The Journal of Supercomputing (2019) 75:1580-1593
https://doi.org/10.1007/s11227-018-2692-z

@ CrossMark

A CUDA approach to compute perishable inventory control
policies using value iteration

G. Ortega'® - E. M. T. Hendrix'2@® - I. Garcia'

Published online: 16 November 2018
© The Author(s) 2018

Abstract

Dynamic programming (DP) approaches, in particular value iteration, is often seen
as a method to derive optimal policies in inventory management. The challenge in
this approach is to deal with an increasing state space when handling realistic prob-
lems. As a large part of world food production is thrown out due to its perishable
character, a motivation exists to have a good look at order policies in retail. Recently,
investigation has been introduced to consider substitution of one product by another,
when one is out of stock. Taking this tendency into account in a policy requires an
increasing state space. Therefore, we investigate the potential of using GPU platforms
in order to derive optimal policies when the number of products taken into account
simultaneously is increasing. First results show the potential of the GPU approach to
accelerate computation in value iteration for DP.

Keywords GPU - Inventory control - Value iteration - CUDA

1 Introduction

As inventory control is a dynamic process also dynamic programming has been con-
sidered an appropriate technique to derive so-called order policies, see [15]. When

This research is partly funded by Project TIN2015-66680 financed by the Spanish Ministry and Spanish
network CAPAP-H6 (TIN2016-81840-REDT). G. Ortega is a fellow of the Spanish “Juan de la Cierva
Incorporacién” program (Grant No. IJCI-2016-30173).

B E. M. T. Hendrix
eligius.hendrix @wur.nl; eligius@uma.es

G. Ortega
gloriaortega@uma.es

1. Garcia

igarciaf @uma.es

Group of Supercomputation-Algorithms, Computer Architecture, Universidad de Mdlaga,
Mailaga, Spain

Operations Research and Logistics, Wageningen University, Wageningen, Netherlands

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-018-2692-z&domain=pdf
http://orcid.org/0000-0002-6563-2717
http://orcid.org/0000-0003-1572-1436
http://orcid.org/0000-0002-1138-2118

A CUDA approach to compute perishable inventory control... 1581

considering for a perishable good the complete age distribution as state variable, the
state space increases drastically [7] rendering a challenge from a computational point
of view. Obtaining good order policies for perishable goods is of great importance
as about one third of world food production is wasted according to the FAO in 2011.
Basically, if one orders too much, the tendency is high that products perish and waste is
generated. When one orders too few, one may incur lost sales, i.e., having empty shelves
during part of the day. An extreme case of one day perishability is the newsvendor
problem, where one maximizes expected profit with a focus on balancing out-of-stock
(O0S) and waste. Let s be the sales price of the product, ¢ its unit cost and G the
cumulative distribution function (cdf) of demand; then, it is known in literature that
the optimal order quantity is due to the critical fractile formula

B B <S_C)
0=6G . ()
C

Haijema and Minner [6] extend this problem to several periods of shelf life and inves-
tigate several order policies. They claim that an optimal dynamic programming (DP)
policy has many advantages in this case.

However, in many cases, a so-called stock base policy works well, where an order-
up-to level S is used, [11]. The retailer inspects the current inventory level / and
orders an amount Q up to level S, i.e., the rule Q = (S — [)T is followed, where
(x)™ = max{x, 0}. Due to modern scanning techniques, the retailer may be aware
of the exact age distribution of the items in stock, let say (I, ... I, ..., I)), where
the products with remaining shelf life in /; will perish at the end of the day, but
fresher products (/y; is the number of items with the maximum shelf life M) can
still be sold in the future. For some inventory models, it is possible to derive the
so-called optimal order policy Q(Iy, ..., Iy) via Stochastic Dynamic Programming
(SDP) using a computational procedure which is called value iteration (VI).

Recently, an interesting question has been raised where two products interact with
each other due to substitution of one product by the other when one is out of stock,
[2,4,5,16]. It is much harder to obtain an optimal policy, as the order quantity of one
product also depends on the inventory of the other. Trying to obtain an optimal policy
via DP for such a case requires not only to consider the stock of one product, but also
that which serves as a substitute increasing the state space. This is where our research
question comes in. Can High Performance Computing (HPC) aid to consider such
cases which imply a larger state space?

The question of applying GPUs for value iteration (VI) in Markov Decision Prob-
lems (MDP) has been investigated by several researchers. Johannson [10] provides a
proof of principle, where CUDA is used to map the VI process on a GPU platform.
Chen and Lu [3] consider OpenCL for implementing a VI for a path finding problem.
Herrera et al. [9] use HPC to implement a very large-scale MDP for the generation
of traffic control tables. Ruiz and Herndndez [14] use the developed concepts of [10]
and claim a 90x speedup on an MDP model for crowd navigation. To the knowl-
edge of the authors, no experience has been reported in literature on applying GPU
implementations for VI to derive inventory control rules.

The contribution of this paper is to illustrate the MDP process for perishable inven-
tory control first by a simplified retailer inventory control model of one product and

@ Springer

1582 G.Ortega et al.

then to investigate how a two product case with a larger state space might be han-
dled exploiting the use of GPUs. Therefore, Sect.?2 first describes a simplified one
product inventory control problem and illustrates how the optimal solution can be
derived by value iteration. Then, Sect.3 discusses how we can handle a two product
case with interaction of products caused by substitution. Section 4 describes the CUDA
implementation of the algorithm. Section 5 depicts the evaluation results of the CUDA
approach in comparison with a sequential version of VI. Finally, Sect. 6 provides the
findings of our investigation.

2 Value iteration for a one product model

We first describe the decision situation and model for one product and then elaborate
the optimal solution by value iteration. Section 2.3 provides an illustrative example.

2.1 Decision model for one product

In the first studied situation, the retailer receives the order placed the day before and
inspects the inventory levels (11, I, ..., Ijs), where index r gives the remaining shelf
life and M is the maximum shelf life when the product is received. The retailer orders
a quantity Q, which will be received next morning for a cost of ¢ per item. During the
day, items are sold against a sales price s > c. Implicitly, like in the situation of the
newsvendor boy, the retailer tries to minimize waste and lost sales. The daily profit
over a long horizon T is given by
T

1= % > (sSale, — cQ)),)
=1

where the sales are determined by stochastic demand d; from a Poisson distribution

with mean p:

Sale; = min{d,, Y}, 3)
where ¥ = Zf/[: 1 Ir+ 1s the total inventory. The dynamics of the inventory depends
on the so-called issuing of the products sold to the clients and we will assume that
the retailer manages the shelves in such a way that the customers pick the oldest item
first, i.e., First In First Out, FIFO. This means

IMt = Qt—l (4)
and
r +\ T
Ly = <1r+l,tl - (dzl -3 Im,tl)) cor=1L... . M-1. (5
m=1

Although not a direct performance indicator, we can measure the amount of waste as
a percentage of the total order quantity that is generated by a certain policy:

STy =yt
SO

Wasteperc =

(6)

@ Springer

A CUDA approach to compute perishable inventory control... 1583

A practical policy (see [6]) to decide on the order quantity Q, may be a base stock
policy, where the retailer also counts the amount of oldest items /; in order to have
a rough estimate of the expected number of products perished at the end of the day,
given as [(1; —)™ 7. So this waste conscious base stock policy will provide an advice
to order quantity

M +
0/ = (S = L+ Ui — mﬂ) : ™

r=1

Simulation of the system can be used to find the best value for S, which optimizes the
daily profit (2).

2.2 Value iteration to reach the optimal policy

The question is whether there might be a better rule than (7) when the retailer measures
the complete age distribution of its inventory (1, I,, ..., Ip7). Actually, the described
system behaves as a so-called Markov Decision Process (MDP), [13]. Given that there
is a maximum amount to be ordered Q, the state space is given by I} = 0, ..., O,
S =1{0,..., O} consisting of N = (Q + 1) elements. For each inventory situation
I € S, we would like to know how many items Q(/) to order.

Let F(Q, I, d) be the function that tells us given inventory state /, order Q and
demand d, what will be the inventory state next morning. Under certain circumstances,
the optimal order amount Q*(/) can be characterized by the MDP theory, [1]. For the
optimal policy, there exists a matrix V (/) called the value function and a scalar such
thatVl € S

E o
V(1) 4+ n = sEsale(/) + min ZpdV(F(q,I,d)) —cq |, ®)
4=0 |:d:0 :|

where py is the probability that demand has value d and expected sales having ¥ =
Zf/[: 1 I, total in stock is

Y
Esale(/) = Y "d x pa.)
d=1

In this case, the valuation matrix V is not unique in the sense it is additive invariant,
i.e., one can add constants to it, but the value 7 is unique and coincides with the
optimal daily profit (2). An optimal policy is a solution of

o

Q*(I) = argmin,, [Z paV(F(q,1,d)) — Cq} . (10)
d=0

With respect to the infinite sum in (8) and (10), one should keep in mind that

F(g,1,d) = (0,0,...,¢9) as soon as d > Y, so only the cumulative distribution
value of the total inventory is relevant ford > Y.

@ Springer

1584 G.Ortega et al.

Algorithm 1 Pseudocode of VI for one product inventory control
1: Set vector elements V; to Esale; forO=1,..., N — 1
2: repeat
Copy vector V into vector W
for j=0,...,N —1do

Determine expected sales for state j, Esale

for ¢ :0,.‘.,§d0

for all demand realisations (events) d do
Retrieve Wy, with state k = F(qq, qp, j, d)

V; = Esalej +maxq[}_; pa Wi — cql

10: until max;(V; — W;) —min;(V; — W;) <€

(95}

ORI

How to obtain a good valuation V and the corresponding optimal policy Q*? This
can be done by a fixed point idea about (8) with respect to value r called value iteration
(VI). Although terminology and concepts are more extensive, from a computational
point of view it is sufficient to think in those terms. It is also convenient to think of
multi-dimensional matrix V as an N-dimensional vector where the states are ordered
J =0,..., N — 1. This gives the possibility to predefine the values Esale; for the
expected sales when arriving at the inventory state corresponding to j.

One way to deal with VI (see Algorithm 1) is to copy a current valuation vector V
into a vector W and determine a new valuation V according to

ijEsalej+min|:Zdek—cq:|, j=0,...,.N—1, (11)
1 d

where k is the state index related to state F (g, I, d). The value iteration should lead
to convergence toward 7 = V; — W;, forall j =1, ..., N. Convergence to the scalar
7 is measured by the so-called

span(V, W) = max(V; — W;) — min(V; — W;).
J j

The iterative procedure of Algorithm 1 stops whenever span(V, W) is smaller than
a pre-specified value €, which indicates the accuracy in estimating = [8,9]. Figure 1
illustrates the computation for an inventory situation with maximum shelf life M = 3
fromstate I = (3, 2, 1). Three possible decisions are sketched. If demand exceeds total
inventory Y = 6 with probability P(d > 6) we have that we arrive at F (g, I,d) =
0,0,9).

2.3 lllustration for one product case

As an example we consider an instance where sales price is s = 1, unit costis ¢ = .5
and the average daily demand is & = 5 and the maximum shelf life is only M = 2.
For this instance, the optimal order-up-to value of policy (7) is S = 13. This provides
a daily profit of IT = 2.195 and the percentage of waste on the total order quantity is
Wasteperc = 7.33 based on a simulation of 400,000 periods.

@ Springer

A CUDA approach to compute perishable inventory control... 1585

Valuation vector V/ Former valuation vector W
Vi, I, I < x| W, L, 1)
ad (0, 0, 2)
Wz, 1,1
w1, 1,1
W, 1,1
0, 0, 1)
2,1, 0
W1, 1,0
W, 1, 0)
10, 0, 0)

173,2,1)

Exp sales(/) —c*q

Demand, prob

Fig. 1 Dependence of data in value iteration, one product and shelf life M = 3

To start the VI algorithm, we have to define the maximum order quantity Q. This can
be done by considering a newsvendor who orders for two periods following Equation
(1), which provides Q = 9. Using € = 10™*, the algorithm converges in 12 iterations.
Interestingly enough, the optimal policy Q* never orders more than 7 units for this
instance. The fixed value & = 2.215 corresponds to the simulation result of this policy,
which is very close to the optimal base stock policy. However, the waste is reduced to
Wasteperc = 5.78.

In order to challenge the algorithm, we increase the shelf life to M = 3, where the
newsvendor would order 15 units corresponding to the optimal base stock § = 15 and
leading to N = 4096 states. The algorithm converges in 15 iterations. Where the base
stock policy gives a daily profit of [T = 2.39 and a Wasteperc = 2.63, the optimal
policy is very near for this case with IT = 2.40 and a Wasteperc = 2.53.

The value iteration gets more challenge when we increase the shelf life to M = 4
where Q = 20 for this case. Although this provides a computational challenge, the
optimal value m = 2.47 corresponds practically to the average profit /T of the base
stock policy with order-up-to level S = 16. So, for larger values of the shelf life, the
systems starts to behave more like a non-perishable product and the order quantities
get larger.

We also studied the smaller case of shelf life M = 2 with a LIFO withdrawal
behavior, i.e., the clients first pick the freshest product. In that case, the optimal policy
starts to behave periodic; order Q@ = 10 and next period order nothing, in order to
avoid waste. For such cases, actually the Markovian behavior is different than used
for the analysis in (8).

@ Springer

1586 G.Ortega et al.

3 Handling two products due to substitution interaction

Recently, an interesting question has been raised where two products interact with
each other due to substitution of one product by the other when one is out of stock.
Several papers [2,4,5,16] try to deal with this phenomenon and show that for a variety
of models, one gains by considering the two products simultaneously instead of indi-
vidually. For our case, not only the state space becomes much larger, but we also have
to find two order quantities simultaneously. We extend our analysis to a case or two
products, a and b with the corresponding data g, ip, Sq, Sb, Ca, Cp and a probability
y for the binomial distribution Binom(r,) that models the amount of substitution
demand for product @ when product b is out of stock.

3.1 Value iteration for two products simultaneously

The decision becomes more cumbersome, not only because the state space becomes
twice as big, but we also have to derive an order policy for Q, and Qj simultaneously;
[Q4, OplUat, Luy, ..., Lapt, Int, Ipr, . . ., Ippr). Moreover, the demand distribution
for product a depends now not only on the stochastic demand d, but also on the
demand d|, as far as that exceeds the stock level y = Zﬁw: 1 Ipr. Let us call the substi-
tution demand u, which we consider for the case that d, > 1. So, on the one hand, no
substitution takes place if d;, < y with P(dp < y) and for those events d;, > y + 1,
the probability on substitution demand u is given by

pu,y)=pa=uly) =) P(dp=x+y) x Binw.x.y). uz1l (12

X=u

where Bin(u, x, y) represents the probability mass function of the binomial distri-
bution, i.e., the chance that there is # demand for substitution, when the inventory is
exceeded by x out of stock for mean y.

A difficulty in the analysis is to distinguish the events {d, = 0,...,00,d) =
0, ..., y} where the random variables can be considered independent as no substitution
takes place and the events where there is inventory of product a and substitution may
take place; {d, = 0,...,> I, —L,u=0,...,), I, —d,}. For the latter case
(3=, Iar = 1), one can derive the probability of having dj, > y and a total demand of
z for product a:

pz(z,y) =Y P(dy =x) X pu(z —x,y) (13)

x=0

to be used to determine the state transition F(Qg,, Qp, I, Ip, ds, dp). Basically, in
FIFO issuing, the dynamics is determined by (4) and (5) taking now the random
events d;, dp; and u; into account as demand for the two products. To measure the
profit, one should take care of a potential difference in sales price. The generation of
waste according to (6) can be measured for both products individually. The algorithm
for the two product case is sketched in Algorithm 2.

@ Springer

A CUDA approach to compute perishable inventory control... 1587

Algorithm 2 Pseudocode of VI for substitution of dj, by I,
1: Set vector elements V; to Esale; forO=1,..., N — 1

2: repeat

Copy vector V into vector W

(95}

4: for j=0,...,N —1do

S5: Determine expected sales for state j, Esale

6: forqa:0,...,§ajo

7 forg, =0,..., Qp do

8: for all Nre demand and substitution realisation d do
9: Retrieve Wy, with state k = F(qa, qp, j, d)

10: V; = Esale; + maxg,, g, [D g PaWk — caqa — cpqp]

11: until max;(V; — W;) —min;(V; — W;) <e

3.2 Two product instances

We elaborated first a symmetric case where both products have the same cost ¢ = .5,
sales price s = 1 and demand parameters values i = 5 for shelf life M = 2.
This implies a 4-dimensional state space (I,1, 142, Ip1, Ip2). The willingness to sub-
stitute product b by product a when being out of stock is y = .5. As the maximum
order quantity is set on Q = 10, the state space contains 14,651 states and in each
iteration, for each state 121 order quantity combinations are evaluated generating
the corresponding transition probabilities. Simulating the system with (best) order-
up-to levels S, = 13 and S, = 12 generates a daily profit of [T = 4.479 and
the percentage of waste on the total order quantity is Wasteperc, = 6.26 and
Wasteperc, = 5.23 based on a simulation of 400,000 periods. The value itera-
tion process converges in 12 iterations to an accuracy of € = 10~*. Simulation of
the generated order quantities [Q,, Opl(1,, Ip) reveals a daily profit of IT = 5.509
and less waste generation; the percentage of waste on the total order quantity is
Wasteperc, = 5.97 and Wasteperc, = 4.14. This illustrates that it is worth the
trouble to look into the generation of better order policies by value iteration for highly
perishable products when there is a willingness to substitute a product when it is out
of stock.

3.3 Complexity of the algorithm

To analyze the computational burden of the value iteration algorithms, we simply
measured the number of states and computational time of a Matlab implementation
for several instances. A summary is provided by Table 1.

The computational burden (complexity) of Algorithm 2 for the case of two products
with a shelf life of M is determined by the necessary number of iterations up to
convergence, the number of states (Ea + DM x (@b + 1)™ and the number of relevant
events in each state. We will denote the number of relevant events by Nre = Y | 1,4
I,. We can observe that for shelf life M = 3 the Matlab code becomes intractable
when the mean demand values are still realistic.

@ Springer

1588 G.Ortega et al.

Table 1 Number of states N and computational time (in seconds or minutes) of a Matlab implementation
for several instances with s, = s, = 1, ¥y = .5and ¢, = ¢, = .5 on a Intel i5 with 8GB RAM

Instance

Nr products 1 1 1 2 2 2 2 2

Shelf life M 2 3 4 2 2 3 3 3

0, 10 15 20 10 14 6 6 15

05 10 10 3 6 15

Ha 5 5 5 5 7 2 2 5

“p 5 5 1 2 5

N 121 4096 194,481 14,461 27,225 21,952 117,649 16.8 x 100
Comp time .03s 2.1s 9min 2min 6min 6min 99 min XXX

Largest case could not be solved

4 Parallelization of value iteration

Inorder to investigate a parallelization of VI, Algorithm 3 is constructed, which handles
the states with respect to the number of relevant events Nre in line 8 of Algorithm 2.

Algorithm 3 depicts the details of the sequential code that we have considered
to run the VI. For the case where no stock is available, indicated by j = 0, no
stochastic event is relevant. For the states without inventory of product a, i.e., where
1, = 0, no substitution behavior is possible. Therefore, our intention has been to
compute those states in parallel where substitution takes place (), I, > 0) because
they require more than 95% of the total runtime. Running Algorithm 3 reveals that the
most computationally demanding part are the lines 14—19 which compute the valuation
Fv(qq, qp) of an order decision (q,, qp). In order to tackle the parallelization, we have
considered a GPU approach using Compute Unified Device Architecture (CUDA)
interface.

CUDA is the parallel interface introduced by NVIDIA to develop parallel codes
using C or C++ language. CUDA provides the SIMT (Single Instruction, Multiple
Threads) programming model to exploit the GPU [12]. The programmer has to take
several features of the architecture into account, such as the topology of the multi-
processors and the management of the memory hierarchy. For the execution of the
program, the CPU (called host in CUDA) performs a number of kernel calls to the
device. The input/output data to/from the GPU kernels are communicated between the
CPU and the ‘global’ GPU memories by the PCI Express bus.

Algorithm 4 shows the host pseudocode of the GPU version that we have imple-
mented. The algorithm implements lines 14-19 of Algorithm 3 to be computed on
a GPU. Notice that the value of W is the same for all the states (j) of Algorithm 3,
therefore, only one copy of W from CPU memory to GPU memory is required (before
line 6 of Algorithm 3) in the GPU version.

In Algorithm 4, the number of threads and blocks are calculated and the call to GPU
kernel (GPUSubstitution) is carried out. After that, acommunication between the GPU
and the CPU memory is necessary to transfer the computed value Fv(q,, qp)-

@ Springer

A CUDA approach to compute perishable inventory control... 1589

Algorithm 3 Details of the Pseudocode of sequential VI for two products
1: Set vector elements V; to Esale; for j =1,..., N

2: repeat

Copy vector V into vector W

4 Determine states k corresponding to states (0, ...,0,¢4,0,...,0,gp)

50 Vo =mingg gp Wi

6: forj=0,...,N—1do

7

8

(95}

Determine expected sale Esale for state j
Determine /,, I corresponding to j

9: SetNre =3, Ior + 1) x O, I+ 1)

10: if ", Isr = 0then > No substitution can take place
11: Determine states k = F(qq, qp, (0, ..., 0, Ip1, Ip2, ..., Ippp), dp)

12: Fu(qa, qv) = Esalej + 3"y, paWk — cada — cbp

13: else > we might have substitution
14 forq, =0,..., Q, do

15 for q; = ,...,@bdo

16: for all Nre demand and substitution realizations d, u do

17: Determine states k = F(qq, qp, j, da, dp, 1)

18: Fv(qa, qp) = Bsalej + 35 paWk—cada — cbqp

19: Vi =maxg,, q,[Fv(qa, qp)]

20: until max; (V; — W;) —min;(V; — W;) <e

Algorithm 4 GPU host pseudocode computing future values Fv for substitution

nthreads < 32[457

1:
2: nblocks < (Q, + 1) x (Qp + 1)

3: Fv(qa, qp) < GPUSubstitution <<< nblocks, nthreads >>> > Alg. 5
4:

S:

Communicate Fv from GPU memory to CPU memory
VJ- = Esalej + maxg,,q, (Fv(qa, qp) — caqa — cpqp)

Algorithm 5 presents the GPUSubstitution kernel which computes Fv in parallel.
We spawn as many blocks as combinations (¢4, gp), i.¢., up to a total of (Q, + 1) x
(@b + 1) blocks, and each block contains, at least, as many threads as combinations
(dg, dp), 1.e., atotal of 32 {]g—ge] threads. Each thread computes the contribution to Fv
of a combination (d,, dj) for block (g, g») and stores the result in a per-block shared
memory array called thvfuture. Finally, the first thread of each block adds all these
partial values and writes the final result for (¢, gp) in a global array called Fuv.

5 Evaluation results

The value iteration for the two-product instance described in Sect. 3 has been imple-
mented using C and CUDA. The used platform is a Bullx R421-E4: 2 Intel Xeon
ES 2620v2 processor with 6 cores each and 64 GB of RAM. It is connected to 2
NVIDIA K80. Each NVIDIA K80 has two Kepler GK210 GPUs. The characteristics
of each NVIDIA K80 are given in Table 2. The compilation is done with the *-O3’
optimization flag. The platform runs Ubuntu 16.04 LTS and CUDA Toolkit 8.

For the investigated instance with u, = up = 5, we first measured the number
of relevant events Nre (see line 5 of Algorithm 5) for each state in one repeat-until

@ Springer

1590 G.Ortega et al.

Algorithm 5 G PU Substitution kernel computes Fv
Require: o
W.pa.Esalej.cacplalp.Qq:0p

1: __shared__ thvfuture > Block-scope shared array for Fv reduction
2: qq < bluck]dx.x/(@a +1)

3: qp < blockldx.x%(Q, + 1) > gq and gp, calculated from block ID
4: dadb < threadldx.x > Block-scope thread ID
5:Nre <~ Q lar + D) x O, Inr + 1)

6: if dadb < Nre then > If this thread has a valid combination of d,; and dj,
70 dg =dadb%(}, Iar + 1)) > d, and dj, calculated from local thread ID
8 dp=dadb/(}, Ior + 1))

9: Determine states k corresponding to k = F(qa, qp, J, da, dp)

10: thvfuture[dadb] =34 paWi > Every thread updates its thvfuture
11: __syncthreads > Synchronization point for all threads in each block
12: if threadldx.x == 0 then > For a single thread of every block

13: ivfuture = qa(Qp + 1) +qp
14: svfuture = Esalej — caqa — cpqp

15: fori =1,..., Nredo svfuture+ = thvfutureli]
Fulivfuture] = svfuture > Update Fv

16: return Fv(qq, qp)

Table 2 Characteristics of the

NVIDIA K80 NVIDIA K80

Peak performance (double prec.) (TFlops) 291

Peak performance (simple prec.) (TFlops) 8.74

Device memory (GB) 24

Boost clock rate (MHz) 875

Memory bandwidth (GB/s) 480
Multiprocessors 13

CUDA cores 4992
Compute capability 3.7

iteration. The result, Fig. 2, illustrates the strong unbalance among the different state
values j = 0, ..., N — 1 due to the difference of the values of 1,1, 1,2, Ip1 and Ip;.
In order to balance the workload of the substitution stage, the number of blocks and
threads is dynamically defined at every iteration (lines 1 and 2 of Algorithm 4).

In order to measure the runtime of the sequential and the GPU code of VI, we have
generated 4 instances of the problem where 1, and p;, are varied and the willingness
to substitute y = .5, sales price s, = s, = 1 and cost ¢, = ¢, = .5 are kept constant.
The instances are given in Table 3.

Table 4 shows the results of the experiments where the described parallel version is
compared to the sequential C code for the four instances in Table 3. For each problem,
we run the code for 100 iterations in order to have an accurate execution time and all
converged before this maximum has been reached. As can be observed from Table 4, the
parallel version improves the sequential version in a factor up to 11.7x. An interesting
aspect is that due to the use of GPU computing, the Substitution part has considerably
reduced its runtime. Specifically for P4 (the largest problem), GPUSubstitution is

@ Springer

A CUDA approach to compute perishable inventory control... 1591

450
400
350
300
250
200
150
100
50
0

-

Nre

539
1077
1615
2153

Q) N~
N © O
o~ o
m on <

5919
6457
6995
7533
8071
8609
9147
9685
10223
10761

- on o«
[e2] < 0
o 0 ™M
N < wn

11299
11837
12375
12913
13451
13989

State number

Fig.2 Number of relevant events Nre (see line 5 of Algorithm 5) for each state in one VI iteration to show
the unbalance among the state values j =0,..., N — 1

Table 3 Instances P1 to P4

with varying mean demand Pl P2 P3 P4
Has Up a 5 5 6 7

b 5 6 6 7

0, 11 11 13 14

0p 11 13 13 14

N 14,461 20,449 28,561 38,416

The sales price s, = s = 1 and cost ¢; = ¢, = .5 are kept constant.
Willingness of substitution is y = .5. Instead of running the repeat
until an accuracy, to measure the differences, we run the algorithm for
100 iterations

Table 4 Total runtime in seconds of the sequential and the GPU code to compute the VI algorithm

P1 P2 P3 P4
Seq. code
Total runtime of Algorithm 3 357.89 698.20 1358.04 4241.66
Substitution (lines 14-19) 351.31 688.71 1344.82 4217.15
GPU code
Total runtime 91.29 136.84 214.71 361.49
Communication host to device 0.00 0.00 0.01 0.01
Communication device to host 21.55 23.35 43.63 56.69
GPUSubstitution 39.94 67.29 111.99 215.54
Total Communic. GPU/CPU 21.56 23.35 43.64 56.70
% Communications 23.62 17.06 20.32 15.69
9% GPUSubstitution 43.75 49.18 52.16 59.62
% Other parts of VI 32.63 33.76 27.52 24.69

Row Substitution (GPUSubstitution) is runtime required by lines 14-19 of Algorithm 3 (line 3 of Algo-
rithm 4). Communication: required runtime for communication between CPU/GPU. %: percentage of the
runtime of the CUDA kernel, the communication and other functions

@ Springer

1592 G.Ortega et al.

19.6x faster than the sequential substitution. What can also be observed is that when
problems become larger, a larger part of the computation can be done by the GPU.

6 Conclusions

Value iteration is an algorithm that can be used to derive optimal inventory control
order policies. The computational challenge becomes interesting when a number of
products and the age distribution is considered simultaneously. The latter aspect is of
interest in the case of perishable products with alow mean demand that sometimes may
be substituted by other products when being out of stock due to a revealed customer
willingness to do so. This paper describes a simple model and illustrates the underlying
algorithm.

The complexity increases with the shelf life of a perishable product, but on the
other hand leads to less interesting policies, as simple order-up-to level policies give
practically the same performance in profit and waste generation. The challenging case
is where several highly perishable products may be substituted by another, because
ordering product a also requires looking into inventory levels (and age distribution)
of product b, which can be substituted by a. Basically, dimension grows more than
quadratically with the shelf life of the products.

Therefore, we developed a parallel version of the corresponding value iteration
algorithm based on computing on a GPU architecture the part of the model which
has the highest computational cost. This CUDA code tries to efficiently compute
the nested-loops required for calculating the substitution of one product by another.
Numerical results based on a case of only two products show that the parallel algorithm
may improve the performance of the sequential value iteration in a factor that reaches
11.7x. Our future work will be focused on the parallel implementation of the relevant
two product inventory management where shelf life is three.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

. Bellman R (1957) A Markovian decision process. J] Math Mech 6(5):679-684
. Buisman M, Haijema R, Hendrix EMT (2018) On the delta service level for demand substitution in
inventory control. IFAC-PapersOnLine 51:1660-1665

3. ChenP,LuL (2013) Markov decision process parallel value iteration algorithm on GPU. In: Proceedings
of 2013 International Conference on Information Science and Computer Applications. Atlantis Press,
pp 299-304

4. Chen X, Feng Y, Keblis MF, Xu J (2015) Optimal inventory policy for two substitutable products with
customer service objectives. Eur J Oper Res 246(1):76-85

5. Giirler U, Yilmaz A (2010) Inventory and coordination issues with two substitutable products. Appl

Math Model 34(3):539-551

o —

@ Springer

http://creativecommons.org/licenses/by/4.0/

A CUDA approach to compute perishable inventory control... 1593

10.
11.
12.
13.
14.
15.

16.

Haijema R, Minner S (2016) Stock-level dependent ordering of perishables: a comparison of hybrid
base-stock and constant order policies. Int J Prod Econ 181(PA):215-225

Hendrix EMT, Haijema R, Rossi R, Pauls-Worm KGJ (2012) On solving a stochastic programming
model for perishable inventory control. In: Murgante B et al (eds) Computational science and its
applications-ICCSA 2012. Springer, Heidelberg, pp 45-56

Hendrix EMT, Ortega G, Haijema R, Buisman M, Garcia I (2018) On computing optimal policies in
perishable inventory control using value iteration. In: Proceedings of the 18th CMMSE, pp 1-6
Herrera JFR, Hendrix EMT, Casado LG, Haijema R (2014) Data parallelism in traffic control tables
with arrival information. In: Euro-Par 2014: Parallel Processing Workshops. Springer, Cham, pp 60-70
Johannson A (2009) GPU-based Markov decision process solver. Master’s thesis, Reykjavik University,
Iceland

Minner S (2000) Strategic safety stocks in supply chains. Springer, Berlin

NVIDIA Corporation: CUDA C PROGRAMMING GUIDE PG-02829-001_v9.2 (2018)

Puterman ML (1994) Markov decision processes: discrete stochastic dynamic programming, 1st edn.
Wiley, New York

Ruiz S, Herndndez B (2015) A parallel solver for Markov decision process in crowd simulations. In:
2015 Fourteenth Mexican International Conference on Artificial Intelligence (MICAI), pp 107-116
Silver E, Pyke D, Peterson R (1998) Inventory management and production planning and scheduling.
Wiley, New York

Yadavalli V, Sundar D, Udayabaskaran S (2015) Two substitutable perishable product disaster inventory
systems. Ann Oper Res 233(1):517-534

@ Springer

	A CUDA approach to compute perishable inventory control policies using value iteration
	Abstract
	1 Introduction
	2 Value iteration for a one product model
	2.1 Decision model for one product
	2.2 Value iteration to reach the optimal policy
	2.3 Illustration for one product case

	3 Handling two products due to substitution interaction
	3.1 Value iteration for two products simultaneously
	3.2 Two product instances
	3.3 Complexity of the algorithm

	4 Parallelization of value iteration
	5 Evaluation results
	6 Conclusions
	References

