
Vol.:(0123456789)

The Journal of Supercomputing (2020) 76:9211–9245
https://doi.org/10.1007/s11227-020-03197-y

1 3

Equilibrium: an elasticity controller for parallel tree search
in the cloud

Stefan Kehrer1 · Wolfgang Blochinger1

© The Author(s) 2020, corrected publication 2021

Abstract
Elasticity is considered to be the most beneficial characteristic of cloud environ-
ments, which distinguishes the cloud from clusters and grids. Whereas elasticity
has become mainstream for web-based, interactive applications, it is still a major
research challenge how to leverage elasticity for applications from the high-perfor-
mance computing (HPC) domain, which heavily rely on efficient parallel process-
ing techniques. In this work, we specifically address the challenges of elasticity for
parallel tree search applications. Well-known meta-algorithms based on this paral-
lel processing technique include branch-and-bound and backtracking search. We
show that their characteristics render static resource provisioning inappropriate
and the capability of elastic scaling desirable. Moreover, we discuss how to con-
struct an elasticity controller that reasons about the scaling behavior of a parallel
system at runtime and dynamically adapts the number of processing units according
to user-defined cost and efficiency thresholds. We evaluate a prototypical elastic-
ity controller based on our findings by employing several benchmarks for parallel
tree search and discuss the applicability of the proposed approach. Our experimental
results show that, by means of elastic scaling, the performance can be controlled
according to user-defined thresholds, which cannot be achieved with static resource
provisioning.

Keywords Cloud computing · High-performance computing · Task Parallelism ·
Elasticity of parallel computations

 * Stefan Kehrer
 stefan.kehrer@reutlingen-university.de

 Wolfgang Blochinger
 wolfgang.blochinger@reutlingen-university.de

1 Parallel and Distributed Computing Group, Reutlingen University, Reutlingen, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-020-03197-y&domain=pdf

 S. Kehrer, W. Blochinger

1 3

9212

1 Introduction

The cloud evolved into an attractive execution environment for high-performance
computing (HPC) with benefits such as on-demand access to compute resources,
pay-per-use, and elasticity [20, 23, 55, 59, 80, 81]. Former performance issues inher-
ent to standard cloud environments such as heterogeneous processing speeds as well
as low network throughput and high network latency (resulting from virtualization
and resource pooling) have been addressed by novel concepts to make cloud envi-
ronments HPC-aware [23, 32, 53, 84]. As of today, many cloud providers, includ-
ing Amazon Web Services (AWS)1 and Microsoft Azure,2 offer HPC-aware cloud
environments, i.e., cloud environments optimized for HPC [2, 85]. Recently, a single
cloud-based parallel system built on top of AWS has been listed in the TOP500 list3
at rank 136.

Whereas HPC-aware cloud environments enable the migration of existing paral-
lel applications without modifications [45], elasticity, which is often considered to
be the most beneficial cloud-specific property [1, 22], gives rise to a fundamentally
new concept: The ability to control the number of processing units employed by an
application at runtime. However, as of today, it is still an open research question,
which parallel applications can benefit from elasticity. Further, it is not well under-
stood according to which principles elasticity control mechanisms should be built,
which also largely depends on the class of parallel applications considered. Existing
research in this field mainly targets trivial parallel applications with simple commu-
nication and coordination patterns [61, 66, 69, 70].

In this work, we discuss the opportunities and challenges related to elasticity for
parallel tree search applications. Well-known meta-algorithms based on this paral-
lel processing technique include branch-and-bound and backtracking search. Their
computation and communication patterns are input-dependent, unstructured, and
evolving during the computation and thus their scaling behavior cannot be deter-
mined upfront [24, 77]. Traditionally, these applications have been operated in on-
site compute clusters, where a fixed number of processing units has to be defined
upon job submission [51]. However, selecting the number of processing units
upfront is a difficult task for parallel tree search applications: As their scaling behav-
ior is unknown and hard to predict, the performance in terms of efficiency is only
known after the execution has been completed. Selecting too many processing units
leads to tremendous waste of money and energy and might also prevent other jobs
from being executed while only little improvement in speedup is gained. On the
other hand, selecting too few processing units leads to very long execution time or
the application might even run into a time limit enforced by the environment [59],
which results in termination of the application.

In stark contrast to on-site compute clusters, elasticity in cloud environments
allows to explicitly control efficiency and the monetary costs of a computation by

1 https:// aws. amazon. com.
2 https:// azure. micro soft. com.
3 TOP500 list (June 2019): https:// www. top500. org/ lists/ 2019/ 06.

https://aws.amazon.com
https://azure.microsoft.com
https://www.top500.org/lists/2019/06

1 3

Equilibrium: an elasticity controller for parallel tree search… 9213

adapting the number of processing units at runtime according to measured runtime
metrics. We discuss this novel ability in detail and introduce an elasticity controller
that dynamically adapts the number of processing units according to user-defined
cost and efficiency thresholds. Our contributions are as follows:

• We describe the opportunities and challenges related to elasticity for parallel tree
search applications based on an in-depth analysis of their inherent characteris-
tics.

• We discuss how to construct an elasticity controller for parallel tree search appli-
cations that dynamically adapts the number of processing units according to
user-defined cost and efficiency thresholds.

• We provide an extensive evaluation of a prototypical elastic parallel system
architecture based on the presented concepts and report on experiments in an
OpenStack-based private cloud environment.

Our work is structured as follows. In Sect. 2, we describe the challenges related to
parallel processing in the cloud, the characteristics of parallel tree search applica-
tions as well as the predominantly used parallel execution model, elasticity in cloud
environments, and elastic parallel systems. In Sect. 3, we formulate the problem
statement addressed in this work. In Sect. 4, we discuss how parallel tree search
applications can benefit from elasticity as well as the related challenges. Based on
our findings, we present Equilibrium—an elasticity controller that enables effi-
ciency-based and cost-based elasticity control for parallel tree search applications in
Sect. 5. In Sect. 6, we describe the system architecture, which is employed in Sect. 7
to evaluate our approach. Moreover, we discuss the applicability of the presented
concepts in Sect. 8. Related work is analyzed in Sect. 9. Finally, Sect. 10 concludes
this work.

2 Fundamentals

First, we discuss the specifics of parallel processing in cloud environments. Sub-
sequently, we describe the characteristics of parallel tree search applications, i.e.,
applications that employ parallel tree search as the underlying parallel processing
technique, as well as the related task pool execution model. Then, we summarize
different approaches to elasticity control. Finally, we describe the characteristics of
elastic parallel systems.

2.1 Parallel processing in the cloud

Since hitting the power wall, parallel processing has been considered the ultimate
tool to speed up the computation of ever growing problems in science and indus-
try [8]. To solve those problems in parallel, traditionally, large clusters of com-
pute nodes, operated in on-site data centers, have been employed. However, the
consumption of compute resources changes drastically with the emerging cloud

 S. Kehrer, W. Blochinger

1 3

9214

computing paradigm: The cloud provides metered resources on-demand, which
have to be paid on a per-use basis. Consequently, the monetary costs of computa-
tions have to be explicitly considered per application run.

Figure 1 compares three different application runs with different numbers of
processing units for an (ideal) perfectly scalable and a (realistic) non-perfectly
scalable parallel system. The areas shown for each application run visualize the
numbers of processing units as well as how long they are employed for the com-
putation. As we can easily see, the areas shown for the perfectly scalable parallel
system all have the same size, whereas the sizes of the areas shown for the non-
perfectly scalable parallel system increase with an increasing number of process-
ing units. This can be explained by the overhead that increases with the number
of processing units [42]. In cloud environments, because one pays processing
units per time unit, both using more processing units and using processing units
for a longer period of time increase the monetary costs of a parallel computation.
How much overhead occurs for which number of processing units depends on the
specific scaling behavior of the parallel system considered.

As a result, whereas elasticity enables users to control the number of process-
ing units at runtime by means of an elasticity controller, a cost/efficiency-time
trade-off has to be considered for all but the ideal (perfectly scalable) case [42]:
Whereas adding more processing units effectively reduces the execution time,
a higher number of processing units also leads to higher monetary costs due to

Fig. 1 Whereas the monetary costs of a perfectly scalable parallel system (left) are independent of the
number of processing units employed, for parallel systems that are not perfectly scalable (right), the
monetary costs increase with the number of processing units [42]. The monetary costs of the computa-
tion are expressed as the sizes of the areas shown. Note that the sizes of the areas shown for the non-
perfectly scalable parallel system increase with an increasing number of processing units

1 3

Equilibrium: an elasticity controller for parallel tree search… 9215

a lower efficiency. This leads to two conflicting optimization goals: (1) Reduce
monetary costs and maximize efficiency versus (2) shorten the execution time.

2.2 Parallel tree search, algorithms and applications

In this work, we specifically investigate parallel tree search applications. Tree search
(also called tree traversal) refers to a processing technique for visiting nodes in a tree
structure. Many advanced algorithms including branch-and-bound and backtrack-
ing search rely on tree search as their underlying processing technique and typically
enumerate a large state space that is unknown a priori and unpredictable by nature.
Branch-and-bound and backtracking search are typically employed for solving enu-
meration, decision, and optimization problems—including boolean satisfiability,
constraint satisfaction, and graph search problems—with numerous applications in
artificial intelligence [39], biochemistry [71], electronic design automation [76],
finite geometry [5], model checking [9], automotive product configuration [75],
financial portfolio optimization [15], production planning and scheduling [67], as
well as fleet and vehicle scheduling [63].

Note that the search tree is not fully materialized in memory but dynamically
constructed at runtime as the computation evolves. The structure of the search tree
is highly influenced by branching and pruning operations (branch-and-bound) or
the backtracking mechanism (backtracking search), respectively. As a result, these
applications exhibit a high degree of irregularity.

The most common approach to make use of parallel processing is exploratory
parallelism. Therefore, different branches (subtrees) of the search tree are explored
in parallel by a set of (potentially distributed) processing units. By following a task-
parallel approach, subtrees are split from the search tree. Each task represents the
traversal of the subtree rooted at a specific node of the tree. This approach is also
visualized in Fig. 2. However, statically assigning tasks to processing units leads
to a load imbalance because the search tree is dynamically constructed and the size

Fig. 2 For parallelization, the
search tree is cut into tasks,
each capturing a subproblem
of the initial problem. Because
the search tree is dynamically
constructed and its size and
shape are not known a priori,
new tasks have to be dynami-
cally created by splitting an
unexplored subtree from the
search tree of an existing task

 S. Kehrer, W. Blochinger

1 3

9216

and shape of each subtree is highly influenced by pruning/backtracking mechanisms,
which depend on the input. Consequently, new tasks have to be dynamically cre-
ated by splitting an unexplored subtree from the search tree of an existing task thus
leading to dynamic task parallelism. Additionally, distributing the workload evenly
across a set of distributed processing units is a challenging task and requires dynamic
load balancing to avoid idling processing units. The irregularity introduced by prun-
ing/backtracking mechanisms is highly input problem-specific and thus the problem
size (defined by the shape and size of the search tree) and task sizes (defined by the
shape and size of a specific subtree) are hard to predict upfront. Consequently, their
computation and communication patterns are input-dependent, unstructured, and
evolving during the computation [24, 77]. The irregular nature of these applications
also constitutes the major source of parallel overhead and dramatically affects their
parallel performance and scaling behavior.

2.3 Task pool execution model

To deal with the characteristics of parallel tree search applications, the so-called task
pool model is typically used to manage tasks. A task pool is a data structure that can
be used to store dynamically generated tasks and to fetch these tasks later for pro-
cessing. Moreover, a task pool can be accessed by the load balancing mechanism to
fetch tasks that should be processed by another processing unit.

In general, a task pool might be implemented following a centralized or a distrib-
uted approach. A centralized task pool is maintained by a single processing unit and
accessible by all other processing units. On the other hand, a distributed implemen-
tation leads to multiple task pools, local to each processing unit, forming a distrib-
uted task pool. Whereas tasks have to be transferred over the network by following
a centralized approach, a distributed task pool enables local accesses and thus mini-
mizes communication overhead.

In this work, we specifically address the distributed task pool model that ena-
bles processing units to store generated tasks locally. Nevertheless, load balancing is
required to avoid processor idling. This can be accomplished by either sending tasks
to processing units (work pushing) or by fetching tasks from processing units (work
stealing) [83]. As the transfer of tasks leads to additional overhead, we favor work
stealing as communication is only required in this case if a processing unit runs idle.

2.4 Elasticity in cloud environments

Elasticity is often considered to be the most important cloud-specific property
because it enables applications to react to workload changes by dynamically increas-
ing/decreasing the number of processing units [1, 22]. As of today, elasticity is
mainly employed in the context of interactive (multi-tier) applications that process
(independent) user requests [33, 36, 54]. The entity that controls the number of pro-
cessing units, e.g., in form of virtual machines (VM), is called elasticity controller.

1 3

Equilibrium: an elasticity controller for parallel tree search… 9217

In the context of interactive applications, it provisions more compute resources as
the arrival rate of user requests increases and decommissions them as soon as the
arrival rate decreases. Most often, elasticity control is executed in an automated
manner and decides on scaling actions either by means of reactive or proactive
mechanisms [22]. Whereas reactive elasticity control employs user-defined thresh-
olds on monitored metrics to control the number of processing units, proactive elas-
ticity control uses forecasting to adapt a system according to its predicted behavior
in the future. Reactive or proactive mechanisms can also be combined to construct a
hybrid approach [10]. Detailed analyses of existing research on elasticity as well as
classifications of elasticity mechanisms are presented in [1, 22, 38, 52].

2.5 Elastic parallel systems

In this section, we define the term elastic parallel system and describe the funda-
mental differences to a parallel system based on [42].

A parallel system is traditionally defined as a combination of a parallel algorithm
(parallel application, programming model/middleware) and a parallel architecture
(hardware) [27]. Parallel systems are evaluated as a whole by means of performance
metrics such as parallel execution time Tpar , speedup S, and parallel efficiency E,
which are measured with a specific input I and under the assumption of a static num-
ber of processing units p.

Elastic parallel systems, on the other hand, cannot be evaluated under the assump-
tion of a static number of processing units. We define an elastic parallel system as
a parallel system accompanied by an elasticity controller that adapts the number of
processing units at runtime. Consequently, for elastic parallel systems, the number
of processing units is a function of time p(t) that is implicitly defined by the elastic-
ity controller.

We define elastic speedup Selastic and elastic efficiency Eelastic analogously to
speedup S and parallel efficiency E. However, whereas speedup and parallel effi-
ciency are functions of a fixed number of processing units p, elastic speedup and
elastic efficiency are functions of p(t):

where p̄ is the time-averaged number of processing units contributing to the
computation.

Selastic can be calculated by measuring Tseq and Tpar . Eelastic can be calcu-
lated according to Eq. 2 based on Selastic and p̄ . Note that, for a constant function
p(t) = p = p̄ , elastic speedup Selastic and elastic efficiency Eelastic are identical to
speedup S and parallel efficiency E.

(1)Selastic(I, p(t)) =
Tseq(I)

Tpar(I, p(t))

(2)Eelastic(I, p(t)) =
Selastic(I, p(t))

p̄
=

Tseq(I)

Tpar(I, p(t)) ⋅ p̄
,

 S. Kehrer, W. Blochinger

1 3

9218

Because elastic parallel systems are typically operated in cloud environments
where compute resources have to be paid, also the monetary costs have to be con-
sidered. We define the monetary costs to operate an elastic parallel system Cpar as
follows:

where c
�
 is the price for one processing unit per time unit. Note that c

�
 is a constant

that depends on the cloud offering selected. Technically, each processing unit can
be considered as a virtual machine (VM) with one vCPU and application-specific
resources (memory, disk, etc.).

3 Problem statement and motivation

Parallel tree search applications and corresponding meta-algorithms such as
branch-and-bound and backtracking search are often employed in an industrial
setting, where they are used, e.g., to optimize the makespan in production, the
composition of a financial portfolio, or the routes in a logistics network. In this
context, parallel processing has been used to speed up the computation by many
orders of magnitude. At the same time, the money spent for computations is a
scarce resource and thus has to be explicitly considered for economic reasons. As
a result, the cost/efficiency-time trade-off has to be considered, i.e., one should
only pay for more compute resources if the scaling behavior of the correspond-
ing parallel system allows to exploit these resources with a considerable level
of efficiency. Otherwise, the monetary costs for additional resources cannot be
transformed into an adequate speedup improvement.

However, parallel tree search applications are highly irregular. Thus, their exe-
cution time and scaling behavior are hard to predict. This also means that one
is not able to predict the parallel performance and monetary costs for solving a
specific problem with a specific number of processing units. As a result, stati-
cally selecting the number of processing units, which is required to submit a job
to a traditional compute cluster, can only be based on guesses, which are prone to
produce bad results. Additionally, compute clusters can only be accessed via job
schedulers that manage submitted jobs in (most often long) waiting queues and
thus do not provide on-demand access to compute resources. This renders static
resource provisioning in on-site compute clusters impractical.

In cloud environments, however, parallel tree search applications can benefit
from on-demand access to compute resources and elasticity by adapting the num-
ber of processing units at runtime. With such an approach, predicting the execu-
tion time and scaling behavior is not necessarily required. Instead, one can rely
on an elasticity controller that dynamically adapts the number of processing units
according to measured runtime metrics. However, as of today, it is not clear how
to select appropriate runtime metrics to consider the cost/efficiency-time trade-off
inherent to parallel systems (cf. Sect. 2.1). Moreover, there is a lack of concepts

(3)Cpar(I, p(t)) = Tpar(I, p(t)) ⋅ p̄ ⋅ c𝜋 ,

1 3

Equilibrium: an elasticity controller for parallel tree search… 9219

how to construct an elasticity controller, i.e., according to which principles pro-
cessing units have to be added to or removed from the parallel system at runtime.

In this work, we address this novel opportunity of elastic scaling as well as the
related challenges for parallel tree search applications. We discuss how to con-
struct an elasticity controller that dynamically adapts the number of processing
units according to user-defined cost and efficiency thresholds.

4 Opportunities and challenges of elasticity control for parallel tree
search

In this section, we analyze and discuss how elasticity can be beneficially employed
in the context of parallel tree search applications. Because the execution time of
these applications is unknown and hard to predict, the cost/efficiency-time trade-off
can only be addressed by controlling (1) the efficiency of a parallel computation and
(2) the associated monetary costs.

4.1 Efficiency‑based elasticity control

Traditionally, a static number of processing units has been employed for parallel
computations. As a result, an important question to be answered was “What is the
required input size for a given core count such that we maintain a constant, given
efficiency?” [74]. However, in the cloud, there is no given core count (number of
processing units). Instead, on-demand access to compute resources and elasticity
introduce the ability to freely select the number of processing units, which can be
even adapted at runtime. Thus, we rather have to answer the question: What is the
required number of processing units for a given input size such that we maintain a
constant, given efficiency? Note that this question is often far more practical com-
pared to the aforementioned one because one typically employs parallel processing
to speed up the computation of a particular (real-world) problem instead of adapting
the size of the processed problem according to a given number of processing units.
This especially holds in an industrial setting.

However, as discussed in Sect. 2.2, the scaling behavior of parallel tree search
applications depends on the processed problem and is hard to predict upfront.
Whereas this renders static resource provisioning impractical, we argue that, by
means of elastic scaling, one can continuously monitor a parallel system and adapt
the number of processing units to meet a user-defined target efficiency. Because the
scaling behavior of parallel tree search applications is hard to predict, the design
space of elasticity control mechanisms is restricted to reactive approaches that adapt
the number of processing units based on the current state of the system.

Unfortunately, elastic efficiency cannot be monitored at runtime because it is,
by definition, only known after the parallel computation has been completed. It can
thus only be used for ex-post performance evaluation of elastic parallel systems,
which requires that the sequential execution time Tseq and the parallel execution time

 S. Kehrer, W. Blochinger

1 3

9220

Tpar are known (cf. Eq. 2). As a result, the fundamental challenge that has to be
addressed is to find an appropriate runtime metric that approximates the elastic effi-
ciency, which can be employed for elasticity control. With such a runtime metric,
an elasticity controller is able to continuously compare the measured value and the
user-defined target efficiency, while bringing the measured value close to the target
efficiency by adapting the number of processing units. We address the challenge of
defining an appropriate runtime metric that approximates the elastic efficiency and
constructing a corresponding elasticity controller in Sect. 5.

4.2 Cost‑based elasticity control

First, we investigate on the monetary costs of executing a sequential tree search
application in a cloud environment. For a sequential application the execution time
is unknown a priori due to the algorithmic characteristics. If one processes an input
problem described by I with a sequential application in the cloud, the corresponding
monetary costs can be defined as:

where Tseq is the sequential execution time, W is the size of a problem described by
I, and c

�
 is the price for one processing unit per time unit. Note that the problem size

W is defined as the number of (basic) computational steps required to solve a prob-
lem with the best sequential algorithm [27]. Under the assumption that it takes unit
time to perform a single computational step, the problem size is equivalent to the
sequential execution time Tseq [27].

Because the monetary costs Cseq depend on Tseq , the total monetary costs Cseq to
process a problem described by I sequentially are also unknown a priori and hard to
predict. As a result, one cannot reason about the monetary costs to process a spe-
cific problem in absolute terms. However, there is a linear correlation between Cseq
and W: Given a pay-per-use billing model, the monetary costs to process a problem
described by I grow linearly with the problem size W. Consequently, whereas one
cannot reason about the costs in absolute terms, the costs per problem size remain
constant for sequential tree search applications. In the best case, this should also
hold for parallel tree search applications. In the following, we discuss how to meet a
user-defined target costs per problem size ratio for parallel tree search applications
by means of an elasticity controller. Note that this is infeasible with static resource
provisioning and requires elastic scaling at runtime.

Parallel tree search applications inherit all the characteristics of sequential tree
search. To complicate matters further, parallel processing adds a second challeng-
ing dimension: The computation and communication patterns of parallel tree search
applications are highly irregular and do not allow any form of prediction with
respect to the structure of executions and their scaling behavior. Because the size
of a processed problem as well as the corresponding scaling behavior is unknown a
priori, we cannot predict the number of processing units required and the resulting
monetary costs of the computation.

(4)Cseq(I) = Tseq(I) ⋅ c� = W(I) ⋅ c
�
,

1 3

Equilibrium: an elasticity controller for parallel tree search… 9221

The fundamental difference between sequential and parallel tree search is that
parallel processing leads to overhead in form of idle time, communication, and
excess computation. Because one has to explicitly consider the monetary costs of
parallel computations in cloud environments and processing units are paid per time
unit, in fact, one pays not only for efficiently employed compute resources but also
for the overhead that occurs (e.g., in form of idle time and excess computation).

A fundamental problem of constructing a corresponding elasticity controller is
that one does not know neither the actual problem size nor the total monetary costs
at runtime. To deal with this problem, it is shown that meeting a user-defined target
efficiency actually implies a specific costs per problem size ratio.

The monetary costs for parallel processing in the cloud can be described based on
Eq. 3. The costs per problem size ratio can be formalized as follows:

From Eqs. 2 and 5 follows:

Because c
�
 is a constant, meeting a user-defined target efficiency Eelastic across dif-

ferent problems (application runs) means that the monetary costs for parallel com-
putations increase linearly with the problem size of each problem. For instance, a
problem of double the size leads to doubled costs. Note that, under the assumption
that we are able to meet a user-defined target efficiency, this also holds for problems
with an unknown size. As a result, the monetary costs are bound relative to the prob-
lem size even if the actual problem size is not known a priori.

Whereas traditionally the number of processing units p has been considered to be
fixed across different problems and application runs, with this approach the costs per
problem size can be fixed across different problems and application runs. Also note
that the costs per problem size can be configured per application run. Thus, one can
also consider different priorities of problems to be solved. For instance, a problem
that is more important (has to be solved faster) can be run with a higher costs per
problem size ratio.

Technically, a user-defined target cost per problem size ratio can be considered
by translating it to the target efficiency required (cf. Eq. 6). Cost-based elasticity
control can thus be reduced to efficiency-based elasticity control by meeting the cor-
responding target efficiency required for the selected cost per problem size ratio.

4.3 Key findings and results

Efficiency-based and cost-based elasticity control basically correspond to two per-
spectives on the same optimization goal related to the cost/efficiency-time trade-off.
Because the execution time of parallel tree search applications is unknown and hard
to predict, one can only optimize for faster execution by selecting a lower target

(5)
Cpar(I, p(t))

W(I)
=

Cpar(I, p(t))

Tseq(I)
=

Tpar(I, p(t)) ⋅ p̄ ⋅ c𝜋

Tseq(I)

(6)
Cpar(I, p(t))

W(I)
=

c
�

Eelastic(I, p(t))

 S. Kehrer, W. Blochinger

1 3

9222

efficiency/higher costs per problem size ratio. Note that compared to traditional
approaches this is a huge step forward because one can effectively control the effi-
ciency of parallel computations as well as the associated monetary costs, which have
to be explicitly considered in cloud environments. We are thus able to avoid situa-
tions in which one spends money for inefficiently used compute resources.

From an energy perspective this also leads to an important benefit: Because cloud
users have to consider the monetary costs of their computation, they automatically
optimize the number of compute resources employed by only using more resources
when it is actually required to gain an improved speedup. As a result, compute
resources that spend most of their time in communication and excess computation
without gaining any considerable speedups are avoided, which also leads to lower
power consumption from a data center operator perspective.

As we have seen, efficiency-based elasticity control with a user-defined target
efficiency and cost-based elasticity control with a user-defined target cost per prob-
lem size ratio can be considered equivalent. As a result, the key issue of enabling
efficiency/cost-based elasticity control for parallel tree search applications is the
ability to meet a user-defined target efficiency based on runtime metrics (to evalu-
ate the cost/efficiency-time trade-off) and elastic scaling (to dynamically adapt the
number of processing units).

5 Equilibrium: an elasticity controller for parallel tree search

For both efficiency-based and cost-based elasticity control, finding an appropriate
runtime metric that approximates the elastic efficiency is required. In this section,
we show how to approximate the elastic efficiency at runtime and how to build an
elasticity controller based on this knowledge.

The core idea of our elasticity controller is to approximate the elastic efficiency
at runtime by monitoring the parallel system and to adapt the number of process-
ing units thus that the measured (approximated) efficiency corresponds to the user-
defined target efficiency. If the measured approximated efficiency is higher than the
user-defined target efficiency, the elasticity controller is able to provision more pro-
cessing units. If the measured approximated efficiency is lower than the user-defined
target efficiency, the elasticity controller has to decommission existing processing
units.

To approximate the elastic efficiency at runtime, we consider the effects of par-
allel overhead. Parallel overhead is inversely correlated to efficiency, i.e., a higher
overhead corresponds to a lower efficiency. The three sources of overhead are idle
time, communication, and excess computation. With respect to the task pool execu-
tion model (cf. Sect. 2.3), communication overhead is largely related to the transfe-
ral of tasks for load balancing purposes (task stealing). Further, load imbalance also
leads to idle time (when a processing unit waits for tasks to be received). Excess
computation includes all computations that are not performed by the sequential
application, e.g., task management.

1 3

Equilibrium: an elasticity controller for parallel tree search… 9223

All three sources of overhead finally affect the percentage of time a processing
unit allocates the CPU to do useful work. To enable measurements at runtime, we
define the workload efficiency in line with [42] as follows.

Definition 1 (Workload Efficiency) The workload efficiency WE is the percentage of
time in which all processing units execute essential (basic) computational steps, i.e.,
computational steps that are also executed by a corresponding sequential implemen-
tation, within a defined time interval.

When the selected time interval is Tpar , the workload efficiency approximates the
elastic efficiency and is called the total workload efficiency WEtotal in the follow-
ing. However, to enable elasticity control, shorter time intervals must be selected to
monitor the workload efficiency at runtime. Technically, one is able to instrument an
implementation of the task pool model to calculate the workload efficiency by com-
paring the CPU time of worker threads, which execute tasks, to the wall-clock time.
The selected time interval to measure the workload efficiency defines the monitoring
interval. The implementation of the proposed approach is described in more detail
for our prototype in Sect. 6.

Whereas we employ the workload efficiency to approximate the elastic effi-
ciency of parallel tree search applications, existing work considering other applica-
tion classes proposes the use of the CPU utilization metric based on which scaling
actions can be made [66, 68–70]. However, note that CPU utilization does not dis-
tinguish between essential and non-essential computations, with the latter stemming
from overhead in form of excess computation. As a result, the CPU utilization met-
ric cannot be used to approximate the elastic efficiency in our case.

Based on gathered monitoring data, the elasticity controller decides on how the
parallel system should be scaled horizontally, i.e., it adds or removes processing
units to/from the computation. In the following, we discuss our scaling strategy.

A well-known problem of elasticity controllers is oscillating effects [11], i.e.,
compute resources are continuously provisioned and decommissioned leading to
high overhead and, as a consequence, to low cost efficiency. We deal with this prob-
lem by stopping to add processing units after the target efficiency level has been
reached. By doing so, we make use of the fact that the overhead of parallel tree
search applications does not decrease as execution time increases. This can be
explained as follows: With an increasing execution time (1) more and more subtrees
of the search tree have already been evaluated; thus, it is harder to generate large
tasks and (2) pruning is typically more effective (e.g., due to better bounds); thus,
more subtrees can be pruned and do not have to be evaluated explicitly, which makes
the generation of large tasks even harder. Both effects lead to an increasing overhead
in form of communication (e.g., transfer of tasks), idle time (e.g., waiting for tasks
to be received), and excess computation (e.g., generating and managing more tasks).

 S. Kehrer, W. Blochinger

1 3

9224

To make use of this knowledge, our scaling strategy can be described as follows.
The corresponding algorithm is shown in Algorithm 1. The notation is partially
based on the asynchronous event-based composition model introduced in [18]. We
start the computation with one processing unit.4 At runtime, the elasticity controller
scales out by adding a configurable number of processing units, which we call the

4 Note that the scaling strategy can also be adapted to start with a user-defined number of processing
units. However, employing more processing units at the beginning of the computation can lead to addi-
tional overhead for applications with an unknown scaling behavior, e.g., if more processing units are
initially provisioned than actually required.

1 3

Equilibrium: an elasticity controller for parallel tree search… 9225

scale-out granularity sgout , to the computation. Each scale-out operation is followed
by a configurable threshold that depends on the time required to provision the pro-
cessing units, which we call the scale-out latency slout . Thereafter, the workload effi-
ciency is continuously measured and more scale-out operations might be triggered.
At some point in time, we reach the target efficiency level, i.e., the number of pro-
cessing units at which the measured workload efficiency is equal to (or lower than)
the user-defined target efficiency. At this point, the initialization phase is completed.
This means that after the target efficiency level is reached, no more processing units
are added for this application run. Technically, we consider the initialization phase
as completed when the target efficiency level is reached or fallen below in three con-
sequential monitoring intervals. After the completion of the initialization phase has
been detected, we scale in (by decommissioning processing units) as follows: When-
ever the workload efficiency falls below the target efficiency level, a configurable
number of processing units, which we call the scale-in granularity sgin , is removed
from the computation. Each scale-in operation is followed by a configurable thresh-
old that depends on the time required to decommission the processing units, which
we call the scale-in latency slin . Technically, we work with two thresholds: An upper
threshold Eupper that has to be exceeded to trigger scale-out operations and a lower
threshold Elower that has to be fallen below to trigger scale-in operations. The elas-
ticity controller automatically creates these thresholds from the user-defined target
efficiency Etarget , which is required as input.

6 Elastic parallel system architecture

In this section, we describe the elastic parallel system architecture used to evaluate
the proposed elasticity controller (cf. Fig. 3). The system architecture includes (1) an
OpenStack-based private cloud at the infrastructure layer, (2) a cloud-aware runtime
system based on the distributed task pool execution model, on top of which elastic
parallel applications can be built, and (3) an implemented prototype of our elastic-
ity controller. In the following, we explain all components and their relationships in
detail.

OpenStack5 is a widely used open-source platform for cloud computing that offers
Infrastructure-as-a-Service (IaaS) to customers. OpenStack provides a unified soft-
ware layer on top of potentially diverse hardware resources such as processing, stor-
age, and networking resources. On-demand self-service is enabled by a web-based
user interface, command-line tools, and RESTful web services. Note that because
we only require the capability to provision and decommission processing units (in
form of VMs) on demand, also any other cloud environment could be used.

Parallel applications have to be constructed according to cloud-specific design
principles to benefit from elasticity [43, 61]. To develop and operate parallel tree
search applications, we employ TASKWORK [46]—a Java-based cloud-aware
runtime system that enhances the distributed task pool execution model to support

5 https:// www. opens tack. org.

https://www.openstack.org

 S. Kehrer, W. Blochinger

1 3

9226

elastic scaling. It also provides a development framework to implement elastic paral-
lel applications. Based on the framework, application developers only mark poten-
tial parallelism in their programs while TASKWORK automatically manages the
dynamic adaptation. Adding new processing units to a parallel computation means
that the physical parallelism changes at runtime. To effectively exploit the available
physical parallelism, the degree of logical parallelism of the application has to fit
the physical parallelism given by the number of processing units to achieve maxi-
mum efficiency. In this context, the degree of logical parallelism can be defined as
the number of tasks. Consequently, two things are required to exploit newly added
processing units: (1) the generation of new tasks and (2) load balancing (to transfer
these tasks to the new processing units). As described in Sect. 2.3, the distributed
task pool model supports dynamic load balancing (e.g., in form of task stealing) by
design. On the other hand, the physical parallelism can also be adapted by remov-
ing processing units. In this case, task migration, i.e., the transferal of tasks to other
processing units, is required to release processing units that have been selected for
decommissioning. In summary, the runtime system automatically adapts the logical
parallelism by generating tasks whenever required (dynamic task generation), han-
dles load balancing and task migration to map the logical parallelism to the physi-
cal parallelism, and thus provides an elastically scalable parallel system. The appli-
cations employed for our evaluation, which have been implemented on top of the
described runtime system, are presented in Sect. 7.

The elasticity controller monitors the parallel system and adapts the number
of processing units (i.e., the physical parallelism) according to the principles dis-
cussed in Sect. 5. Technically, we implemented the monitoring of required met-
rics based on code-level instrumentation. Corresponding mechanisms are provided

Fig. 3 The elasticity controller monitors the parallel system and adapts the physical parallelism at runt-
ime. The runtime system transparently adapts the logical parallelism by generating tasks whenever
required, handles load balancing and task migration to map the logical parallelism to the physical paral-
lelism, and thus provides an elastically scalable parallel system

1 3

Equilibrium: an elasticity controller for parallel tree search… 9227

by the management interface of the Java Virtual Machine (JVM) thread system in
form of the ThreadMXBean, which allows the measurement of a thread’s CPU
time. Because TASKWORK employs one so-called worker thread per processing
unit, the CPU time of each worker thread is measured to determine the workload
efficiency (as defined in Sect. 5). Therefore, the measured CPU time of a worker
thread is compared to the wall-clock time in order to calculate the percentage of
time in which a processing unit executes essential (basic) computational steps. Col-
lection and aggregation of metrics are performed by distributed monitoring agents
and a global aggregator that supplies the elasticity controller with monitoring data.
The monitoring interval can be specified according to application-specific require-
ments. It is worth mentioning that code-level instrumentation has been integrated at
the runtime system level and thus has not to be dealt with by application develop-
ers, which fosters the usability of our approach. Scaling operations, i.e., provisioning
and decommissioning of VMs, are performed via OpenStack’s self-service API.

7 Experimental evaluation

To evaluate the proposed elasticity control mechanism, we report on several experi-
ments that consider different parallel tree search applications. First, we describe our
evaluation method in detail. Second, we describe the parallel tree search applications
employed. Finally, we report on our measurements and discuss the results obtained.

Setup Processing units are operated on CentOS 7 virtual machines (VM) with
1 vCPU clocked at 2.6 GHz, 2 GB RAM, and 40 GB disk. All VMs are deployed
in our OpenStack-based cloud environment. The underlying hardware consists of
identical servers, each equipped with two Intel Xeon E5-2650v2 CPUs and 128 GB
RAM. The virtual network connecting tenant VMs is operated on a 10 Gbit/s physi-
cal Ethernet network.

7.1 Evaluation method

Our goal is to show that the proposed elasticity controller is able to meet a user-
defined target efficiency for different input problems, for which the resulting scaling
behavior of the parallel system is unknown a priori. Therefore, we measure the per-
formance of several example problems with different degrees of irregularity (leading
to a different scaling behavior) and discuss the results obtained. The applications
used are described in Sect. 7.2. For each application run, the parallel execution time
Tpar , the time-averaged number of processing units employed p̄ , and the total work-
load efficiency WEtotal are measured. Moreover, Selastic and Eelastic are determined.
Based on the values, we calculated three important metrics to evaluate the elasticity
controller: (1) The percentage error between the determined elastic efficiency Eelastic
and the target elastic efficiency Etarget , which quantifies the ability of the elasticity
controller to meet the target elastic efficiency:

 S. Kehrer, W. Blochinger

1 3

9228

(2) The percentage error between the measured workload efficiency WEtotal and the
target elastic efficiency Etarget , which quantifies the quality of the scaling strategy:

(3) The percentage error between the measured workload efficiency WEtotal and the
determined elastic efficiency Eelastic , which quantifies the approximation of the elas-
tic efficiency with the workload efficiency by means of our code instrumentation and
monitoring approach:

To evaluate the reliability of our implemented elasticity controller, we also com-
pare different application runs for the same input problem in terms of the scaling
actions executed. Finally, we compare the performance of the elastic parallel system
with the performance of the same parallel system employing a static number of pro-
cessing units to assess the overhead related to the dynamic adaptation of processing
units.

To deal with the platform-specific provisioning overhead of compute resources,
we measure the performance of the elastic parallel system with respect to two sce-
narios: In the first scenario, VMs are already running and only have to be added to
the computation by deploying and starting the runtime system described in Sect. 6.
In the second scenario, the VMs have to be started before the runtime system can be
deployed. It thus includes the VM provisioning overhead. Note that the first scenario
enables the systematic evaluation of the presented elasticity controller independent
of platform-specific effects. For instance, different technologies can be used in this
context such as VMs or containers, which largely affect the provisioning time.

Finally, we discuss the cost implications and show (based on the experimental
results) that meeting a specific target efficiency, as a consequence, leads to the same
costs per problem size ratio for all processed problem instances.

7.2 Parallel tree search applications

Evaluating parallel tree search applications is a hard task because for many applica-
tions work anomalies occur [26, 49, 50]. This means that the amount of work signif-
icantly differs between sequential and parallel processing as well as across parallel
application runs. This effect results from a dynamically changing shape of the search
tree due to pruning (cf. Sect. 2.2) combined with simultaneous knowledge sharing
(such as bounds [25] or lemmas [72]) at runtime. As a result, the expanded search
tree differs significantly in its size and shape, which renders a systematic evaluation
(by measuring multiple parallel runs) infeasible. To deal with this issue, we employ

(7)�overall =
|Eelastic − Etarget|

Etarget

⋅ 100

(8)�scale =
|WEtotal − Etarget|

Etarget

⋅ 100

(9)�approx =
|WEtotal − Eelastic|

Eelastic

⋅ 100

1 3

Equilibrium: an elasticity controller for parallel tree search… 9229

two benchmark applications to systematically evaluate our elasticity controller. We
describe the employed benchmark applications in the following.

Unbalanced Tree Search (UTS) Unbalanced Tree Search [56] is a commonly
employed benchmark to evaluate task pool architectures for parallel tree search (for
examples see [5, 17, 58]). It can be used to construct synthetic irregular workloads
that do not suffer from work anomalies and thus support a systematic evaluation.
UTS allows the construction of workloads with different tree shapes and sizes as
well as imbalances by means of a small set of parameters. Each node in the tree
is represented by a 20-byte descriptor that is used as random variable. Based on a
node’s descriptor and the selected tree type, the number of children is determined
at runtime. Each child node’s descriptor is generated by an SHA-1 hash function
using the parent descriptor and a child index as input. Consequently, the generation
process is reproducible due to the determinism of the underlying hash function. For
our measurements, we employ several instances of the geometric tree type, which
mimics iterative deepening depth-first search, a commonly applied technique to deal
with intractable search spaces, and has also been extensively used in related work [5,
17, 58]. The 20-byte descriptor of the root node is initialized with a random seed r.
The geometric tree type’s branching factor follows a geometric distribution with an
expected value b. An additional parameter d specifies the maximum depth, beyond
which the tree is not expanded further. Table 1 shows the UTS instances employed
for our measurements.

Generic State Space Search Application (GSSSA) GSSSA [34] has been intro-
duced to address the problem that one cannot control the degree of irregularity of
UTS, which has a direct influence on an application’s scaling behavior. To deal with
this problem, GSSSA explicitly models the tree search workload as a regular and an
irregular fraction, which together define the degree of irregularity. Therefore, the
root node has two children: One for the regular workload fraction, which performs
wr random SHA-1 hash calculations, and one for the irregular workload fraction,
which performs wi random SHA-1 hash calculations. Two child nodes are gener-
ated by splitting the workload fraction of each parent node. For the regular work-
load fraction, each child node receives half of the parent’s workload fraction. For
the irregular fraction, the parent’s workload fraction is distributed across the child
nodes according to a specific balancing factor b. Finally, a granularity parameter g
defines the smallest workload fraction allowed (which cannot be split further), i.e.,
the number of random SHA-1 hash calculations processed as a single atomic opera-
tion. The distribution of regular and irregular workload fractions across all process-
ing units is ensured by means of parallel execution (with randomized task stealing).

Table 1 Unbalanced tree search (UTS) instances

Problem instance Random seed r Expected
value b

Depth d Tree size [# of nodes]

UTS
1

19 4 17 67688164184
UTS

2
19 4 18 270751679750

UTS
3

29 5 16 195676745034

 S. Kehrer, W. Blochinger

1 3

9230

Table 2 shows the GSSSA instances taken from [34], which we employed for our
measurements.

7.3 Experiments and results

To show that meeting a specific workload efficiency effectively approximates
the elastic efficiency, we determine the performance of three application runs for
each UTS instance depicted in Table 1. For our experimental evaluation, we con-
figured the elasticity controller with a target efficiency of 95.0%. The results of
our measurements (in line with the evaluation method described in Sect. 7.1) are
shown in Table 3 and discussed in the following.

As depicted in Table 3, our elasticity controller is able to meet the target elastic
efficiency of all three UTS instances by dynamically adapting the number of pro-
cessing units, with only small percentage errors (𝛿overall < 3% in all cases). More-
over, we can see that the time-averaged number of processing units employed by
the elastic parallel system p̄ is similar for all three UTS instances. This implies
that their scaling behavior is also similar.

To show that the elasticity controller is also able to control the elastic efficiency
for input problems that lead to a different scaling behavior of the parallel system,

Table 2 Generic state space search application (GSSSA) instances

Problem instance Regular fraction w
r

Irregular fraction w
i

Balancing factor b Granularity g

GSSSA
IW

5000000000 15000000000 0.001 1000000
GSSSA

IS
1000000000 19000000000 0.0002 1000000

GSSSA
C

0 20000000000 0 1000000

Table 3 Elasticity measurements for unbalanced tree search (UTS) instances without VM provisioning

Target efficiency: UTS
1

 (r = 19; b = 4; d = 17)
UTS

2

 (r = 19; b = 4; d = 18)
UTS

3

 (r = 29; b = 5; d = 16)

95.0% Run 1 Run 2 Run 3 Run 1 Run 2 Run 3 Run 1 Run 2 Run 3

Tpar (s) 783.06 804.08 818.85 3068.90 3049.49 3024.99 2001.77 1789.80 1766.99
p̄ (#) 10.50 10.29 10.00 10.70 10.86 10.83 9.66 10.61 10.78
Selastic (#) 10.09 9.83 9.65 10.08 10.15 10.23 8.81 9.85 9.98
Eelastic (%) 96.10 95.46 96.49 94.20 93.44 94.50 91.13 92.84 92.59
WEtotal (%) 94.52 94.48 94.81 95.40 95.32 95.42 95.14 95.13 94.67
AVG(Eelastic) (%) 96.02 94.05 92.19
AVG(WEtotal) (%) 94.60 95.38 94.98
�overall (%) 1.07 1.00 2.96
�scale (%) 0.42 0.40 0.02
�approx (%) 1.47 1.42 3.03

1 3

Equilibrium: an elasticity controller for parallel tree search… 9231

we employ the GSSSA instances shown in Table 2. As described in Sect. 7.2,
GSSSA allows to explicitly control the degree of irregularity of a problem
instance, which has a direct influence on the scaling behavior of the parallel sys-
tem. We discuss the results of our elasticity measurements in the following.

Table 4 shows the elasticity measurements for the three GSSSA instances
shown in Table 2. The structure of the table is identical to the one of Table 3.
Note that, due to the limited scaling behavior of the GSSSA instances, the elas-
ticity controller was not able to add more than one processing unit while meet-
ing a target efficiency of 95.0%. To enable the evaluation, we thus configured the
elasticity controller with a target efficiency of 80.0% for processing the GSSSA
instances. As we can see in Table 4, the elasticity controller adapted the number
of processing units according to the target efficiency, with only small percentage
errors for GSSSAIW and GSSSAC . For GSSSAIS , however, the percentage error
between the determined elastic efficiency Eelastic and the target elastic efficiency
Etarget is slightly higher.

Also note that the time-averaged number of processing units employed by the
elastic parallel system p̄ is different for all three GSSSA instances. For GSSSAIW ,
∼ 27 processing units have been employed on average. For GSSSAC , ∼ 17 pro-
cessing units have been employed on average. For GSSSAIS , ∼ 21 processing
units have been employed on average. This implies that their scaling behavior is
also different, with the scaling behavior of GSSSAIW being better than the one
of GSSSAIS and the scaling behavior of GSSSAIS being better than the one of
GSSSAC . To show that this is correct, we analyzed the scaling behavior of all
three GSSSA instances by measuring the performance in terms of speedup and
efficiency for different settings (with a static number of processing units per set-
ting). The results of these scalability measurements are depicted in Fig. 4.

Reliability of elasticity control To evaluate the reliability of our elasticity control-
ler, we compare three different application runs for the same input problem with
respect to the scaling actions executed. For this purpose, we selected the GSSSAIS

Table 4 Elasticity measurements for generic state space search application (GSSSA) instances without
VM provisioning

Target efficiency GSSSA
C

GSSSA
IW

GSSSA
IS

80.0% Run 1 Run 2 Run 3 Run 1 Run 2 Run 3 Run 1 Run 2 Run 3

Tpar (s) 752.85 747.86 772.60 488.29 498.79 472.17 647.47 636.16 649.81
p̄ (#) 17.20 17.61 17.31 27.57 25.96 28.08 20.63 21.14 20.54
Selastic (#) 13.51 13.60 13.16 21.28 20.83 22.01 15.18 15.45 15.12
Eelastic (%) 78.55 77.22 76.03 77.18 80.23 78.36 73.59 73.07 73.62
WEtotal (%) 79.24 79.32 79.06 79.84 79.64 79.85 79.67 79.29 79.56
AVG(Eelastic) (%) 77.27 78.59 73.42
AVG(WEtotal) (%) 79.20 79.78 79.51
�overall (%) 3.42 1.76 8.22
�scale (%) 0.99 0.28 0.62
�approx (%) 2.51 1.51 8.28

 S. Kehrer, W. Blochinger

1 3

9232

instance because it requires the highest number of dynamic adaptations. Figure 5
shows the number of processing units employed as a function of time. For all three
application runs, the elasticity controller shows a similar behavior. As shown in the
figure, at the end of the computation processing units are decommissioned by the
elasticity controller. This is related to overhead in form of load balancing (transferal
of tasks) and idle time (when a processing unit waits for tasks), which grows as the
execution time increases.

Dynamic adaptation overhead The dynamic adaptation of the number of process-
ing units results in additional runtime overhead, which we assess by comparing the
performance measurements of our elasticity experiments for the GSSSA instances
(cf. Table 4) with the performance measured for a static setting with a number of
processing units close to p̄ . The results obtained are depicted in Fig. 6 and discussed
in the following. Whereas we achieved an elastic efficiency of 78.59% on average

Fig. 4 Scaling behavior of GSSSA instances

Fig. 5 Comparison of the three application runs with the GSSSA
IS

 problem instance shown in Table 4
with respect to the processing units employed over time. The figure visualizes p(t) for each application
run

1 3

Equilibrium: an elasticity controller for parallel tree search… 9233

for GSSSAIW with ∼ 27 processing units in the elastic setting, we measured a paral-
lel efficiency of 80.00% for a static setting with p = 27 . For GSSSAIS , we achieved
an elastic efficiency of 73.42% on average with ∼ 21 processing units in the elastic
setting and measured a parallel efficiency of 74.50% for a static setting with p = 21 .
For GSSSAC , we achieved an elastic efficiency of 77.27% on average with ∼ 17 pro-
cessing units in the elastic setting and measured a parallel efficiency of 77.62% for
a static setting with p = 17 . The dynamic adaptation required to control the elas-
tic efficiency thus only imposes minor overhead. This also emphasizes that parallel
tree search applications are ideal candidates for cloud adoption because they are less
sensitive to dynamic adaptations when compared to data-parallel, tightly coupled
applications. Note that controlling the efficiency of parallel tree search applications
is infeasible with static resource provisioning. This means that static resource pro-
visioning cannot be employed because we do not know the required number of pro-
cessing units a priori (cf. Sect. 3).

Elastic scaling with provisioning overhead Up to this point, we neglected the
overhead of VM provisioning and decommissioning in our elasticity measurements.
For the measurements shown in Tables 3 and 4, we employed running VMs as pro-
cessing units that are only added to/removed from the computation by starting the
runtime system on the respective VM. This approach enables us to evaluate the elas-
ticity controller independently of the cloud environment, i.e., without effects from
the underlying infrastructure (such as heterogeneous VM provisioning latencies). In
addition, we also executed the elasticity experiments including the VM provisioning
overhead to show that our elasticity controller also works in this context. Table 5
shows the corresponding measurements for the three GSSSA instances shown in
Table 2. The results obtained are similar to the ones shown in Table 4 and discussed
before. Specifically, the scaling strategy seems not to be affected by the VM provi-
sioning overhead. The percentage error between the measured workload efficiency
WEtotal and the determined elastic efficiency Eelastic stemming from instrumentation

Fig. 6 Comparison of the performance measured in the elasticity experiments (cf. Table 4) and the per-
formance of the same parallel system employing a static number of processing units

 S. Kehrer, W. Blochinger

1 3

9234

and monitoring is only slightly higher. For the sake of brevity, we do not report on
the results observed for the UTS instances, which are very similar.

Cost implications As we have shown in Sect. 4, efficiency-based elasticity control
with a target efficiency and cost-based elasticity control with a target cost per prob-
lem size ratio can be considered equivalent. In the following, we show that meeting
a target efficiency, as a consequence, results in the same costs per problem size ratio
for all processed problem instances. Therefore, we calculated the costs per problem
size for all UTS and GSSSA instances based on Eq. 5 and our measurements. We
assume a price for one processing unit per time unit c

�
= $0.000017∕s . This value

was taken from Google Compute Engine,6 where, at the time of writing, a VM with
1 vCPU costs $0.0612∕h = $0.000017∕s7 (region europe-west3).

The costs per problem size ratios are shown in Fig. 7 for all UTS instances and
Fig. 8 for all GSSSA instances. As we can see, the costs per problem size for all
UTS instances are close to each other. The same holds for the GSSSA instances.
However, the costs per problem size of the GSSSA instances are on average higher
than the costs per problem size of the UTS instances. This results from the differ-
ent target efficiencies used in the experiments: A lower target efficiency leads to
a higher costs per problem size ratio as discussed in Sect. 4. The horizontal line
shown in both figures represents the smallest achievable costs per problem size ratio,
which is equal to c

�
 and corresponds to the costs per problem size to process these

problems sequentially.

Table 5 Elasticity measurements for generic state space search application (GSSSA) instances with VM
provisioning

Target efficiency GSSSA
C

GSSSA
IW

GSSSA
IS

80.0% Run 1 Run 2 Run 3 Run 1 Run 2 Run 3 Run 1 Run 2 Run 3

Tpar (s) 888.58 884.87 831.49 631.97 627.33 624.77 705.17 708.29 677.14
p̄ (#) 14.18 15.59 15.98 20.72 21.01 20.80 18.87 18.62 19.86
Selastic (#) 11.44 11.49 12.23 16.44 16.56 16.63 13.94 13.88 14.51
Eelastic (%) 80.69 73.72 76.52 79.34 78.82 79.97 73.85 74.52 73.08
WEtotal (%) 81.61 80.05 80.29 82.32 82.51 83.06 80.65 82.63 80.07
AVG(Eelastic) (%) 76.97 79.37 73.81
AVG(WEtotal) (%) 80.65 82.63 81.12
�overall (%) 3.78 0.78 7.73
�scale (%) 0.81 3.29 1.40
�approx (%) 4.77 4.10 9.89

6 https:// cloud. google. com/ compu te.
7 Google Compute Engine provides a per-second billing model.

https://cloud.google.com/compute

1 3

Equilibrium: an elasticity controller for parallel tree search… 9235

8 Discussion

Our elasticity controller basically shows how to handle the fundamental cost/effi-
ciency-time trade-off (cf. Sect. 2.1) by adapting the number of processing units
according to user-defined specifications. As we have seen (cf. Sect. 4), typical paral-
lel tree search applications limit the mechanisms that can be employed by an elas-
ticity controller to handle the cost/efficiency-time trade-off due to their algorithmic
characteristics. Basically, this results from the use of highly problem-specific heuris-
tics to prune the search space. Because their execution time and scaling behavior are
hard to predict, in general, hard limits on the execution time cannot be considered.

Fig. 7 Comparison of the costs per problem size of all UTS instances shown in Table 1, which are calcu-
lated based on Eq. 5 and our measurements

Fig. 8 Comparison of the costs per problem size of all GSSSA instances shown in Table 2, which are
calculated based on Eq. 5 and our measurements

 S. Kehrer, W. Blochinger

1 3

9236

Similarly, cost-based elasticity control cannot be based on a fixed monetary budget;
one can only control the costs per problem size ratio. Nevertheless, it is possible to
enforce both an absolute limit on the execution time and a fixed monetary budget in
application scenarios, where parallel tree search applications are used to solve opti-
mization problems, while also using the concepts presented in this work to ensure
that compute resources are only employed when they can be exploited with a con-
siderable level of efficiency. This can be accomplished by additionally considering
the quality of results.

For enforcing a hard limit on the execution time, one is able to define the specific
time limit as a configuration parameter of the elasticity controller, which simply ter-
minates the computation and decommissions the compute resources employed when
the given time limit is exceeded. This can be easily implemented by monitoring the
wall-clock time and comparing it to the given time limit. When the time limit is
exceeded, the currently known best solution of the optimization problem is returned
to the user,8 which is able to proceed with this result. Even though this result might
not be the global optimum, one is thus able to proceed without delay thus trading
solution quality for shorter execution time. To enforce a fixed monetary budget, a
similar strategy can be used. In this case, however, the elasticity controller has to
be configured with the monetary budget and terminates the computation when the
money already spent for compute resources exceeds the fixed budget.

Trading the quality of results for execution time or monetary costs is specifically
valuable in an industrial setting, where users are sensitive to both time and costs
depending on the context. However, note that such an approach is only applicable
for algorithms that are designed to produce a sequence of (approximate) intermedi-
ate results thus that, given a fixed monetary budget or execution time limit, a user is
still able to proceed with a usable result after terminating the computation [29]. Par-
allel tree search applications that are designed to solve an optimization problem con-
tinuously refine the result by following a systematic search process and thus allow
for these trade-offs. In both cases described above, the concepts presented in this
work can be used in addition to these absolute limits to avoid situations, in which
money is spent for inefficiently exploited compute resources.

9 Related work

We have identified different fields of related work: (1) Existing approaches to
make parallel applications cloud-aware, (2) concepts related to elasticity control
for parallel systems, (3) the use of malleability as it has been considered in clus-
ter computing, and (4) related work with respect to parallel tree search applica-
tions. Related work that addresses HPC in cloud environments is also discussed
in more detail in [42, 45, 55].

8 With the user being either a human or another system/service.

1 3

Equilibrium: an elasticity controller for parallel tree search… 9237

9.1 Cloud‑aware parallel applications

In the past, researchers mainly investigated on how to make cloud environments HPC-
aware [53, 85]. However, we can also see a growing interest to make parallel applica-
tions cloud-aware [30–32, 43, 61].

The authors of [32] compare the performance of different parallel applications exe-
cuted in a cloud environment. Several strategies to make parallel applications cloud-
aware are presented. One way is to overlap computation and communication by using
asynchronous execution models rather than SPMD-based synchronous communication
models. Moreover, overdecomposition and controlling the size of tasks/objects can
be used to deal with heterogeneous network performance and to avoid idling process-
ing units. Basically, to select the optimal task size, one has to balance various sources
of overhead. The runtime system that we employed (cf. Sect. 6) is based on the dis-
tributed task pool execution model and implements load balancing with a work steal-
ing approach. It thus overlaps computation and communication by design. Addition-
ally, it controls the number of tasks by generating tasks only when required instead of
overdecomposition.

The authors of [31] recognized that heterogeneous processing speeds in cloud envi-
ronments specifically affect tightly coupled parallel applications. They make use of a
dynamic load balancer to deal with load imbalance across vCPUs. In this work, also
overdecomposition is used, whereas our runtime system actively controls the logi-
cal parallelism of an application to minimize task management overhead. However,
it largely depends on the application class considered which approach yields better
results.

The Work Queue framework [16] is used in [61] to implement parallel applications
for cloud environments. The Work Queue framework is designed for scientific comput-
ing and based on a master/worker architecture. The number of workers can be dynami-
cally adapted at runtime to enable elastic scaling. The authors discuss in detail how to
convert a parallel application for replica exchange molecular dynamics (REMD) to an
elastic application. Several other applications are discussed by the authors in [62].

The authors of [19] discuss opportunities and challenges related to cloud comput-
ing with a specific focus on applications from the bioinformatics domain. Moreover,
elasticHPC, a software package to ease the use of cloud resources for bioinformatics
applications, is presented.

The authors of [48] investigate on elastic parallel processing with serverless com-
puting platforms. They describe a novel approach to parallel cloud programming with
so-called serverless skeletons, which capture common parallelism patterns and provide
abstract implementations of these patterns for serverless computing platforms to ease
development effort. A prototypical development and runtime framework is described
and evaluated with exemplary parallel applications.

 S. Kehrer, W. Blochinger

1 3

9238

9.2 Elasticity control for parallel systems

In [69], a reactive elasticity controller for iterative-parallel applications is described.
The presented approach can be used to transform existing MPMD9-based MPI-2
applications with a master/worker architecture into elastic parallel applications. As a
result, elasticity can be employed by adapting the number of processing units at the
beginning of each iteration based on defined thresholds. Technically, the dynamic
adaptation is based on MPI-2, which features dynamic process management [28].
The described elasticity controller uses upper and lower CPU utilization thresholds
to decide on the number of processing units required. As discussed in Sect. 5, by
employing the CPU utilization metric we cannot distinguish between essential and
non-essential computations and thus the cost/efficiency-time trade-off cannot be
considered.

The authors of [65] leverage elasticity for MPI-based applications by stopping
(along with check pointing) and relaunching the application with a new resource
configuration. The authors address MPI-based iterative-parallel applications. The
described elasticity controller is designed to optimize the desired execution time,
which is estimated based on the number of iterations and the average execution time
of an iteration. The underlying assumption is that the amount of work per iteration
is constant. Scaling decisions are made by comparing the measured average iteration
time with the required iteration time to complete within the user-defined execution
time: If the average iteration time is below the required iteration time, processing
units are added. Otherwise, processing units are removed. However, this model is
not applicable to parallel tree search applications because they cannot be modeled as
iterative MPI-based applications. Furthermore, stopping and relaunching the appli-
cation imposes large overheads.

The authors of [60] address applications based on the so-called split-map-merge
paradigm, which includes bag-of-tasks, bulk synchronous parallel, and Map-Reduce
applications. They present an application model for these applications that enables
a model-based prediction of the optimal number of processing units—optimal with
respect to the cost-time product, which the authors employ as objective function to
evaluate the cost/efficiency-time trade-off. Information on the execution environ-
ment (e.g., processing speed, network bandwidth) is obtained by measuring sam-
ple workloads. However, model-based prediction cannot be used in the context
of parallel tree search applications due to the algorithmic characteristics of these
applications.

In [34], an elasticity control mechanism based on minimization of the monetary
costs is presented. The authors also address parallel search applications and discuss
the two conflicting objectives of fast processing and low monetary costs finally lead-
ing to a multi-objective optimization problem and Pareto optimal solutions, which
avoids automated decision-making with respect to the number of processing units.
To deal with this problem, the authors employ the concept of opportunity costs
to convert the underlying objective functions into a single aggregated objective

9 Multiple Program Multiple Data.

1 3

Equilibrium: an elasticity controller for parallel tree search… 9239

function, thus allowing cost-based elasticity control. The presented cost model is
also employed in [35]. Note that one has to adopt the concept of opportunity costs
to make use of the presented optimization technique. We present an alternative
approach to adapt the number of processing units according to a user-defined target
efficiency or costs per problem size ratio.

The authors of [64] discuss the trade-off between the monetary costs of a paral-
lel computation and the quality of the results obtained. Examples of applications for
which the quality of results can be traded for the monetary costs of the computation
include video and image processing as well as scientific simulations. A measure-
ment-driven analytical modeling approach called CELIA is described, which allows
to determine the cost-time optimal cloud configurations given a time deadline and a
cost budget. Their approach also employs predictions based on an application model
that is parameterized using previous measurement results. Again, note that such an
approach cannot be used in the context of parallel tree search applications because
one cannot derive information on the resource requirements of a new problem from
a previously measured one. The authors state that they focus only on highly par-
allelizable problems and thus do not model communication overhead. As a result,
non-perfectly scalable applications and the cost/efficiency-time trade-off that arises
in this context are not considered.

9.3 Malleability in cluster computing

The idea of adapting the number of processing units at runtime is not a fundamen-
tally new concept. Such mechanisms have already been discussed and researched
in the field of cluster computing. In this context, malleability is considered to be
the ability of a scheduled job to deal with a changing number of processing units
at runtime [21]. However, this concept differs from elasticity with respect to a fun-
damental aspect: The instance that controls the number of processing units at runt-
ime. In cluster computing, the job scheduler has the ability to control the number of
processing units according to cluster-wide (global) optimization goals. Different job
scheduling policies have been proposed in this context [78, 79]. In cloud comput-
ing, on the other hand, the cloud customer controls the number of processing units
by means of an application-specific elasticity controller. Note that these approaches
are fundamentally different in that the cloud provider (infrastructure operator) and
the cloud customer (application owner) are two different parties with conflicting
optimization goals: The cloud provider optimizes for resource utilization, whereas
the cloud customer has to consider efficiency because he also pays for inefficiently
exploited compute resources.

The authors of [37] present a cluster scheduling policy that considers the scaling
behavior of applications to increase the efficiency. Therefore, they model the scal-
ing behavior based on Amdahl’s Law [3] with the goal to maximize the sum of the
speedups of all jobs. However, the authors also state that this model largely depends
on the quality of speedup estimations. As described earlier, such a model cannot be
applied to parallel tree search applications and thus their scaling behavior is hard to

 S. Kehrer, W. Blochinger

1 3

9240

predict. Moreover, whereas this approach enables optimization from a cluster opera-
tor perspective considering all jobs, we focus on application-specific optimization in
cloud environments from a cloud customer perspective.

9.4 Parallel tree search

In this work, we specifically address parallel tree search applications. These appli-
cations have extensively been considered by related work, discussing their execu-
tion with respect to different environments including clusters [6, 7, 12, 13] and grids
[4]. In this context, the characteristics of parallel tree search applications have been
studied in detail and the task pool model is commonly used as a starting point for
environment-specific optimizations. In [57], a skeleton for branch-and-bound appli-
cations is presented, which supports parallel execution based on MPI. The authors
of [17] present a distributed task pool implementation based on the parallel pro-
gramming language X10, which follows the Partitioned Global Address Space
(PGAS) programming model. The authors of [72] discuss the challenges related to
parallel tree search in the context of a distributed parallel satisfiability solver. The
authors of [7] discuss the problem of replicable parallel performance of branch-and-
bound applications and propose a skeleton that preserves the search order heuris-
tic by distributing work in an ordered manner. COHESION is a microkernel-based
platform for desktop grid computing [14, 73] that has been designed for irregularly
structured task-parallel problems. It addresses the challenges of desktop grids such
as limited connectivity and control. A specific work stealing algorithm that selects
victims based on the measured network link latency is presented in [82]. Processing
units reachable with a lower network latency are preferred for stealing operations.
In this work, we address cloud environments and show how elasticity can be benefi-
cially employed in the context of parallel tree search. More specifically, we present
an approach to control the number of processing units at runtime according to user-
defined cost and efficiency thresholds.

10 Conclusion and future work

In this work, we discuss the opportunities related to elasticity for parallel tree search
applications, which specifically suffer from static resource provisioning leading to
huge waste of money and energy because their scaling behavior is hard to predict.
We discuss how to monitor the scaling behavior of the corresponding parallel sys-
tem at runtime and present a reactive elasticity controller that is able to dynami-
cally adapt the number of processing units according to a user-defined target effi-
ciency/costs per problem size ratio. We recognized that a detailed understanding of
an application’s scaling behavior is a fundamental building block upon which elas-
ticity control mechanisms have to be constructed. Whereas we specifically address
the distributed task pool model, our concepts can also be employed for centralized
task pool architectures because the major sources of overhead are the same. We
plan to evaluate this more thoroughly in the future. We also investigate on container

1 3

Equilibrium: an elasticity controller for parallel tree search… 9241

virtualization for deployment automation [40, 41, 44, 47] and to speed up the provi-
sioning time required for scaling operations. Moreover, we plan to investigate which
other application classes can benefit from elasticity control and how to measure the
scaling behavior of parallel systems based on other parallel execution models. For
instance, reactive elasticity control might also be employed for applications with a
known scaling behavior, but where the characteristics of the execution environment
change at runtime (e.g., varying network latency and network bandwidth, processing
speed). Additionally, other application classes with different characteristics might
allow the construction of proactive elasticity control mechanisms thus enabling
adaptations based on predictions.

Acknowledgements This research was partially funded by the Ministry of Science of Baden-Württem-
berg, Germany, for the Doctoral Program Services Computing.

Funding Open Access funding enabled and organized by Projekt DEAL.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen
ses/ by/4. 0/.

References

 1. Al-Dhuraibi Y, Paraiso F, Djarallah N, Merle P (2018) Elasticity in cloud computing: state of the art
and research challenges. IEEE Trans Serv Comput 11(2):430–447

 2. Aljamal R, El-Mousa A, Jubair F (2018) A comparative review of high-performance computing
major cloud service providers. In: 2018 9th International Conference on Information and Communi-
cation Systems (ICICS), pp 181–186

 3. Amdahl GM (1967) Validity of the single processor approach to achieving large scale computing
capabilities. In: Proceedings of the 18–20 April 1967, Spring Joint Computer Conference, ACM,
New York, NY, USA, AFIPS’67 (Spring), pp 483–485

 4. Anstreicher K, Brixius N, Goux JP, Linderoth J (2002) Solving large quadratic assignment problems
on computational grids. Math Program 91(3):563–588

 5. Archibald B (2018) Algorithmic skeletons for exact combinatorial search at scale. Ph.D. thesis, Uni-
versity of Glasgow

 6. Archibald B, Maier P, Stewart R, Trinder P, De Beule J (2017) Towards generic scalable parallel
combinatorial search. In: Proceedings of the international workshop on parallel symbolic computa-
tion, ACM, New York, NY, USA, PASCO 2017, pp 6:1–6:10

 7. Archibald B, Maier P, McCreesh C, Stewart R, Trinder P (2018) Replicable parallel branch and
bound search. J Parallel Distrib Comput 113:92–114

 8. Asanovic K, Bodik R, Demmel J, Keaveny T, Keutzer K, Kubiatowicz J, Morgan N, Patterson D,
Sen K, Wawrzynek J, Wessel D, Yelick K (2009) A view of the parallel computing landscape. Com-
mun ACM 52(10):56–67

 9. Barnat J, Brim L, Ceska M, Rockai P (2010) Divine: parallel distributed model checker. In: 2010
ninth international workshop on parallel and distributed methods in verification, and second interna-
tional workshop on high performance computational systems biology, pp 4–7

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

 S. Kehrer, W. Blochinger

1 3

9242

 10. Bauer A, Herbst N, Spinner S, Ali-Eldin A, Kounev S (2019) Chameleon: a hybrid, proactive auto-
scaling mechanism on a level-playing field. IEEE Trans Parallel Distrib Syst 30(4):800–813

 11. Bersani MM, Bianculli D, Dustdar S, Gambi A, Ghezzi C, Krstić S (2014) Towards the formali-
zation of properties of cloud-based elastic systems. In: Proceedings of the 6th international work-
shop on principles of engineering service-oriented and cloud systems, ACM, New York, NY, USA,
PESOS 2014, pp 38–47

 12. Blochinger W, Michlin W, Weber A (1998) The distributed object-oriented threads system dots. In:
Ferreira A, Rolim J, Simon H, Teng SH (eds) Solving irregularly structured problems in parallel.
Springer, Heidelberg, pp 206–217

 13. Blochinger W, Küchlin W, Ludwig C, Weber A (1999) An object-oriented platform for distributed
high-performance symbolic computation. Math Comput Simul 49:161–178

 14. Blochinger W, Dangelmayr C, Schulz S (2006) Aspect-oriented parallel discrete optimization on the
cohesion desktop grid platform. In: Sixth IEEE international symposium on cluster computing and
the grid, 2006. CCGRID 06, vol 1, pp 49–56

 15. Bonami P, Lejeune MA (2009) An exact solution approach for portfolio optimization problems
under stochastic and integer constraints. Oper Res 57(3):650–670

 16. Bui P, Rajan D, Abdul-Wahid B, Izaguirre J, Thain D (2011) Work queue+python: a framework for
scalable scientific ensemble applications. In: Workshop on python for high-performance and scien-
tific computing

 17. Bungart M, Fohry C (2017) A malleable and fault-tolerant task pool framework for x10. In: IEEE
International Conference on Cluster Computing (CLUSTER). IEEE, pp 749–757

 18. Cachin C, Guerraoui R, Rodrigues L (2011) Introduction to reliable and secure distributed program-
ming, second edn. Springer, Berlin

 19. El-Kalioby M, Abouelhoda M, Krüger J, Giegerich R, Sczyrba A, Wall DP, Tonellato P (2012) Per-
sonalized cloud-based bioinformatics services for research and education: use cases and the elas-
tichpc package. BMC Bioinform 13(17):S22

 20. Emeras J, Varrette S, Plugaru V, Bouvry P (2019) Amazon elastic compute cloud (ec2) versus in-
house hpc platform: a cost analysis. IEEE Trans Cloud Comput 7(2):456–468

 21. Feitelson DG, Rudolph L (1996) Toward convergence in job schedulers for parallel supercomputers.
In: Feitelson DG, Rudolph L (eds) Job scheduling strategies for parallel processing. Springer, Ber-
lin, pp 1–26

 22. Galante G, d Bona LCE (2012) A survey on cloud computing elasticity. In: 2012 IEEE Fifth Inter-
national Conference on Utility and Cloud Computing, pp 263–270

 23. Galante G, Erpen De Bona LC, Mury AR, Schulze B, da Rosa Righi R (2016) An analysis of public
clouds elasticity in the execution of scientific applications: a survey. J Grid Comput 14(2):193–216

 24. Gautier T, Roch JL, Villard G (1995) Regular versus irregular problems and algorithms. In: Ferreira
A, Rolim J (eds) Parallel algorithms for irregularly structured problems. Springer, Berlin, pp 1–25

 25. Gendron B, Crainic TG (1994) Parallel branch-and-branch algorithms: survey and synthesis. Oper
Res 42(6):1042–1066

 26. Grama A, Kumar V (1999) State of the art in parallel search techniques for discrete optimization
problems. IEEE Trans Knowl Data Eng 11(1):28–35

 27. Grama A, Gupta A, Karypis G, Kumar V (2003) Introduction to parallel computing, 2nd edn. Pear-
son Education, London

 28. Gropp W, Thakur R, Lusk E (1999) Using MPI-2: advanced features of the message passing inter-
face. MIT Press, Cambridge

 29. Guo Y, Ghanem M, Han R (2012) Does the cloud need new algorithms? An introduction to elastic
algorithms. In: 4th IEEE International Conference on Cloud Computing Technology and Science
Proceedings, pp 66–73

 30. Gupta A, Kale LV, Gioachin F, March V, Suen CH, Lee BS, Faraboschi P, Kaufmann R, Milojicic
D (2013) The who, what, why, and how of high performance computing in the cloud. In: IEEE 5th
International Conference on Cloud Computing Technology and Science, vol 1, pp 306–314

 31. Gupta A, Sarood O, Kale LV, Milojicic D (2013) Improving hpc application performance in cloud
through dynamic load balancing. In: 13th IEEE/ACM international symposium on cluster, cloud,
and grid computing, pp 402–409

 32. Gupta A, Faraboschi P, Gioachin F, Kale LV, Kaufmann R, Lee B, March V, Milojicic D, Suen
CH (2016) Evaluating and improving the performance and scheduling of hpc applications in cloud.
IEEE Trans Cloud Comput 4(3):307–321

1 3

Equilibrium: an elasticity controller for parallel tree search… 9243

 33. Han R, Ghanem MM, Guo L, Guo Y, Osmond M (2014) Enabling cost-aware and adaptive elasticity
of multi-tier cloud applications. Future Gener Comput Syst 32:82–98

 34. Haussmann J, Blochinger W, Kuechlin W (2019) Cost-efficient parallel processing of irregularly
structured problems in cloud computing environments. Clust Comput 22(3):887–909

 35. Haussmann J, Blochinger W, Kuechlin W (2019) Cost-optimized parallel computations using vola-
tile cloud resources. In: Djemame K, Altmann J, Bañares JÁ, Agmon Ben-Yehuda O, Naldi M (eds)
Economics of grids, clouds, systems, and services. Springer, Cham, pp 45–53

 36. Herbst NR, Kounev S, Reussner R (2013) Elasticity in cloud computing: what it is, and what it is
not. In: Proceedings of the 10th International Conference on Autonomic Computing (ICAC 13),
USENIX, San Jose, CA, pp 23–27

 37. Hungershöfer J, Streit A, Wierum JM (2001) Efficient resource management for malleable applica-
tions. Tech. Rep. TR-003-01, Paderborn Center for Parallel Computing

 38. Jennings B, Stadler R (2015) Resource management in clouds: survey and research challenges. J
Netw Syst Manag 23(3):567–619

 39. Kautz H, Selman B (1992) Planning as satisfiability. In: Proceedings of the 10th European Confer-
ence on Artificial Intelligence, ECAI’92. Wiley, New York, pp 359–363

 40. Kehrer S, Blochinger W (2018) Autogenic: automated generation of self-configuring microservices.
In: Proceedings of the 8th International Conference on Cloud Computing and Services Science,
SciTePress, pp 35–46

 41. Kehrer S, Blochinger W (2018) Tosca-based container orchestration on mesos. Comput Sci Res Dev
33(3):305–316

 42. Kehrer S, Blochinger W (2019) Elastic parallel systems for high performance cloud computing:
state-of-the-art and future directions. Parallel Process Lett 29(02):1950006-1–1950006-20

 43. Kehrer S, Blochinger W (2019) Migrating parallel applications to the cloud: assessing cloud readi-
ness based on parallel design decisions. SICS Softw Intensive Cyber Phys Syst 34(2):73–84

 44. Kehrer S, Blochinger W (2019) Cloud computing and services science. In: Muñoz VM, Ferguson D,
Helfert M, Pahl C (eds) Model-based generation of self-adaptive cloud services. Springer, Berlin, pp
40–63

 45. Kehrer S, Blochinger W (2019d) A survey on cloud migration strategies for high performance com-
puting. In: Proceedings of the 13th advanced summer school on service-oriented computing. IBM
Research Division, pp 57–69

 46. Kehrer S, Blochinger W (2019e) Taskwork: a cloud-aware runtime system for elastic task-parallel
hpc applications. In: Proceedings of the 9th International Conference on Cloud Computing and Ser-
vices Science, SciTePress, pp 198–209

 47. Kehrer S, Riebandt F, Blochinger W (2019) Container-based module isolation for cloud services. In:
2019 IEEE International Conference on Service-Oriented System Engineering (SOSE). IEEE, pp
177–186

 48. Kehrer S, Scheffold J, Blochinger W (2019) Serverless skeletons for elastic parallel processing. In:
2019 IEEE 5th International Conference on Big Data Intelligence and Computing (DATACOM).
IEEE, pp 185–192

 49. Lai TH, Sahni S (1984) Anomalies in parallel branch-and-bound algorithms. Commun ACM
27(6):594–602

 50. Li G, Wah BW (1986) Coping with anomalies in parallel branch-and-bound algorithms. IEEE Trans
Comput C–35(6):568–573

 51. Liu F, Weissman JB (2015) Elastic job bundling: an adaptive resource request strategy for large-
scale parallel applications. In: SC’15: Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, pp 1–12

 52. Lorido-Botran T, Miguel-Alonso J, Lozano JA (2014) A review of auto-scaling techniques for elas-
tic applications in cloud environments. J Grid Comput 12(4):559–592

 53. Mauch V, Kunze M, Hillenbrand M (2013) High performance cloud computing. Future Gener Com-
put Syst 29(6):1408–1416

 54. Moldovan D, Copil G, Truong H, Dustdar S (2013) Mela: monitoring and analyzing elasticity of
cloud services. In: 2013 IEEE 5th International Conference on Cloud Computing Technology and
Science, pp 80–87

 55. Netto MAS, Calheiros RN, Rodrigues ER, Cunha RLF, Buyya R (2018) Hpc cloud for scientific
and business applications: taxonomy, vision, and research challenges. ACM Comput Surv (CSUR)
51(1):81–829

 S. Kehrer, W. Blochinger

1 3

9244

 56. Olivier S, Huan J, Liu J, Prins J, Dinan J, Sadayappan P, Tseng CW (2007) Uts: an unbalanced tree
search benchmark. In: Almási G, Caşcaval C, Wu P (eds) Languages and compilers for parallel
computing. Springer, Berlin, Heidelberg, pp 235–250

 57. Poldner M, Kuchen H (2008) Algorithmic skeletons for branch and bound. In: Filipe J, Shishkov B,
Helfert M (eds) Software and data technologies. Springer, Berlin, pp 204–219

 58. Posner J, Fohry C (2018) Hybrid work stealing of locality-flexible and cancelable tasks for the apgas
library. J Supercomput 74(4):1435–1448

 59. Prabhakaran A, Lakshmi L (2018) Cost-benefit analysis of public clouds for offloading in-house hpc
jobs. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp 57–64

 60. Rajan D, Thain D (2017) Designing self-tuning split-map-merge applications for high cost-effi-
ciency in the cloud. IEEE Trans Cloud Comput 5(2):303–316

 61. Rajan D, Canino A, Izaguirre JA, Thain D (2011) Converting a high performance application to an
elastic cloud application. In: IEEE Third International Conference on Cloud Computing Technology
and Science (CloudCom). IEEE, pp 383–390

 62. Rajan D, Thrasher A, Abdul-Wahid B, Izaguirre JA, Emrich S, Thain D (2013) Case studies in
designing elastic applications. In: 2013 13th IEEE/ACM international symposium on cluster, cloud,
and grid computing, pp 466–473

 63. Ralphs T (2003) Parallel branch and cut for capacitated vehicle routing. Parallel Comput
29(5):607–629

 64. Rathnayake S, Loghin D, Teo YM (2017) Celia: cost-time performance of elastic applications on
cloud. In: 46th International Conference on Parallel Processing (ICPP), pp 342–351

 65. Raveendran A, Bicer T, Agrawal G (2011) A framework for elastic execution of existing mpi pro-
grams. In: 2011 IEEE international symposium on parallel and distributed processing workshops
and Ph.D Forum, pp 940–947

 66. Rodrigues VF, da Rosa Righi R, da Costa CA, Singh D, Munoz VM, Chang V (2018) Towards com-
bining reactive and proactive cloud elasticity on running hpc applications. In: Proceedings of the
3rd International Conference on Internet of Things, Big Data and Security: IoTBDS, SciTePress, pp
261–268

 67. Ronconi DP (2005) A branch-and-bound algorithm to minimize the makespan in a flowshop with
blocking. Ann Oper Res 138(1):53–65

 68. da Rosa Righi R, Rodrigues VF, da Costa CA, Kreutz D, Heiss HU (2015) Towards cloud-based
asynchronous elasticity for iterative HPC applications. J Phys Conf Ser 649:012006

 69. da Rosa Righi R, Rodrigues VF, da Costa CA, Galante G, de Bona LCE, Ferreto T (2016) Autoelas-
tic: automatic resource elasticity for high performance applications in the cloud. IEEE Trans Cloud
Comput 4(1):6–19

 70. da Rosa Righi R, Rodrigues VF, Rostirolla G, da Costa CA, Roloff E, Navaux POA (2018) A light-
weight plug-and-play elasticity service for self-organizing resource provisioning on parallel applica-
tions. Future Gener Comput Syst 78:176–190

 71. Schmidt MC, Samatova NF, Thomas K, Park BH (2009) A scalable, parallel algorithm for maximal
clique enumeration. J Parallel Distrib Comput 69(4):417–428

 72. Schulz S, Blochinger W (2010) Parallel sat solving on peer-to-peer desktop grids. J Grid Comput
8(3):443–471

 73. Schulz S, Blochinger W, Held M, Dangelmayr C (2008) Cohesion a microkernel based desktop grid
platform for irregular task-parallel applications. Future Gener Comput Syst 24(5):354–370

 74. Shudler S, Calotoiu A, Hoefler T, Wolf F (2017) Isoefficiency in practice: configuring and under-
standing the performance of task-based applications. In: Proceedings of the 22nd ACM SIGPLAN
symposium on principles and practice of parallel programming, ACM, New York, NY, USA,
PPoPP’17, pp 131–143

 75. Sinz C, Kaiser A, Küchlin W (2003) Formal methods for the validation of automotive product con-
figuration data. Ai Edam 17(1):75–97

 76. Stephan P, Brayton RK, Sangiovanni-Vincentelli AL (1996) Combinational test generation using
satisfiability. IEEE Trans Comput Aided Des Integr Circuits Syst 15(9):1167–1176

 77. Sun Y, Wang CL (2003) Solving irregularly structured problems based on distributed object model.
Parallel Comput 29(11–12):1539–1562

 78. Utrera G, Corbalan J, Labarta J (2004) Implementing malleability on mpi jobs. In: Proceedings
of the 13th International Conference on Parallel Architecture and Compilation Techniques, 2004.
PACT 2004, pp 215–224

1 3

Equilibrium: an elasticity controller for parallel tree search… 9245

 79. Vadhiyar SS, Dongarra JJ (2003) Srs: a framework for developing malleable and migratable parallel
applications for distributed systems. Parallel Process Lett 13(02):291–312

 80. Varghese B, Buyya R (2018) Next generation cloud computing: new trends and research directions.
Future Gener Comput Syst 79:849–861

 81. Vecchiola C, Pandey S, Buyya R (2009) High-performance cloud computing: a view of scientific
applications. In: 10th international symposium on pervasive systems, algorithms, and networks
(ISPAN). IEEE, pp 4–16

 82. Vu TT, Derbel B (2014) Link-heterogeneous work stealing. In: 2014 14th IEEE/ACM international
symposium on cluster, cloud and grid computing, pp 354–363

 83. Yang J, He Q (2018) Scheduling parallel computations by work stealing: a survey. Int J Parallel Pro-
gram 46(2):173–197

 84. Yang X, Wallom D, Waddington S, Wang J, Shaon A, Matthews B, Wilson M, Guo Y, Guo L,
Blower JD, Vasilakos AV, Liu K, Kershaw P (2014) Cloud computing in e-science: research chal-
lenges and opportunities. J Supercomput 70(1):408–464

 85. Zhang J, Lu X, Panda DKD (2017) Designing locality and numa aware mpi runtime for nested vir-
tualization based hpc cloud with sr-iov enabled infiniband. In: Proceedings of the 13th ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Environments, ACM, New York,
NY, USA, VEE’17, pp 187–200

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

	Equilibrium: an elasticity controller for parallel tree search in the cloud
	Abstract
	1 Introduction
	2 Fundamentals
	2.1 Parallel processing in the cloud
	2.2 Parallel tree search, algorithms and applications
	2.3 Task pool execution model
	2.4 Elasticity in cloud environments
	2.5 Elastic parallel systems

	3 Problem statement and motivation
	4 Opportunities and challenges of elasticity control for parallel tree search
	4.1 Efficiency-based elasticity control
	4.2 Cost-based elasticity control
	4.3 Key findings and results

	5 Equilibrium: an elasticity controller for parallel tree search
	6 Elastic parallel system architecture
	7 Experimental evaluation
	7.1 Evaluation method
	7.2 Parallel tree search applications
	7.3 Experiments and results

	8 Discussion
	9 Related work
	9.1 Cloud-aware parallel applications
	9.2 Elasticity control for parallel systems
	9.3 Malleability in cluster computing
	9.4 Parallel tree search

	10 Conclusion and future work
	Acknowledgements
	References

