Weyl and Wigner’s programmes, respectively.
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of partial isomorphisms between models qua partial structures in a function-space.20

French here claims that both the function-space approach and the state-space ap-
proach of van Fraassen (1980, 1989) “can be related to the more general and, per-
haps, more fundamental set-theoretic approach advocated by Suppes” (French, 1999,
p. 191).21

French then notes two caveats: (1) since a scientific theory typically only partially
models its respective domain it is best characterized as a collection of models qua
partial structures, so that the morphism that expresses the shared structure between
such theoretical models is a partial isomorphism, and (2) since there is often structure
that is surplus,22 the relationship of shared structure between theoretical models and
data models must also be expressed in terms of partial isomorphisms.23 Finally, after
setting up his set-theoretic framework, French concludes that “[i]t is precisely such a
[Suppesian set-theoretic] framework that is required to capture the developing rela-
tionship between group theory and quantum mechanics” (French, 1999, p. 192; see
also French, 2000, p. 104).

In detailing the historical development of the appropriate theory for quantum
mechanics French makes the following ‘observations’:

(i) Dirac explicitly noted that the theory itself could not determine which form
was appropriate but that extra-theoretical considerations (like satisfying Pauli’s
Exclusion Principle) had to be appealed to … it is this analysis of quantum
statistics in terms of the permutation of indistinguishable particles which heu-
ristically motivates the construction of the ‘bridge’ underpinning the embedding
of quantum mechanics into group theory (French, 1999, p. 193).

(ii) As Weyl noted, it is with the representation of groups by linear transforma-
tions that their investigation became a ‘connected and complete theory’ and
‘it is exactly this mathematically most important part which is necessary for an
adequate description of quantum mechanical relations’… group theory, as the
‘appropriate language’ reveals ‘the essential features which are not contingent
on a special form of the dynamical laws nor on special assumptions concerning
the forces involved’ (French, 1999, p. 194).

(iii) … group theory gives us surplus structure which we rule out for purposes of
application through the invocation of further physical principles, themselves
to be embedded within the mathematics (as Dirac indicated in the case of the
Exclusion Principle) (French, 1999, p. 195).

20 See Redhead (1975) for the development of the ‘function space’ approach and Redhead (1980)
for the use of this approach for analyzing the role of models in physics.
21 Lest one be tempted to interpret this quote as a reluctance on French’s part to say that the set-
theoretic approach is more, or indeed is the most, fundamental approach, I point the reader to the fact
that French continues here with a reference to Suppes’ claim that: “[b]y defining [scientific theories
using] set-theoretic predicates … one can specify either a state space, [a function space], a rela-
tional system, or some other representing mathematical structure or class of structure” (Suppes, 1989,
p. 4 quoted in French 1999, p. 190). To further support my set-theoretic reading of French, see also
Da Costa et al. (1997) p. 277, where it is claimed that “[t]he appropriate representation of this [common
underlying—spatio-temporal in this context] structure, we believe, is in set-theoretic terms.”
22 The concept of model qua partial structure is thus used for two ends: to formally frame the concepts
of both ‘surplus structure’ and ‘openness’—these concepts are then used to account for the various
sorts of models used in the sciences, e.g., iconic, mathematical, theoretical, etc.
23 This in contrast to both the Giere/van Fraassen appeal to ‘theoretical hypotheses’ to make the
connection between theoretical and data models and to the Cartwright/Suarez claim that such a clear
delineation of theoretical and ‘phenomenological’ models is not possible.
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French uses these and other observations to fine-tune his account of applicability,
claiming finally that

[w]hat we have, roughly, is the following scheme: idealizations are introduced,
such as ignoring the indistinguishable nature of particles, giving rise to models
which can then be structurally embedded in group theory, which in turn is used
to generate the appropriate results. (French, 1999, p. 197)

More specifically, in French 2000, he uses his partial structures approach to frame
two contexts of applicability: one relating to foundations and the other to the repre-
sentation of physical phenomena. To exemplify both, he considers the role of group
theory for both the ‘Weyl programme’ (which was concerned with the group-theoretic
elucidation of the foundations of quantum mechanics) and the ‘Wigner programme’
(which was concerned with the utilization of group theory in the application of quan-
tum mechanics itself to physical phenomena). Of the Wigner programme, French
notes:

Wigner himself emphasized the dual role played by group theory in physics; the
establishment of laws—that is, fundamental symmetry principles—which the
laws of nature have to obey; and the development of ‘approximate’ applications
which allowed physicists to obtain results that were difficult or impossible to
obtain by other means. (French, 2000, p. 107)

French then details the history of Wigner’s programme as motivated by the search
for the mathematics that would represent the needed symmetries—permutation and
rotation, and which would further take account of spin. He next recalls a point he
made about Weyl’s programme, viz., that “behind these ‘surface’ relationships there
may lie deeper, mathematical ones” (French, 2000, p. 109). One such deeper relation
is the reciprocity between the permutation and linear groups which, as previously
noted, Weyl refers to as ‘the guiding principle’ of his work and also as the ‘bridge’
within group theory. It is in considering this ‘bridge’ that French concludes:

[t]hus with regard to the construction of the ‘bridge’ between the theoretical
and the mathematical structures, represented by T and M′ above, on the quan-
tum mechanical side we have the reduction of the state space into irreducible
subspace and on the group theoretical side we have the reduction of represen-
tation. It is here we have the (partial) isomorphism between (partial) structures,
(weakly) embedding T into M′… Interestingly, then, the construction of this
bridge . . . crucially depends on a further one within group theory itself – the
bridge that Weyl identified between the representations of the symmetry and
unitary groups as expressed in the reciprocity laws. (French, 1999, pp. 198–199;
see also French, 2000, pp. 109–110).

My question is: Where is set-structure doing any real work? It seems to me that
there are two things doing work: (i) the quantum mechanical principles and/or ‘exper-
imental’ results expressed as group-theoretic symmetries and (ii) the group-theoretic
formalism and corresponding ‘internal bridges’. Now one might claim that, to connect
the models of each, we must appeal to the concept of partial isomorphism (or, as in
French, 2000, partial homomorphism) and that this is, strictly speaking, a set-theoretic
concept. To this I have two replies: (i) mathematically speaking, morphisms need not
be set-theoretically expressed, e.g., they can be expressed in category-theoretic terms,
and (ii) the morphisms that are doing the work to connect the models in this example
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are group-theoretic, not set-theoretic, e.g., they can be more easily expressed as natu-
ral transformations in the category of Lie-groups. In any case, what does the real work
is not the framework of set theory (or even category theory); it is the group-theoretic
morphisms alone that serve to tell us what the appropriate kind of structure is. So, it
is simply a mistake to conclude that

[t]hus the appropriate model-theoretic formulation would be one involving par-
tial structures in general or partial function spaces in particular [19] and that the
relations between the corresponding structures would consequently be those
of partial isomorphism. Furthermore, each theory, group theory and quantum
mechanics, is itself structured, in the [set-theoretical] manner indicated above.
(French, 1999, p. 201)

What explains French’s jump from the role of group theory to the use of partial struc-
tures to the frame of set theory is found in a footnote (aren’t they always!). French, in
the above quote, has a footnote [19] which reads “[t]he present work can be viewed as
an extension of this application [the model-theoretic approach] in line with [Suppes]
remark that ‘The set-theoretical definitions of the theory of mechanics. …’ ” and con-
tinues to quote Suppes’ (1967b) Bourbaki-belief that all kinds of structures reduce to
types of set-structures. (See also French, 2000, p.104, where this same quote is appealed
to, resulting in the claim that “[w]ithin such a [Suppesian set-theoretic] framework
the applicability of mathematics to science comes to be understood in terms of the
establishment of a relationship between one kind of structure and another”.) Again,
I ask: Why is such a set-theoretic (Bourbaki) bias, if not a more robust mathematical
foundationalism, built into this project?

5 Shared structure and structural realism

In an attempt to answer this question, I now turn to the possibility that this assump-
tion is required for the other use of shared structure, viz., to run the structural realist
argument that there is continuity of structure between successive theories and that
this structure is what we should be realists about. More specifically, the relationship
of ‘structural continuity’ is of crucial interest to structural realists in their attempt
to overcome the so-called ‘pessimistic meta-induction’ argument and, in so doing,
to make way for a modified version of the ‘no miracles’ argument. The ‘pessimistic
meta-induction’ argument relies upon the existence of radical ontological disconti-
nuities between explanatorily and predictively successful predecessor and successor
theories to argue that there is no good reason to believe in the ‘things’ that current
and/or future theories might posit. The structural realist strategy for overcoming the
associated pessimism, as proposed by Worrall (1989), depends on the claim that dis-
continuity at the ontological level is nonetheless accompanied by overall continuity
at the structural level and that it is this ‘structural continuity’ that explains the success
of those theories.

In support of the assertion of structural continuity between predecessor and succes-
sor theories, and this despite ‘radical changes in ontology’, Worrall points out that, for
example, the mathematical equations of Fresnel’s theory of light can, in a rough and
ready way, be recovered from Maxwell’s theory. Continuity of structure (as expressed
by the equations) is maintained despite the fact that the two theories disagree over
such weighty ontological issues as the ‘nature’ of light; this nature changing as we
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move from Fresnel’s theory of light—replete with its hypothesized aether and con-
ceiving of light as a ‘aether-wave’—to Maxwell’s theory according to which light is an
electromagnetic wave (believed to propagate in a mechanical aether). The suggestion
is that, by restricting ourselves to the relationship of shared structure between prede-
cessor and successor theories, we are able to recover the needed continuity through
theory change, and so are in a position to offer a structural realist version of the ‘no
miracles’ argument.

For the structural realist, read now as an advocate of the semantic view,24 the point
of the above example is that this relationship can be expressed in terms of shared
structure between the models of Maxwell’s theory of light and those of Fresnel’s
theory. More generally, characterizing a theory as a collection of models (or fam-
ily of structures) allows one to account for structural continuity by appealing to the
shared structure between models of the predecessor and the successor theory. Seen
in this light, a side-aim of French’s semantic approach is to make the way clear for
a structural realist argument;25 he characterizes a scientific theory as a collection of
models qua partial structures so that he can account for the structural continuity of
successive theories by appealing to their shared structure as expressed by some type
of morphism between their respective models. Thus, near the end of French 1999 we
read that “our understanding of such developments [of the role of group theory in
quantum mechanics] may impact on certain philosophical positions [such as structural
realism]” (French, 1999, p. 201).

I will not go into great depths of detail of the debates surrounding the various
versions of structural realism. For the purposes of this paper, all we need to know is
that the structural realist attempts to move past problems typically associated with
the traditional realist presumption of continuity of ontology by placing their focus
instead on continuity of structure. In so doing, it is further claimed that one can be
a realist about such structure in two ways: epistemologically (and claim that all we
know is structure) or ontologically (and claim both that all we know is structure and
all there is, is structure).

Setting aside epistemic or ontic options, French asks an interesting question: Given
the story just told about the application of group theory to quantum mechanics, which
structures are we to be realists about? That is, “are we to focus on the equations
of quantum mechanics, such as Schrödinger’s equation, or on what Weyl calls ‘the
appropriate language’, namely group theory?” (French, 1999, p. 202). French notes
that, when we consider (both vertical and horizontal)26 shared structure, our emphasis
seems clearly on the latter type of structural continuity, this because “[w]hat the group

24 See Ladyman (1998) for an excellent critical overview of the distinctions between the syntactic
and semantic, and the epistemological and ontological, versions of structural realism.
25 Here I have in mind the ontic structural realist semantic approaches of French (1999, 2000). Given
Redhead’s (1995, p. 18) stated belief that “detailed historical analysis often reveals more continuity
than one suspects, at any rate at the level of structure rather than ontology”, one might also include
Redhead’s (1980) function-space account as having a structural realist agenda as well. But it is far
from clear whether he would approve of French’s ontic stance. Telling against such an ontological
reading of Redhead is the following remark found in French (1999), p. 204: “… it has been argued that
it makes no sense to talk of structure without its component elements (Redhead, private discussion)”.
26 Vertical shared structure refers to the shared structure between models at different levels, for
example, between higher-level theoretical models and lower-level phemomenological/data models.
Horizontal shared structure refers to the shared structure between models at the same level, for
example, the shared structure of two theoretical models of the same theory.
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theoretic approach does … is embed such models in the more abstract representation
of semi-simple Lie groups which set quantum theory in a unitary framework” (Ibid.).

In choosing to consider group theory as ‘the appropriate language’, and, in addi-
tion, adopting an ontological stance towards structural realism, French is left to face
the following Psillos-inspired27 problem: How can we talk of a group if we have done
away with the elements that are grouped? French’s reply is as follows:

[w]e begin with a conceptualization of the phenomena… informed by a broadly
classical metaphysics … in terms of which the entities involved are categorized
as individuals. That categorization is projected into the quantum domain, where
it breaks down and the fracture with the classical understanding is driven by
the introduction of group theory; the entities are classified via the permuta-
tion group which imposes perhaps the most basic division into ‘natural kinds’,
namely bosons and fermions. It is over this bridge that group theory is related
to quantum mechanics as indicated above. (French, 1999, p. 204)

Making his ontic structural realist28 conclusions more explicit, French notes that

[t]he introduction of group theory into quantum mechanics provides a useful
example, and one that has important … implications. Metaphysical: the very
basis of the applicability of group theory lies in the non-classical indistingui-
shablity of quantum particles so that their permutation can be treated as a
symmetry of the system. Furthermore, this emphasis on symmetry and invari-
ance subsequently led to a metaphysical characterization of elementary particles
as, ontologically, nothing more than sets of invariances. Epistemologically: this
latter characterization can be adduced as a further aspect of an ontological ver-
sion of structural realism which claims not simply that all we can know about
the world is its structure but all that there is about the world is this structure…
(French, 2000, p.103)

But again, I ask: Where is set-structure doing any real work? In French’s story,
clearly what ‘drives’ and ‘imposes’ our quantum mechanical ‘natural kinds’ is the
shared Lie-group structure of the models (again, both vertical and horizontal); so
why then do we need the additional claim that all such group-theoretic kinds are set-
theoretic types? To this query, French might reply: “Well, yes in the particular example
of quantum mechanics, and in so far as group theory provides a framework, what does
the work is shared Lie-group structure. But I am looking for a general framework —
the framework that frames the structure of all scientific theories, and, in so doing,
not only accounts for the use of a kind of shared structure but formally frames the
very concept in terms of some preferred type. In this general context this frame is
provided, respectively, by a type of set-structure and a type of morphism. And, thus,
what frames this semantic approach is set theory”. But what do we gain from this
frame of frames?29 And, perhaps, more importantly, what do we lose?

27 See Psillos (1995, 2001) for exact details of his criticisms of structural realist attempts to separate
nature from structure, relata from relations, etc.
28 For critiques of French and Ladyman’s (2003) more robust ontic structural realist arguments for
abandoning an individuals-based ontology in favor of a purely structuralist account of ontology, see
Cao (2003a, b), Chakravarrty (2003), Morganti (2004), and van Fraassen (1999).
29 Again, one might be tempted to argue that a frame of frames is good for pragmatic reasons; that
it provides us with a unified account of what a model qua structure is and so accounts for what a mor-
phism is (as a map between structures so construed). However, what all of French’s examples from
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To highlight the philosophical impact of the above queries, and show just what we
lose, I borrow a quote from Suppe’s criticism of the syntactic/linguistic approach:

Such an approach [to understanding scientific theories by an examination of the
linguistic formulations of theories] can provide a detailed analysis of the charac-
teristic features of theory formulations, but unless one assumes that analogues
to these features are distinctive feature of theories themselves; (fn #550, For
example as the early Wittgenstein assumed that the logical structure of reality
was mirrored by the logical structure of a logically perfect language … [viz.,
first-order logic]) such an analysis reveals nothing about what is characteristic
of theories except that their formulations have certain characteristics … Even if
all the distinctive features of theory formulation were reflections of characteris-
tics of theories, there is no guarantee that the most distinctive or characteristic
features of theories are mirrored in the formulations of theories. (Suppe, 1977,
p. 221)

Let’s consider the above quote now, however, set-theoretically reconstructed:

Such an approach [to understanding scientific theories by an examination of the
set-theoretic formulations of theories] can provide a detailed analysis of the char-
acteristic features of theory formulations, but unless one assumes that analogues
to these features are distinctive feature of theories themselves; [For example as
the early Bourbaki assumed that the mathematical structure of reality was mir-
rored by the mathematical structure of a mathematically perfect language [viz.,
set theory] …) such an analysis reveals noting about what is characteristic of
theories except that their formulations have certain characteristics … Even if
all the distinctive features of theory formulation were reflections of characteris-
tics of theories, there is no guarantee that the most distinctive or characteristic
features of theories are mirrored in the formulations of theories.

How, then, is the set-theoretically framed semantic approach any different than the
linguistic?

Footnote 29 continued
physics show is that what does the real work , i.e., what accounts for (a) the structure of a scientific
theory, (b) the applicability of a mathematical theory to a physical theory, and (c) the structural
realist’s appeal to the structural continuity between successive physical theories, is a specific kind of
structured system and so a specific kind of morphism. My point is that this explanatory role is lost if
we then reduce this specific kind to a more general set-(or category-) theoretic type. For example, in
the case of considering the role of group theory in quantum mechanics, it is shared Lie-group struc-
ture that does the real work of explaining these uses and this explanatory role is lost if one reduces
group-structures to partial-structures to set-structures (and likewise if one were to reduce them to
cat-structures). That is, if group structures really are partial structures which really are set structures,
then, for example, group-theoretic symmetries really are set-theoretic relations between either sets or
elements. So, contra both what the history shows and what French argues, if we accept the set-theoretic
story, what should do the work of accounting for the structure of quantum mechanical theory and
quantum mechanical phenomena is set-theory, not group theory. Clearly, however, this is not so. And,
as already noted, even if we appeal to the appropriate kind of morphism to capture the concept of
shared structure, this latter concept is not trivialized without a formal framework which defines what
we mean by morphism. Indeed, what we mean by both the appropriate kind structured system and
the appropriate kind of morphism is fixed by its use in the context we are considering. Thus, whatever
we might gain in philosophical unity by formally framing the concept of either structured system or
morphism we lose in explanatory value.
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French may find a response by appealing, in Suppes (1967a) style, to the distinction
between intrinsic and extrinsic characterizations of theories.30 He may claim that the
linguistic formulation of a theory by a set-theoretic predicate is an intrinsic character-
ization to be used only to take up an epistemic stand on the truth of a theory and yet
that what does the work of scientific representation is the extrinsic characterization
of a theory as a collection of models (or family of structures). That is, if we recall
that the formal framework is intended to be used to provide a semantic account of
(a) the structure of a scientific theory, (b) the applicability of a mathematical theory
to a physical theory, and (c) the structural realist’s appeal to the structural continuity
between successive physical theories, French might well respond that the intrinsic
(set-theoretic/Bourbaki) characterization is only needed for (a), but the extrinsic
(model/structure-theoretic) characterization is what accounts for (b) and (c). But as
French himself notes, the work of scientific representation “concerns the structure
of the theory, and the relationships between theories themselves and between the-
ories and ‘the world’, understood in terms of that structure” (French & Saatsi 2005
manuscript, pp. 5–6).

In sum: I agree that what does the work of representation is a model qua an appro-
priate kind of structured system and what captures the needed concept of shared
structure between them is the appropriate kind of morphism. But I think that what
French’s own example from quantum mechanics shows is that what determines the
appropriate kind of morphism is the context under consideration. In the case of consid-
ering Lie-group structure as the appropriate kind of structure in quantum mechanics,
as the Weyl and Wigner programmes exemplify, it was both the foundational con-
text and the phenomenal context. And, in the phenomenal context, if one wants—as
Wigner seems to have, and as the structural realist needs—to use this kind of struc-
ture as a tool to carve ‘the world’ into its ‘natural kinds’, then one cannot, in addi-
tion to claiming that group theory is ‘the appropriate language’, claim that all such
group-theoretic kinds are set-theoretic types, unless one is ready to hold fast to, and
provide justification for, the Bourbaki/Suppesian assumption that all scientifically use-
ful kinds of mathematical structures are types of set-structures. Nor can one use this
assumption to make a more robust, ontologically read, structural realist claim about
the structure of ‘the world’, unless one wants to impose (or presume) that set theory
cuts not only mathematics but, indeed, Nature at its joints.
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