Skip to main content
Log in

Modeling Cracks and Cracking Models: Structures, Mechanisms, Boundary Conditions, Constraints, Inconsistencies and The Proper Domains of Natural Laws

  • Published:
Synthese Aims and scope Submit manuscript

Abstract

The emphasis on models hasn’t completely eliminated laws from scientific discourse and philosophical discussion. Instead, I want to argue that much of physics lies beyond the strict domain of laws. I shall argue that in important cases the physics, or physical understanding, does not lie either in laws or in their properties, such as universality, consistency and symmetry. I shall argue that the domain of application commonly attributed to laws is too narrow. That is, laws can still play an important, though peculiar, role outside their strict domain of validity. I shall argue also that, by way of a trade-off, while the actual domain of application of laws should be seen as much broader. At the same time, what I call ‘anomic’ representational elements reveal themselves as central to the descriptive and explanatory power of theories and model: boundary conditions, state descriptions, structures, constraints, limits and mechanisms. I conclude with a brief consideration of how my discussion has consequences for discussion of understanding, unification, approximation and dispositional properties. I focus on examples from physics, macroscopic and microscopic, phenomenological and fundametal: shock waves, propagation of cracks, symmetry breaking, and others. This law-eccentric kind of knowledge is central to both modeling the world and intervening in it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • A. M. Ampère (1834) Essai sur la Philosophie des Sciences.Ou exposition analytique d’une classification naturelle de toutes les connaissances humaines Bachelier Paris

    Google Scholar 

  • P. Anderson D. Stein (1987) ‘Broken symetry, emergent properties, dissipative structures, life Aretheyrelated?’ F. E. Yates (Eds) Self-Organizing Systems Plenum Press New York

    Google Scholar 

  • R. Anderson (1991) The Ontological Status of Potentials, Ph.D. dissertationWithin Classical Electromagnetism Boston University Boston, MA

    Google Scholar 

  • F. Arntzenius (2000) ArticleTitle‘Are there really instantaneous velocities?’ The Monistit 83 IssueID2 187–208

    Google Scholar 

  • Balashov Y. (1997) ‘What is a law of nature? The broken-symmetry story’, talk, American Philosophical Association, December 1997.

  • J. M. Ball (1995) ‘Some recent developments in nonlinear elasticity and its applications to material science’ P. J. Aston (Eds) Nonlinear Mathematics and its Applications Cambridge University Press New York

    Google Scholar 

  • J.M. Ball V.J. Mizel (1985) ArticleTitle‘One-dimensional variational problems whose minimizers do not satisfy the Euler-Lagrange equations’ Arch.Rat.Mechs.Anal. 90 325–388

    Google Scholar 

  • R. Batterman (2002) The Devil in the Details Oxford University Press New York

    Google Scholar 

  • Belot, G. and J. Earman: 2001, ‘Pre-Socratic quantum gravity’, in Callender and Huggett 2001.

  • J. Bogen J Woodward (1990) ArticleTitle‘Saving the phenomena’ The Philosophical Review 97 303–335

    Google Scholar 

  • K.B. Broberg (1960) ArticleTitle‘The propagation of a brittle crack’ Archive fuer Physik 8 159–192

    Google Scholar 

  • B. Brown (1992) ArticleTitle‘How to be realistic about inconsistency in science’ Stud. Hist. Phil. Sci. 21 281–294 Occurrence Handle10.1016/0039-3681(90)90027-6

    Article  Google Scholar 

  • Butterfield J. and C. Isham 2001 ‘Spacetime and the philosophical challenge of quantum gravity’, in Callender and Huggett 2001.

  • C. Callender N Huggett (Eds) (2001) Physics Meets Philosophy at the Planck Scale Cambridge University Press New York

    Google Scholar 

  • N. Cartwright (1983) How the Laws of Physics Lie Oxford University Press Oxford

    Google Scholar 

  • N. Cartwright (1989) Nature’s Capacities and their Measurement Oxford University Press Oxford

    Google Scholar 

  • N. Cartwright (1997) ArticleTitle‘Where do laws of nature come from?’ Dialectica 51 65–78

    Google Scholar 

  • N. Cartwright (1999) The Dappled World A Study of the Boundaries of Science. Cambridge University Press Cambridge

    Google Scholar 

  • N. Cartwright (2002) ArticleTitle‘In favor of laws that are not ceteris paribus after all’ Erkenntnis 57 425–439 Occurrence Handle10.1023/A:1021550815652

    Article  Google Scholar 

  • E. Castellani (2003) ‘On the meaning of symmetry breaking’ K. Brading E. Castellani (Eds) Symmetries in Physics Philosophical Reflections Oxford University Press Oxford

    Google Scholar 

  • J. Cat (1995) Maxwell’s Interpretation of Electric and Magnetic Potentials: the Methods of Illustration, Analogy and Scientific Metaphor University of California Davis, Davis, CA

    Google Scholar 

  • J. Cat (1998) ArticleTitle‘The physicists’ debate on unification in physics at the end of the 20th century’ Hist. Stud. Phys. Bio. Sci. 28 IssueID2 253–300

    Google Scholar 

  • J. Cat (2001) ArticleTitle‘On Understanding: Maxwell on the methods of illustration and scientific metaphor’ Stud Hist. Phil. Mod. Phys. 32 IssueID3 395–441 Occurrence Handle10.1016/S1355-2198(01)00018-1

    Article  Google Scholar 

  • J. Cat (2002) ‘Representation as theory: How and why mathematical representation makes a difference in physical theory’ Indiana University ms, Bloomington, IN

    Google Scholar 

  • S. Coleman (1985) Aspects of Symmetry Cambridge University Press Cambridge

    Google Scholar 

  • Courant R., and D. Hilbert 1937/1989, Methods of Mathematical Physics, John Wiley and Sons, New York.

  • M. E. Eberhart A. F. Giamei (1998) ArticleTitle’The visualization and use of electronic structure for metallurgical applications’ Materials Science and Engineering A: Structural Materials 248 IssueID1 287–295

    Google Scholar 

  • A. L. Fetter J. D. Walecka (1980) Theoretical Mechanics of Particles and Continua McGraw-Hill New York

    Google Scholar 

  • L. B. Freund (1990) Dynamic Fracture Mechanics Cambridge University Press Cambridge

    Google Scholar 

  • R. N. Giere (1988) Explaining Science: A Cognitive Approach University of Chicago Press Chicago

    Google Scholar 

  • R.N. Giere (1999) Science Without Laws University of Chicago Press Chicago

    Google Scholar 

  • S. Glennan (1996) ArticleTitle‘Mechanisms and the nature of causation’ Erkenntnis 44 49–71 Occurrence Handle10.1007/BF00172853

    Article  Google Scholar 

  • Glennan S. 2000 ‘A model of models’, forthcoming in Philosophy of Science.

  • S. Glennan (2002) ArticleTitle‘Rethinking mechanistic explanation’ Phil. Sci. 69 IssueID3 S342–S353 Occurrence Handle10.1086/341857

    Article  Google Scholar 

  • Goodeve, T. M. 1860/1883, The Elements of Mechanism, Longmans, Green and Co, London.

  • J. N. Goodier (1968) ‘Mathematical Theory of Equilibrium Cracks’ H. Liebowitz (Eds) Fracture. An Advanced Treatise, vol 2. Academic Press New York

    Google Scholar 

  • J. E. Gordon (1976) The New Science of Strong Materials Princeton University Press Princeton, NJ

    Google Scholar 

  • J.E. Gordon (1978) Structures Pelican Books London

    Google Scholar 

  • A. A. Griffith (1920) ArticleTitle‘The phenomena of rupture and flow in solids’ Phil. Trans. Roy. Soc. Lond A 221 163–198

    Google Scholar 

  • Hadamard, J.: 1932/1952, Le Problème de Cauchy et les Equations aux Dérivées Partielles Linéaires Hyperboliques, Hermann et Cie, Paris.

  • M. Henneaux C. Teitelboim (1992) Quantization of Gauge Systems Princeton University Press Princeton

    Google Scholar 

  • D. Howard (1996) ‘Relativity, Eindeutigkeit, and monomorphism: Rudolf Carnap and the development of the categoricity concept in formal semantics’ R.N. Giere A.W. Richardson (Eds) Origins of Logical Empiricism Minnesota University Press Minneapolis

    Google Scholar 

  • C. E. Inglis (1913) ArticleTitle‘Stresses in a plate due to the presence of cracks and sharp corners’ Trans. Inst. Naval Archit 55 219–228

    Google Scholar 

  • G. Joseph (1980) ArticleTitle‘The many sciences and the one world’ J. of Philosophy 77 IssueID12 773–791

    Google Scholar 

  • M. Krieger (1996) Constitutions of Matter University of Chicago Press Chicago

    Google Scholar 

  • Kuhlmann, M., H. Lyre and A. Wayne (eds.): 2002, Ontological Aspects of Quantum Field Theory, World Scientific Singapore.

  • C. Lanczos (1961) Linear Differential Operators Van Nostrand New York

    Google Scholar 

  • M. Lange (1995) ArticleTitle‘Are there natural laws concerning particular biological species?’ J. Phil 95 430–451

    Google Scholar 

  • P. D. Lax (1957) ArticleTitle‘Hyperbolic systems of conservation laws II’ Communs. Pure and Appl. Math. 10 537–566

    Google Scholar 

  • B. Lawn (1995) Fracture of Brittle Solids Cambridge University Press Cambridge

    Google Scholar 

  • C. Liu (2003a) ArticleTitle‘Spontaneous symmetry breaking and chance in a classical world’ Phil. Science 70 IssueID3 590–608 Occurrence Handle10.1086/376786

    Article  Google Scholar 

  • C. Liu (2003) ArticleTitle‘Classical spontaneous symmetry breaking’ Phil. Sci. 70 IssueID5 1219–1232 Occurrence Handle10.1086/377402

    Article  Google Scholar 

  • P. Machamer L. Darden C. Craver (2000) ArticleTitle‘Thinking about mechanisms’ Phil. Science 67 IssueID1 1–25 Occurrence Handle10.1086/392759

    Article  Google Scholar 

  • J. C. Maxwell (1873) A Treatise on Electricity and Magnetism Oxford University Press Oxford

    Google Scholar 

  • J. Meheus (Eds) (2003) Inconsistency in Science Kluwer Dordrecht

    Google Scholar 

  • S. Mitchell (2000) ArticleTitle’Dimensions of scientific law’ Phil. Sci. 67 IssueID2 242–265 Occurrence Handle10.1086/392774

    Article  Google Scholar 

  • L. O’Raifeartaigh (1986) Group Structure of Gauge Theories Cambridge University Press Cambridge

    Google Scholar 

  • A. Pap (1946) The A Priori in Physical Theory Russell and Russell New York

    Google Scholar 

  • L. H Ryder (1985) Quantum Field Theory Cambridge University Press Cambridge

    Google Scholar 

  • W. C. Salmon (1998) Causality and Explanation Oxford University Press Oxford

    Google Scholar 

  • M. Scriven (1961) ‘The Key Property of Physical Laws – Inaccuracy’ H. Feigl G. Maxwell (Eds) Current Issues in the Philosophy of Science Holt, Rinehart and Winston New York

    Google Scholar 

  • S. R. Smith (2003) ArticleTitle‘Are instantaneous velocities real and really instantaneous?: an argument for the affirmative’ Stud. Hist. Phil. Mod. Phys. 34 261–280 Occurrence Handle10.1016/S1355-2198(03)00007-8

    Article  Google Scholar 

  • J. Smoller (1983) Shock Waves and Reaction-Diffusion Equations Springer- Verlag New York

    Google Scholar 

  • F. Suppe (1989) The Semantic Conception of Theories and Scientific Realism University of Illinois Press Chicago

    Google Scholar 

  • J. G. Tabery (2004) ArticleTitle‘Synthesizing Activities and Interactions in the Concept of a Mechanism’ Phil. Sci. 71 IssueID1 1–15 Occurrence Handle10.1086/381409

    Article  Google Scholar 

  • P. Teller (1995) An Interpretive Introduction to Quantum Field Theory Princeton University Press Princeton

    Google Scholar 

  • R. Weingard (1988) ‘Virtual particles and the interpretation of quantum field theory’ H.R Brown R. Harre (Eds) Philosophical Foundations of Quantum Field Theory Clarendon Press Oxford

    Google Scholar 

  • W. Whewell (1841) Mechanics of Engineering Cambridge University Press Cambridge

    Google Scholar 

  • R. Willis (1841) Principles of Mechanism, Longmans Green and Co London

    Google Scholar 

  • Wilson M.: 1990, ‘Laws along the frontier: differential equations and their boundary conditions’, Philosophy of Science Association, Proceedings 2, 565–575.

  • M. Wilson (1991) ‘Reflections on strings’ T. Horowitz G. J. Massey (Eds) Thought Experiments in Science and Philosophy Rowman and Littlefield Savage

    Google Scholar 

  • J. Woodward (2002) ArticleTitle‘What is a mechanism? a counterfactual account’ Phil. Sci. 69 IssueID3 S366–S377 Occurrence Handle10.1086/341859

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jordi Cat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cat, J. Modeling Cracks and Cracking Models: Structures, Mechanisms, Boundary Conditions, Constraints, Inconsistencies and The Proper Domains of Natural Laws. Synthese 146, 447–487 (2005). https://doi.org/10.1007/s11229-004-6259-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11229-004-6259-6

Keywords

Navigation