
Vol.:(0123456789)

The Journal of Supercomputing (2019) 75:3997–4000
https://doi.org/10.1007/s11227-019-02942-2

1 3

Refactoring software to heterogeneous parallel platforms

J. Daniel Garcia1

© Springer Science+Business Media, LLC, part of Springer Nature 2019

1 Introduction

The evolution of approaches for parallel programming models in last years has been
a constant and seems to be a trend for the upcoming years. That evolution is not
only driven by the pervasive use of multi-/many-core systems but by the fact that
more and more systems have become heterogeneous. The classical scenario where
OpenMP [1] would be the dominant approach at the node level, while MPI [2]
would do the same thing with clusters seems now to be competing with a variety of
solutions.

According to the latest list in Top 500 supercomputers [3], released June 2019,
the number of cores per socket seems to be moderately increasing while the number
of systems using some accelerator is in high proportion. In those systems using an
accelerator, the most common one seems to be GPU, which seems to have become
the dominant accelerator. Outside the supercomputing world, the use of heterogene-
ous systems is also increasing its momentum for improving performance in single-
node applications ranging from scientific software in workstations to many embed-
ded applications.

A major challenge comes from the fact that many legacy applications need be
transformed so that they can be delivered in new heterogeneous architectures.
Because there is no clear dominant heterogeneous architecture, the cost of each new
port seems to contain many architecture-specific issues. As there is a wide variety
of programming models for heterogeneous systems, one of the possible techniques
seems to be software refactoring [4]. Software refactoring is known as the process
of restructuring existing code without changing the external behavior but improv-
ing non-functional attributes of the software. In this case, the main non-functional
attribute to be improved is performance. Over the years, solutions for software refac-
toring [5] to parallel systems have focused mainly in homogenous systems.

With the recent emergence of many different programming models, languages
and frameworks for expressing parallelism, the refactoring approach has become
more prominent. Besides, the programming models for multi-core, a number of

 * J. Daniel Garcia
 josedaniel.garcia@uc3m.es

1 University Carlos III of Madrid, Leganes, Spain

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-019-02942-2&domain=pdf

3998 J. D. Garcia

1 3

specific models for GPU and other accelerators need to be considered. An answer
to this problem has come from the parallel patterns community [6]. Parallel patterns
can be seen as a mechanism to express parallelism in existing sequential applica-
tions. They allow to raise the abstraction level and to ensure that application logic
and implementation details can be kept separate as distinct aspects of the software.
Many typical parallel patterns [7] can be used to express typical algorithms. Moreo-
ver, many of those patterns are easily exploitable by different heterogeneous parallel
architectures. In fact, parallel patterns have become an excellent way of expressing
algorithms in a portable way between traditional multi-cores and more innovative
accelerator-based systems.

1.1 Special issue presentation

This special issue includes 12 new research contributions. Four of these correspond
to extended research contributions from the RePara 2017 workshop that was held in
conjunction with the ParCo 2017 Conference, held in Bologna, Italy, during Sep-
tember 2017. The remaining eight contributions were selected from an open call for
papers.

In “Prediction models for performance, power, and energy efficiency of software
executed on heterogeneous hardware” [8], Bán et al. make use of both static source
code metrics, and dynamic execution measuring time, power and energy to build
predictive models on improvements. Using those models for training, they found that
using static code metrics to predict concrete continuous values of dynamic proper-
ties cannot be achieved in general. However, they obtained good results in terms of
category prediction which in most cases is enough to make refactoring decisions.

In “Supporting structured parallel program design, development and tuning in
FastFlow” [9], Gazarri and Danelutto focus on the separation of concerns provided
by structured parallel programming. They describe a shell that allows to explore the
design space of functionally equivalent parallel compositions with different non-
functional properties.

In “Stream parallelism with ordered data constraints on multi-core systems” [10],
Griebler et al. propose a new technique that can be easily integrated into different
C++ parallel programming frameworks supporting stream parallelism. The strat-
egy focuses on those cases where ordering is relevant in stream parallelism with an
irregular number of tasks in different stages.

In “SpExSim: assessing kernel suitability for C-based high-level hardware syn-
thesis” [11], Oppermann et al. introduce techniques for performing surveys on exist-
ing legacy C codebases that could be accelerated by FPGA-based compute units.
Their approach focuses on high-level synthesis of source code to minimize develop-
ment costs and efforts.

In “Simultaneous multiprocessing in a software-defined heterogeneous FPGA”
[12], Núñez-Yáñez et al.’s reductions of overheads are investigated to enable the uti-
lization of all CPU cores and an FPGA in a heterogeneous environment, when a
high-level general-purpose language as C++ is used.

3999

1 3

Refactoring software to heterogeneous parallel platforms

In “Hybrid static–dynamic selection of implementation alternatives in heteroge-
neous environments” [13], David del Rio et al. focus on the combination of static
and dynamic techniques to select mappings of software components from an appli-
cation to different computing devices in a heterogeneous system. Their technique is
capable of generating a compile-time decision tree that can be used to select the best
mapping.

In “On dynamic memory allocation in sliding-window parallel patterns for
streaming analytics” [14], Torquati et al. study the issue of dynamic memory man-
agement for streaming parallelism. Their study shows that the default memory man-
agement mechanisms provided by the C++ standard are not the most adequate for
this subset of applications. They provide alternate techniques combining custom
allocators with variants of smart pointers to improve the performance of pipelines
and other streaming patterns.

In “Experiences with implementing parallel discrete-event simulation on GPU”
[15], Sang et al. focus on porting discrete-event simulators to run them on GPU.
They compare two open-source approaches to provide interfaces that are similar to
existing C++ Standard Template Library which is quite in line with current parallel
STL and gives a path toward upcoming parallelism extensions in new versions of
C++.

In “Multi-objective algorithms for the application mapping problem in hetero-
geneous multiprocessor embedded system design” [16], Sinaei and Fatemi address
the problems in Electronic System-Level design where both simulation and design
space exploration are critical performance steps. A special focus is given to two spe-
cific multi-objective optimization algorithms.

In “Toward a software transactional memory for heterogeneous CPU–GPU pro-
cessors” [17], Villegas et al. introduce APUTM, a software transactional memory
solution for APUs (Accelerated Processing Units) where CPU and GPU are inte-
grated into a single chip. APUTM allows experimenting and better understanding
the trade-offs in this category of platforms.

In “A hybrid sample generation approach in speculative multithreading” [18], Li
et al. apply machine learning techniques to speculative multithreading to perform
thread partitions. They apply those techniques to benchmark applications and com-
pare them to techniques using heuristic rules-based approaches, which cannot gener-
ate adaptive samples.

In “Toward fault-tolerant hybrid programming over large-scale heterogeneous
clusters via checkpointing/restart optimization” [19], Chen et al. focus on program-
ming models for large clusters where traditional models, as MPI + X, have been
more concerned about the performance and reliability. Their approach is supported
by in-memory checkpointing providing new capabilities for heterogeneous applica-
tions and hence simplifying application-level checkpointing. It is quite interesting
that results were validated on different benchmarks and applications on the Tianhe-2
supercomputer.

In summary, the papers included in this special issue are representative of the
progress achieved by the research community at various levels from the very high
level using parallel patterns to lower levels using, for example, transactional soft-
ware memory. Also the integration of GPUs and FPGAs in the landscape is essential

4000 J. D. Garcia

1 3

to achieve better performance in different categories of applications. All these inno-
vative research directions will contribute to better achieve the long-term goal of bet-
ter refactoring of existing applications to new and evolving parallel heterogeneous
architectures.

References

 1. Dagum L, Menon R (1998) OpenMP: an industry standard API for shared-memory programming.
IEEE Comput Sci Eng 5(1):46–55

 2. Gropp WD, Gropp W, Lusk E, Skjellum A (1999) Using MPI: portable parallel programming with
the message-passing interface. MIT Press, London

 3. TOP500 Supercomputer sites (2018) www.top50 0.org. Accessed 24 June 2019
 4. Giswold WG (1992) Program restructuring as an aid to software maintenance. Ph.D. dissertation.

University of Washington
 5. Dig Danny (2011) A refactoring approach to parallelism. IEEE Softw 28(1):17–22
 6. McCool M, Reinders J, Robinson A (2012) Structured parallel programming: patterns for efficient

computation. Morgan-Kaufmann, Burlington
 7. Gorlatch S, Cole M (2011) Parallel skeletons. In: Padua DA (ed) Encyclopedia of parallel comput-

ing. Springer, New York, pp 1417–1422
 8. Bán D, Ferenc R, Siket I, Kiss A, Gyimóthy T (2019) Prediction models for performance, power,

and energy efficiency of software executed on heterogeneous hardware. J Supercomput. https ://doi.
org/10.1007/s1122 7-018-2252-6

 9. Gazarri L, Danelutto M (2019) Supporting structured parallel program design, development and
tuning in FastFlow. J Supercomput. https ://doi.org/10.1007/s1122 7-018-2448-9

 10. Griebler D, Hoffmann RB, Danelutto M, Fernandes LG (2019) Stream parallelism with ordered data
constraints on multi-core systems. J Supercomput. https ://doi.org/10.1007/s1122 7-018-2482-7

 11. Oppermann J, Sommer L, Koch A (2019) SpExSim: assessing kernel suitability for C-based high-
level hardware synthesis. J Supercomput. https ://doi.org/10.1007/s1122 7-017-2101-z

 12. Nunez-Yanez J, Amiri M, Hosseinabady M, Rodriguez A, Asenjo R, Navarro A, Suarez D, Gran R
(2019) Simultaneous multiprocessing in a software-defined heterogeneous FPGA. J Supercomput.
https ://doi.org/10.1007/s1122 7-018-2367-9

 13. Astorga DR, Dolz MF, Fernandez J, Garcia-Blas J (2019) Hybrid static–dynamic selection of imple-
mentation alternatives in heterogeneous environments. J Supercomput. https ://doi.org/10.1007/
s1122 7-017-2147-y

 14. Torquati M, Mencagli G, Drocco M, Aldinucci M, De Matteis T, Daneultto M (2019) On dynamic
memory allocation in sliding-window parallel patterns for streaming analytics. J Supercomput. https
://doi.org/10.1007/s1122 7-017-2152-1

 15. Sang J, Lee C-R, Rego V, King C-T (2019) Experiences with implementing parallel discrete-event
simulation on GPU. J Supercomput. https ://doi.org/10.1007/s1122 7-018-2254-4

 16. Sinaei M, Fatemi O (2019) Multi-objective algorithms for the application mapping problem in het-
erogeneous multiprocessor embedded system design. J Supercomput. https ://doi.org/10.1007/s1122
7-018-2442-2

 17. Villegas A, Navarro A, Asenjo R, Plata O (2019) Towards a software transactional memory for het-
erogeneous CPU–GPU processors. J Supercomput. https ://doi.org/10.1007/s1122 7-018-2347-0

 18. Li Y, Zhao Y, Sun L, Shen M (2019) A hybrid sample generation approach in speculative multi-
threading. J Supercomput. https ://doi.org/10.1007/s1122 7-017-2118-3

 19. Chen C, Du Y, Zuo K, Fang J, Yang C (2019) Toward fault-tolerant hybrid programming over large-
scale heterogeneous clusters via checkpointing/restart optimization. J Supercomput. https ://doi.
org/10.1007/s1122 7-017-2116-5

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

http://www.top500.org
https://doi.org/10.1007/s11227-018-2252-6
https://doi.org/10.1007/s11227-018-2252-6
https://doi.org/10.1007/s11227-018-2448-9
https://doi.org/10.1007/s11227-018-2482-7
https://doi.org/10.1007/s11227-017-2101-z
https://doi.org/10.1007/s11227-018-2367-9
https://doi.org/10.1007/s11227-017-2147-y
https://doi.org/10.1007/s11227-017-2147-y
https://doi.org/10.1007/s11227-017-2152-1
https://doi.org/10.1007/s11227-017-2152-1
https://doi.org/10.1007/s11227-018-2254-4
https://doi.org/10.1007/s11227-018-2442-2
https://doi.org/10.1007/s11227-018-2442-2
https://doi.org/10.1007/s11227-018-2347-0
https://doi.org/10.1007/s11227-017-2118-3
https://doi.org/10.1007/s11227-017-2116-5
https://doi.org/10.1007/s11227-017-2116-5

	Refactoring software to heterogeneous parallel platforms
	1 Introduction
	1.1 Special issue presentation

	References

