The Journal of Supercomputing (2018) 74:5625-5627
https://doi.org/10.1007/s11227-018-2651-8

@ CrossMark

Reengineering for parallelism in heterogeneous parallel
platforms

1

J. Daniel Garcia'® - Kevin Hammond? . Lutz Schubert3

© Springer Science+Business Media, LLC, part of Springer Nature 2018

1 Introduction

In recent years, parallel programming models have evolved dramatically. While, his-
torically, the main focus of research has been on exploiting multi-core/many-core
processors with the expectation of an increasing number of cores per chip, the emer-
gence of increasingly heterogeneous computing has changed the landscape. We have
moved from a scenario that is mostly dominated by OpenMP [1] at the node level
and by MPI [2] at the cluster level towards a new situation where GPUs and other
accelerators are starting to have a pervasive presence in the target parallel platforms.

The presence of GPUs in the Top 500 Supercomputer list [3] has also been increas-
ing. In this new scenario, both new and existing applications need to be adapted to deal
with different and complex hardware environments. The number of legacy applications
that need to be ported to multiple heterogeneous architectures makes it necessary to
improve the process of transforming existing applications to new programming mod-
els.

Parallel patterns have been in use since the 90s [4]. They have emerged as a way of
expressing parallelism in existing sequential applications, providing a way of raising
the abstraction level and making it possible to ensure a proper separation of con-
cerns between the application semantics and technical implementation details. Many
algorithms match a parallel pattern approach, and patterns are easily exploitable by
heterogeneous parallel architectures [5]. With the emergence of heterogeneous plat-
forms, patterns have been shown to be an excellent way to express algorithms that can
then been mapped to multiple architectures, so reducing the software development
effort.

B J. Daniel Garcia
jdgarcia@inf.uc3m.es

University Carlos III of Madrid, Leganes, Madrid, Spain
2 University of St. Andrews, St Andrews, UK

University of Ulm, Ulm, Germany

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-018-2651-8&domain=pdf
http://orcid.org/0000-0002-1873-9706

5626 J.D. Garcia et al.

Several recent research projects have attempted to provide a holistic approach that
combines the need for transforming legacy applications with mechanisms for express-
ing application semantics in suitable abstractions that can then been mapped efficiently
to different heterogeneous architectures. For example, the REPARA and ParaPhrase
projects [6, 7] have focused on partitioning applications into components that can
be deployed on different heterogeneous devices through software refactoring mecha-
nisms. The recent RePhrase project [8] extended this to take a software engineering
approach where automated identification and transformation of patterns are central.

In summary, the hardware landscape has changed dramatically over the last decade
from homogeneous multi-processor and multi-core systems to a more diverse environ-
ment where different kinds of accelerators comprise a central part of the infrastructure.
GPUs have become dominant amongst these accelerators, bringing new programming
models as first-class citizens. Within this new research space, there is a need to express
application semantics independently from specific programming models as well as to
perform transformations on legacy sequential applications.

2 Special issue presentation

This special issue includes five exciting new research contributions. Two of these
correspond to extended research contributions from the Repara 2016 workshop that
was held in conjunction with the 16th IEEE International Conference on Scalable
Computing and Communication, in Toulouse, France, during July 2016. The remaining
three contributions were selected from an open call for papers.

In “Exploring the interoperability of remote GPGPU virtualization using rCUDA
and directive-based programming models” [9], Castell6 et al. study the integration
of two directive-based programming models, OmpSs and OpenACC, to make use
of remote virtualized CUDA devices through rCUDA. This work moves towards a
scenario where applications do not need a full manual rewrite for moving from local
GPGPU to the use of remote GPGPUs.

In “MeterPU: a generic measurement abstraction API” [10], Lu and Kessler present
a low overhead abstraction layer for taking measurements on time and energy con-
sumption from different hardware components in an heterogeneous platform. They
show how this abstraction layer can be used in optimization frameworks, providing
examples for autotuned skeleton back-end selection that can be used for optimizing
for speed or energy.

In “Data stream processing via code annotations” [11], Danelutto et al. show
how code annotations can be used to express stream parallelism. The code can be
transformed to a concrete implementation (in this case the FastFlow library) through
source-to-source transformation. This approach has been evaluated as a feasible way
of performing quick prototyping on different parallelization strategies. The work that
has been presented in this paper is an excellent example of how existing streaming
applications can be refactored to target new architectures.

In “Assessing and discovering parallelism in C++ code for heterogeneous plat-
forms” [12], Sanchez et al. introduce AKI as an automatic kernel identification and
annotation tool aiming to identify potential kernels from C++ sequential applications.

@ Springer



Reengineering for parallelism in heterogeneous parallel... 5627

Classifying kernels that can be executed in heterogeneous devices is a relevant step
towards better reengineering of software in situations where heterogeneous devices
are included in parallel platforms.

Finally, in “A parallel pattern for iterative stencil+reduce” [13], Aldinucci et al.
present a new pattern: the iterative stencil-reduce that can be used to simplify a category
of data-parallel applications. This pattern can generalize more simple data patterns,
both data parallel and stream parallel. The work presented provides a valuable case
study of how parallel patterns can be generalized, and also how they can help to express
application semantics separated from implementation-specific details.

In summary, the papers included in this special issue are representative of the
excellent progress that the research community is making towards better approaches
for reengineering software in parallel heterogeneous platforms. They highlight many
innovative new techniques, and suggest exciting new research directions that will
enable better and easier utilization of heterogeneous parallel hardware in future parallel
applications.

References

1. Dagum L, Menon R (1998) OpenMP: an industry standard API for shared-memory programming.
IEEE Comput Sci Eng 5(1):46-55
2. Gropp WD, Gropp W, Lusk E, Skjellum A (1999) Using MPI: portable parallel programming with the
message-passing interface, vol 1. MIT Press, Cambridge
3. TOP500 Supercomputer sites (2018) www.top500.org. Accessed 10 Sept 2018
4. Gorlatch S, Cole M (2011) Parallel skeletons. In: Padua DA (ed) Encyclopedia of parallel computing.
Springer, Berlin, pp 1417-1422
. McCool M, Reinders J, Robinson A (2012) Structured parallel programming: patterns for efficient
computation. Morgan-Kaufmann, Burlington
. REPARA Project. www.repara-project.es. Accessed 10 Sept 2018
ParaPhrase Project. www.paraphrase-ict.eu. Accessed 10 Sept 2018
. RePhrase Project. https://rephrase-eu.weebly.com/. Accessed 10 Sept 2018
. Castell6 A, Pefla AJ, Mayo R, Planas J, Quintana-Orti E, Balaji P (2016) Exploring the interoper-
ability of remote GPGPU virtualization using rCUDA and directive-based programming models. J
Supercomput. https://doi.org/10.1007/s11227-016-1791-y
10. LiL, Kessler C (2016) MeterPU: a generic measurement abstraction API. J Supercomput. https://doi.
org/10.1007/s11227-016-1792-x
11. Danelutto M, De Matteis T, Mencagli G, Torquati M (2016) Data stream processing via code annota-
tions. J Supercomput. https://doi.org/10.1007/s11227-016-1793-9
12. de Rio D, Sotomayor R, Sanchez LM, Garcia-Blas J, Calderon A, Fernandez J (2016) Assessing and
discovering parallelism in C++code for heterogeneous platforms. J Supercomput. https://doi.org/10.
1007/s11227-016-1794-8
13. Aldinucci M, Danelutto M, Drocco M, Kilpatrick P, Misale C, Peretti G, Torquati M (2016) A parallel
pattern for iterative stencil +reduce. J Supercomput. https://doi.org/10.1007/s11227-016-1871-z

(9.3

O 0

@ Springer


http://www.top500.org
http://www.repara-project.es
http://www.paraphrase-ict.eu
https://rephrase-eu.weebly.com/
https://doi.org/10.1007/s11227-016-1791-y
https://doi.org/10.1007/s11227-016-1792-x
https://doi.org/10.1007/s11227-016-1793-9
https://doi.org/10.1007/s11227-016-1794-8
https://doi.org/10.1007/s11227-016-1871-z

	Reengineering for parallelism in heterogeneous parallel platforms
	1 Introduction
	2 Special issue presentation
	References




