
J Supercomput (2018) 74:3016–3038
https://doi.org/10.1007/s11227-018-2349-y

Incentive-aware virtual machine scheduling in cloud
computing

Heyang Xu1 · Yang Liu1 · Wei Wei1 · Wenqiang Zhang1

Published online: 2 April 2018
© The Author(s) 2018

Abstract As cloud computing is a market-oriented utility, optimal virtual machine
(VM) scheduling in cloud computing should take into account the incentives for both
cloud users and the cloud provider. However, most of existing studies on VM schedul-
ing only consider the incentive for one party, i.e., either the cloud users or the cloud
provider. Very few related studies consider the incentives for both parties, in which
the cost, one of the most attractive incentives for cloud users, is not well addressed. In
this paper, we investigate the problem of VM scheduling in cloud computing by opti-
mizing the incentives for both parties. The problem is formulated as a multi-objective
optimization model, i.e., maximizing the successful execution rate of VM requests
and minimizing the combined cost (incentives for cloud users), and minimizing the
fairness deviation of profits (incentive for the cloud provider). The proposed multi-
objective optimization model can offer sufficient incentives for the two parties to
stay and play in the cloud and keep the cloud system sustainable. A heuristic-based
scheduling algorithm, called cost-greedy dynamic price scheduling, is then developed
to optimize the incentives for both parties. Experimental results show that, compared
with some popular algorithms, the developed algorithm can achieve higher successful

B Yang Liu
liu_yang@haut.edu.cn

Heyang Xu
xuheyang124@126.com

Wei Wei
nsyncw@126.com

Wenqiang Zhang
zhangwq@haut.edu.cn

1 College of Information Science and Engineering, Henan University of Technology,
Zhengzhou 450001, Henan, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-018-2349-y&domain=pdf


Incentive-aware virtual machine scheduling in cloud… 3017

execution rate, lower execution cost, smaller fairness deviation and most important,
higher degree of user satisfaction in most cases.

Keywords Cloud computing · Virtual machine scheduling · Incentives · Multi-
objective optimization model · User satisfaction

1 Introduction

Cloud computing is a large-scale distributed computing paradigm in which a pool of
computing resources, e.g., computation, storage and networking, is available to cloud
users via the Internet [1, 2]. With the development of virtualization technology, cloud
providers enable their users to submit job requests with specific resource demands
and software stack (e.g., operation systems and applications) and then package them
all together into virtual machines (VMs) [3, 4]. By submitting job requests to cloud
providers, users no longer need to purchase andmaintain sophisticated hardware for the
resource usage in their peak load, thus reducing their total cost of ownership [5]. Cloud
computing has now become the most emphasized information and communications
technology (ICT) paradigm and is directly or indirectly used by almost every online
users [6].

In cloud environments, users can submit their job requests anytime and anywhere.
Once receiving a job request, the cloud provider should create aVMon a suitable phys-
ical machine and allocate required resources to guarantee quality of service (QoS),
according to the user’s job demands [7]. How to allocate VMs to suitable physical
machines according to cloud users’ QoS requirements is the VM scheduling prob-
lem studied in this paper. Since cloud computing is a market-oriented utility, optimal
VM scheduling in cloud computing should allow the cloud provider and cloud users
to focus on their own businesses to optimize their own incentives, respectively [8].
Job requests submitted by different cloud users may demand different amounts of
resources. For instance, job requests for high-performance computing require more
CPU cores, while big data processing applications require more memory [9, 10]. Fur-
thermore, the cloud provider provisions heterogeneous virtual machine types with
different resource configurations. If the cloud provider underestimates the provision
of resources to cloud users, it would result in service-level agreement (SLA) viola-
tions and thus cause penalties. Otherwise, overestimating the provision would lead to
resource under utilization and losing revenue as well.

VM scheduling in cloud computing is a complex problem, in which different con-
cerns should be taken into account and then be properly addressed. Basically, these
concerns can be classified into two categories, i.e., concerns of cloud users and those
of cloud providers. From the perspective of cloud users, there are two major concerns
in VM scheduling, i.e., successful execution rate of the VM requests (SERoV) (e.g.,
[11–14]), and the combined cost (which is the total execution cost of all users’ job
requests) incurred (e.g., [3, 7, 11, 15]). These two concerns are important ones since
cloud users generally hope to successfully complete their submitted job requests (i.e.,
to meet their respective deadlines and budgets), and at the same time, at the lowest
possible cost. If, on the contrary, users’ job requests frequently miss their deadlines,

123



3018 H. Xu et al.

or the cost incurred is high, then cloud users experience low degree of user satisfac-
tion and tend to lose interest in the cloud system and may finally leave it. Therefore,
increasing SERoV is an incentive for cloud users, and so is reducing combined cost,
which shall be considered in VM scheduling.

On the other hand, from the perspective of the cloud provider, the most interest-
ing thing is to make the best use of the provided computing resources to make profits.
However, if theworkload on a computing resource (CR) is too high, thismakes it likely
that the VMs residing on the given CR cannot receive the required resources, which
may lead to SLA violation and degrade the degree of user satisfaction. Frequent fail-
ures to fulfill cloud users’ expectations inevitably damage the reputation of the cloud
provider, which in the long run will lead to profit loss. In this respect, a major concern
of the cloud provider is to make sure all the provided CRs have equal opportunities
to offer their resources and make profits according to their resource capacities. In this
paper, we call this concern as profit fairness among all the provided CRs. Therefore,
increasing profit fairness, or equivalently reducing the fairness deviation of profits
(FDoP, details are shown in Sect. 4.1.2) among all the provided CRs, is desirable from
the perspective of the cloud provider [16, 17], which is an incentive for the cloud
provider that shall also be considered in VM scheduling.

From the above discussions, it can be observed that, in cloud environments, there
are different incentives for the two parties, i.e., cloud users and the cloud provider.
These incentives for both parties should be considered and properly addressed so
that a more comprehensive VM scheduling algorithm can be developed, which could
help to provide both parties with sufficient incentives to stay and play in the cloud,
leading to a sustainable system [12, 17]. Much attention has been paid on the field
of VM scheduling in cloud computing [3, 7, 9–11, 14]. (Details are given in Sect. 2.)
However,most of them are either from the incentive for cloud users or from the ones for
the cloud provider to address this problem, and very few studies take into consideration
the incentives for both parties.

This paper, in contrast, makes an endeavor to investigate the VM scheduling prob-
lem in cloud computing by addressing the major incentives for both parties, i.e.,
maximizing the SERoV andminimizing the combined cost (incentives for cloud users),
and at the same timeminimizing the FDoP (incentive for cloud provider). The problem
of incentive-aware VM scheduling is thus formulated as a multi-objective optimiza-
tion problem. Then, we develop a heuristic scheduling algorithm, called Cost-Greedy
Dynamic Price Scheduling (CGDPS) algorithm, which can effectively allocate VMs
to suitable physical resources. Simulation results show that the proposedCGDPS algo-
rithm is effective and can achieve higher SERoV, lower cost, smaller FDoP and most
important, higher degree of user satisfaction, compared with some popular algorithms
(i.e., PSO [11], FCFS [15], MinCTT [18]) in most cases.

The rest of this paper is organized as follows: A detailed review of related work on
VM scheduling in cloud computing is given in Sect. 2. The system model used in the
paper is introduced in Sect. 3. Section 4 puts forward the incentives for cloud users
and the cloud provider and proposes a heuristic scheduling algorithm called CGDPS
algorithm. Simulations, results and analyses are given in Sect. 5. We conclude this
paper in Sect. 6.
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2 Related work

Many efforts have been put into the research on VM scheduling in cloud computing.
For example, Yang and Chen expected [13] to enhance the successful ratio of backup
tasks for schedulingMapReduce tasks and proposed an adaptive task allocation sched-
uler (ATAS) to determine the response time of backup tasks in heterogeneous cloud
system. Their research focused on optimizing the execution time for MapReduce
tasks. However, in cloud computing, there is another major concern of cloud users
other than execution time, i.e., the combined cost. In order to reduce cloud users’ exe-
cution cost, some cost-based approaches [3, 7, 14] have been proposed. For example,
by considering different plans for renting resources from the cloud provider, Chaisiri
et al. [3] formulated the VM scheduling problem as a stochastic programming model
and proposed an OCRP algorithm with the aim of minimizing the total cost of cloud
users. Zhang et al. [7] proposed a cost-efficient algorithm (ROSA) to find the feasible
schedule that can minimize cloud users’ total execution cost. Li et al. [14] also inves-
tigated the cost minimization-oriented VM scheduling problem in hybrid clouds and
proposed an ODPA algorithm. On the basis of these research works, this paper further
takes users’ satisfactions into consideration.

To further improve the degree of users’ satisfaction, some studies try to optimize
both the execution time and cost for cloud users’ job requests [11, 18–24]. For example,
Garg et al. [18] presented aheuristic algorithm,min–mincost time trade-off (MinCTT),
to manage the trade-off between the execution time and cost spent to execute users’
jobs. Somasundaram and Govindarajan [11] proposed a particle swarm optimization
(PSO)-based scheduling mechanism to minimize the total execution time and the total
execution cost of users’ submitted job requests. In [19], Singh and Chana developed a
cloud workload management framework, which is actually a cloud workload analyzer
(CWZ). Then, based on the developed CWZ, they [20] proposed a QoS metric-based
scheduling algorithm to optimize the execution cost and execution time by analyzing
and categorizing the workloads submitted by cloud users. Recently, Ran et al. [21]
proposed a dynamic VM provisioning strategy for determining the number of the
purchased VMs dynamically in order to minimize the total cost while keeping QoS.
Wang et al. [22] also focused on the performance metrics from the view of users
and proposed a resource provisioning algorithm, called max–min-cloud algorithm,
to minimize the mean of the stochastic response time of users’ request. Moreover,
researches on workflow scheduling (e.g., [23] and [24]) mostly focused on optimizing
the total execution time and the combined cost of users’ workflows, as well. It can be
noted that, although these researches cloud improve the degree of users’ satisfaction
to a certain extent, they all only focused on addressing the incentives for cloud users.

Some other existing studies tried to address the VM scheduling problem by con-
sidering the incentives for the cloud provider. For example, Zheng et al. [25] studied
the VM provisioning jointed with physical servers’ maintenance scheduling problem
and proposed a heuristic scheduling algorithm to maximize the revenue of the cloud
provider. Albagli-Kim et al. [26] proposed a dwindling job scheduling algorithm to
maximize the profit of the cloud provider for processing cloud users’ job requests.Wei
et al. [9, 10] made an endeavor to best utilize cloud provider’s physical resources by
trying to avoid resource starvation where dominant resources are starved while non-
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dominant resources are wasted. They proposed a heterogeneous resource allocation
algorithm, SAMR, from the cloud provider’s point of view. Yu et al. [27] propose a
probabilistic guarantee scheme with the objective of minimizing the total migration
overhead caused by inefficient migrations catering to dynamic and bursty resource
demands of VMs. Besides, some researches (e.g., [5] and [28, 29]), which tried to
optimize energy consumption of cloud data centers, are also from the cloud provider’s
respective to address the VM scheduling problem.

From the above review of the related works, we know that most of existing stud-
ies on VM scheduling in cloud computing only address the incentive for one party,
i.e., either the cloud users or the cloud provider. However, cloud users and the cloud
provider as the two main participated entities of a cloud system may have the differ-
ent incentives. These incentives for both parties should be considered and properly
addressed for providing the both parties with sufficient incentives to stay and play in
the cloud and leading to a sustainable cloud system. Nevertheless, very few studies
consider the incentives for both parties. For example, Tian et al. [30] investigated
the placement of web applications, which is a similar problem as VM scheduling in
cloud computing. They proposed a heuristic algorithm with the objectives of satisfy-
ing the resource demands of users’ web applications as much as possible and at the
same time, keeping load balance among the resource provider’s physical machines.
Recently, Liu and Shen [31] proposed a dependency-aware and resource-efficient
scheduling (DRS) algorithm with the objectives of decreasing the response time and
simultaneously improving the resource utilization. Gregory andMajumdar [32] inves-
tigated the resource management technique for scheduling batches of MapReduce
tasks and proposed a resource management techniques by considering concerns of
both cloud users (QoS requirement, i.e., deadline) and the cloud provider (i.e., energy
consumption). These researches are from the perspectives of both the users and the
resource provider; nevertheless, the combined cost, which is one of the most attractive
incentives for cloud users [17], is not considered in deriving the scheduling algo-
rithms. Although much attention has been paid on the field of VM scheduling, there
are few studies considering incentives for both cloud users and the cloud provider,
in which the combined cost, one of the most attractive incentives for cloud users, is
not addressed. To the best of our knowledge, there is no existing research on address-
ing VM scheduling problem to optimize the SERoV and the combined cost for cloud
users and simultaneously optimize FDoP for the cloud provider before. Therefore, this
paper investigates the incentive-aware VM scheduling in cloud computing by taking
into account the incentives for both cloud users and the cloud provider.

3 System model

This paper investigates the VM scheduling problem in cloud computing, where mul-
tiple customers may submit job requests at random instants with various workloads
that should be fulfilled before the specified deadlines [7]. The system model generally
consists of three main active entities, namely the cloud provider who owns the infras-
tructure resources, cloud users who are the resource consumers, and cloud scheduler.
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Cloud users (such as individuals, small and medium enterprises) have demands
to execute their jobs with certain QoS requirements. Generally, some important QoS
factors that users most concern about are budget and deadline [7, 15, 17]. Each job
may consist of several subtasks, and each subtask requires one CPU core to execute
it. Subtasks in the same job should be executed concurrently on the same computing
node [5, 12]. Denote by J={J1, J2,…, Jm} the n(n ≥1) job requests submitted by
cloud users during the scheduling interval [0, T ). Each job request Ji(1≤ i≤n) can be
characterized by a six-tuple Ji =(Ki, Li, memi, ti, bi, di) [7, 11, 15, 18, 33], in which
Ki(Ki ≥1) is the number of subtasks that job request Ji contains;Wi ={wik |1≤k≤Ki}
is the workload set of job request Ji’s Ki subtasks, in which wik is the workload of
the k:th subtask in job request Ji, in terms of millions of instructions (MI); memi

represents the memory size required by job request Ji; ti(0≤ ti <T ) is the arrival
time that job request Ji arrives at the cloud provider’s data center; bi is job request
Ji’s budget constraint, which means that the cost of executing job request Ji must
not exceed bi; di represents its deadline by which the cloud user desires job request
Ji to be completed. Before the jobs are executed, the desirable resources should be
allocated.

The cloud provider owns infrastructure resources in its data center, which could be
composed of hundreds or thousands of computing nodes. These computing nodes are
heterogeneous since different computing nodes may have different CPU cores, dif-
ferent CPU processing speeds, different memory sizes and different prices. Without
loss of generality, suppose that the cloud data center consists of m(m ≥1) hetero-
geneous computing nodes, denoted by CN={CN1, CN2,…, CNm}. Each computing
node CNj(1 ≤ j ≤ m) can be characterized by a four-tuple CNj =(Corej, memj, sj, pj)
[12, 34, 35], in which Corej and memj represent the number of CPU cores and mem-
ory size provided by computing node CNj, respectively; sj is the processing speed of
computing node CNj’s CPU cores, in terms of million instructions per second (MIPS);
pj is the price of a CPU core, which equals to the cost of using a single CPU core of
computing node CNj per second. To provision resources for users’ job requests, the
cloud provider should first encapsulate all the job requests integrated with their own
specific resource demands into different VM requests [3, 36]. Thus, each job request
Ji can be packaged as a VM request Vi according to Ji’s characterization Ji =(Ki, Li,
memi, ti, bi, di). The packaged VM requests are then submitted to the cloud scheduler
for scheduling. For convenience of reading, we use VM request instead of job request
in the rest of the paper.

The cloud scheduler manages the collections of VM requests, gathering all com-
puting nodes’ resource information (such as available CPU cores, available memory
size, the price, etc.), mapping each VM request to a suitable computing node and pro-
visioning the required resources for the VM requests based on their QoS requirements.
Once a VM request is successfully mapped onto a computing node and starts to exe-
cute, it will non-preemptively occupy the provisioned resources until its workloads are
completed. After successfully completing the workloads of a VM request, the cloud
scheduler is also responsible for releasing the provisioned resources. Then, the cloud
provider charges cloud users for the provisioned resources.

Generally, the problem of VM scheduling in cloud computing can be described
as follows: Suppose that a cloud data center consists of m heterogeneous computing
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nodes CN={CN1, CN2,…, CNm}, and there are n VM requests V={V1, V2, …, Vn}
submitted by cloud users, the problem VM scheduling is to allocate each VM request
to a suitable computing node, as to optimize the incentives for both the cloud users
and the cloud provider.

4 Problem formation and proposed algorithm

This paper focuses on the VM scheduling problem, i.e., how to determine the allo-
cations of VM requests to computing nodes, taking into account the QoS guarantees,
as well as the incentives for both the cloud users and the cloud provider. Cloud users
may have various QoS requirements, and different computing nodes may have differ-
ent processing speeds and different prices. As the two main active entities of a cloud
system, cloud users and the cloud provider may also have different concerned incen-
tives. For example, cloud users always desire their VM requests can be successfully
allocated with low cost and high QoS guarantees. However, for the cloud provider, the
most important concern is to make full use of its computing node resources to obtain
high profit. All the above-mentioned challenges make VM scheduling problem more
complex to be resolved.

4.1 Problem formulation

This paper formulates the VM scheduling problem in cloud computing as a multi-
objective optimization model. Before presenting the details of the optimization model,
we first introduce the incentives for both cloud users and the cloud provider.

4.1.1 Incentives for cloud users

From the perspective of cloud users,manyobjectives could be defined, butwhat attracts
them most is that their VM requests can be successfully allocated and executed at
low cost with high QoS guarantees. If the cost of VM allocation is too high or the
job executions frequently miss their deadlines, users will lose interests in the cloud
system.Consequently, this paper chooses the successful execution ratio of VM requests
(SERoV) and the combined cost as the cloud users’ incentives. The SERoV, denoted
by θ , is the value of the number of successfully allocated VM requests divided by the
total number of all VM requests submitted by cloud users, which can be given by

θ �
∑n

i�1 ϕi

n
, (1)

where ϕi indicates whether VM request Vi is completed before its deadline. If VM
request Vi is completed before its deadline, then ϕi � 1; otherwise, ϕi � 0.
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The combined cost, denoted by C, is the sum of the costs for all the successfully
allocated VM requests, which can be given by

C �
n∑

i�1

m∑

j�1

[

xi j · Ki · max
1≤k≤Ki

(wik/s j ) · p j

]

, (2)

where xij indicates whether VM request Vi is allocated to computing node CNj. If
VM request Vi is allocated to computing node CNj, then xi j � 1; otherwise, xi j � 0.
The term wik/s j denotes the execution time of the k:th subtask of VM request Vi
on computing node CNj. The term max1≤k≤Ki (wik/s j ) is the execution time of VM
request Vi on computing node CNj, which is equal to the maximum execution time
among VM request Vi’s Ki subtasks. It means that if VM request Vi is successfully
allocated to computing node CNj, it will occupy all the provisioned resources until all
its workloads are completed.

4.1.2 Incentive for the cloud provider

From the perspective of cloud provider, due to the limitation of the cost of investment,
cloud provider’s data center consists of many heterogeneous computing nodes.What’s
more, the cloud provider must offer customizable services, which makes itself face
a problem, i.e., how to make full use of all its computing node resources to obtain
profit. If a computing node can hardly get the opportunity to execute any VM request,
it cannot be profitable for the cloud provider. Otherwise, if there are too many VM
requests executing on a computing node, it may violate the QoS guarantees promised
to the users, which cloud also reduce the cloud provider’s profit. To make sure the
fairness of obtaining profit among all the provided computing nodes can effectively
avoid the above-mentioned situation [17, 37, 38].Fairness Deviation of Profits (FDoP)
among the computing nodes can ensure that each computing node should have equal
opportunity to offer its resources andgain a fair profit according to its resource capacity.
It means that a computing node can obtain the share of profit proportional to the
capacity that it invests to the cloud system. The FDoP is attractive to both computing
nodes with low resource capacity and those with high capacity. Therefore, this paper
chooses the FDoP as the incentive for the cloud provider.

The obtained profit of computing node CNj, denoted by profitj, is the sum of the
costs charged from the cloud users for successfully completing their VM requests, so
profitj can be given by

profit j �
n∑

i�1

[

xi j · Ki · max
1≤k≤Ki

(wik
/
s j ) · p j )

]

. (3)
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The profit rate of computing node CNj, denoted by μj, is defined as the ratio of the
obtained profit of CNj divided by its total CPU capacity, so the calculation of μj can
be given by

μ j � profit j
Core j · s j . (4)

The FDoP among the computing nodes can be measured by the standard deviation
of the profit rates of all the computing nodes. Denote by σ the FDoP among the
computing nodes, then we have

σ � std_dev(μ1, μ2, . . . , μm)

�
√
√
√
√ 1

m

m∑

j�1

(μ − μ j )2, (5)

where μ is the average value of the profit rates of all the computing nodes.

4.1.3 Multi-objective optimization model

In this paper, we make an endeavor to investigate the problem of VM scheduling by
addressing the major incentives for both parties in cloud computing, i.e., maximizing
the SERoV and minimizing the combined cost (incentives for cloud users), and at the
same time minimizing the FDoP (incentive for the cloud provider). The problem of
incentive-aware VM scheduling in cloud computing can thus be formulated as the
following multi-objective optimization model.

Objectives:

Max θ �
∑n

i�1 ϕi

n
(I)

Min C �
n∑

i�1

m∑

j�1

[

xi j · Ki · max
1≤k≤Ki

(wik
/
s j ) · p j

]

; (II)

Min σ �
√
√
√
√ 1

m

m∑

j�1

(μ − μ j )2. (III)

Subject to:

(i)

xi j ∈ {0, 1}, ∀i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . ,m};
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(ii)

m∑

j�1

xi j ≤ 1, ∀i ∈ {1, 2, . . . , n};

(iii)

n∑

i�1

xi j · Ki ≤ Core j , ∀ j ∈ {1, 2, . . . ,m};

(iv)

n∑

i�1

xi j · memi ≤ Mem j , ∀ j ∈ {1, 2, . . . ,m};

(v) ∀i ∈ {1, 2, . . . , n}, if xi j � 1, then computing node CNj must satisfy the
following two restrictions:

wti + max
1≤k≤Ki

(wik/s j ) ≤ di ; (6)

Ki · max
1≤k≤Ki

(wik/s j ) · p j ≤ bi . (7)

In the proposedmulti-objective optimizationmodel, optimization objective (I)max-
imizes the successful execution rate of VM requests, which tries to make sure that all
the VM requests can be successfully executed. Optimization objective (II) minimizes
the combined cost, which is another incentive for cloud users. It tries to reduce the
total execution cost of all cloud users for their submitted job requests. Optimization
objective (III) minimizes the fairness deviation of profits among cloud provider’s all
computing nodes. This objective tries to ensure that all the computing nodes’ profit
rates are the same, which means that all the computing nodes can get profits for the
cloud provider according to their resource capacity. The proposedmulti-objective opti-
mization model can offer sufficient incentives for both the cloud users and the cloud
provider, encourage the two parties to stay and play in the cloud system and keep the
cloud system sustainable.

The first constraint defines the feasible range of decision variable xij. Constraint (ii)
ensures that a VM request should be assigned to no more than one computing node.
Constraint (iii) is CPU capacity restriction, which specifies that the total provisioned
CPU cores should not exceed its available number. Constraint (iv) is memory capacity
restriction, which is similar to constraint (iii). The last constraint indicates that if
VM request Vi is allocated to computing node CNj, then computing node CNj must
satisfy VM request Vi’s deadline and budget restrictions. In Eq. (6), the term wti is
the waiting time of VM request Vi; the term max1≤k≤Ki (wik/s j ) is the execution time
of VM request Vi on computing node CNj, which is equal to the maximum execution
time among VM request Vi’s Ki subtasks. Therefore, Eq. (6) constrains that the sum
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of VM request Vi’s waiting time and execution time must be less than its deadline.
Equation (7) constrains that the execution cost of VM request Vi on computing node
CNj must be less than its budget.

This paper formulates the incentive-aware VM scheduling in cloud computing as
a multi-objective optimization problem, i.e., maximizing the SERoV [objective (I)],
minimizing the combined cost [objective (II)] and minimizing the FDoP [objective
(III)]. It can be noted that, when substituting Eq. (3) and Eq. (4) into Eq. (5), the
last optimization objective, (III), is not linear concerning the decision variable xij.
Therefore, the proposed optimization model is a nonlinear optimization problem.
Moreover, from the first two constraints we can see that the problem is a kind of
combinatorial optimization problem, which has been proved to be a NP-hard problem
[30]. The intractability of the problem increases exponentially with the number of
variables if being handled with deterministic algorithms, such as exhaustive search.
It becomes more challenging with the increase in the proliferation and complexity of
cloud data centers [8]. Using an heuristic-based algorithm to tackle VM scheduling
problem in cloud computing has received increasing attentions in recent years, as such
an algorithm offers an NP-hard problem global solution acceptable in a time frame
proportional to the number of variables [17, 39, 40]. Therefore, this paper develops
a heuristic-based algorithm, called cost-greedy dynamic price scheduling (CGDPS)
algorithm, to tackle the incentive-aware VM scheduling problem.

4.2 Proposed algorithm

Before giving the detailed description of the developed CGDPS algorithm, two defi-
nitions should be explicitly understood.

Definition 1 Candidate Node Set (CNS): For an arbitrary VM request Vi ∈ V, if
the resource capacity of a computing node CN j ∈ CN can satisfy VM request Vi ’s
resource demands and, at the same time, the computing node CN j can successfully
complete VM request Vi ’s workloads before its deadline with the cost less than its
budget, then the computing node CN j is a candidate node for VM request Vi . All the
candidate nodes of VM request Vi compose the candidate node set of VM request Vi ,
which can be denoted by CNSi . If there is more than one candidate node for a VM
request, then the developed algorithm will allocate the VM request to the candidate
node with the lowest cost.

Definition 2 SchedulingMatrix (SM): LetX � (xi j )n×m be the scheduling matrix, in
which xi j is the decision variable of the proposed multi-objective optimization model
(shown in Sect. 4.1.3). If VM request Vi is allocated to computing node CN j , then
xi j � 1; otherwise, xi j � 0. Actually, the scheduling matrix is the scheduling result
obtained by a certain algorithm.

The pseudo-code of the developed CGDPS algorithm is shown in Algorithm 1. The
inputs of CGDPS algorithm are the set of VM requests, V={V1, V2, …, Vn}, and
the set of computing nodes, CN={CN1, CN2,…, CNm}. The output is the obtained
scheduling matrix X=(xij)n×m. The detailed scheduling processes of CGDPS algo-
rithm are as follows.
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Initially, all VM requests are marked with unscheduled state, and the values of all
the elements of scheduling matrix X are set as 0 (line 1, Algorithm 1). Then, CGDPS
algorithm iteratively executes the following processes (lines 2–27, Algorithm 1):

Firstly, for each unscheduled VM request Vi, CGDPS algorithm orderly checks m
computing nodes, {CN1, CN2, …, CNm} whose subscripts are randomly generated,
to find its candidate node set CNSi (lines 3–7, Algorithm 1). During this process,
if a certain candidate node set CNSi is an empty set, which means that there is not
any candidate node for VM request Vi and thus Vi cannot be successfully scheduled,
then CGDPS algorithm changes VM request Vi’s state to failed scheduling (lines
8–10, Algorithm 1); otherwise, if a certain candidate node set CNSi contains only one
candidate node CNj, then CGDPS algorithm allocates VM requestVi to the computing
nodeCNj and changes the relevant parameters, namelyVMrequestVi’s state, the value
of the decision variable xij and computing nodeCNj’s available resource capacity, such
as CPU cores and memory size (lines 11–16, Algorithm 1).

Secondly, for VM requests whose candidate node sets contain more than one
candidate node, CGDPS algorithm orderly selects the VM request Vi whose can-
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didate node set CNSi contains the minimal number of candidate nodes [as shown in
Eq. (8)] and allocates Vi to the candidate node CNj (in CNSi) which can minimize
Vi’s execution cost (lines 19–25, Algorithm 1). Then, CGDPS algorithm invokes the
AdjustComputingNodePrice( ) function, as shown in Algorithm 2, to adjust the prices
of corresponding computing nodes related to VM request Vi (line 26, Algorithm 1).

Continue the two stepsmentioned above until there is noVMrequest in unscheduled
state.

|CNSi | � min
1≤k≤n

{|CNSk |} , s.t. |CNSk | > 1. (8)

The developed CGDPS algorithm contains a price adjusting function AdjustCom-
putingNodePrice( ) whose aim is to adjust the prices of some related computing nodes
to ensure the fairness of obtaining profits for all computing nodes. The pseudo-code of
AdjustComputingNodePrice( ) function is shown inAlgorithm 2. The inputs are the set
of computing nodesCN={CN1, CN2,…, CNm}, a certain successfully scheduled VM
request Vi, the coefficient of increasing price α and the coefficient of decreasing price
β. This function is invoked once a certain VM request Vi is successfully scheduled.

The detailed executing processes of the price adjusting function are as follows:
Firstly, the function needs to find all the qualified computing nodes, which can

satisfy both the resource demands and deadline restriction ofVM requestVi (lines 1–5,
Algorithm 2). These qualified computing nodes compose VM require Vi’s qualified
computing node set, which can be denoted by QCSi.

Secondly, the function changes the prices of the computing nodes in QCSi. For
each computing node CNj (CNj∈QCSi), if CNj is the computing node that executes
VM request Vi, then the price of CNj increases by a increasing coefficient α, which is
a decimal slightly greater than 1, to avoid CNj always being selected in the following
steps (lines 7 and 8,Algorithm2); otherwise, the price ofCNj decreases by a decreasing
coefficient β, which is a decimal slightly less than 1, to avoid CNj never being selected
in the following steps (lines 9–11, Algorithm 2).
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5 Performance evaluation

In this section, we discuss the performance evaluation of CGDPS algorithm by a series
of experiments. All the experiments share the following configurations.

5.1 Simulation configurations

The simulated cloud data center totally consists of 100 computing nodes, and each
node is characterized by four parameters, i.e., number of CPU cores, memory size,
processing speed and price. The number of CPU cores of each computing node is
an integer uniformly distributed in the range of {2, 4, 8, 16}. Each computing node
also has different memory sizes whose value is generated by a uniform distribution
in the range of {4 GB, 8 GB, 16 GB, 32 GB}. The processing speed of each com-
puting node is uniformly distributed within the range [100, 200] with the average
speed of 150 MIPS. The initial prices of all computing nodes are generated by a
uniform distribution within the range [0.35, 1]. Generally, the prices of computing
nodes have roughly linear relationship with their processing speed, which makes sure
that a faster node needs more execution cost than a slower one for executing a same
task.

The parameters of each VM request includes arrival time, required memory size,
number of subtasks, workloads of each subtask, deadline and budget. In the experi-
ments, we assume all the VM requests needed to be scheduled are submitted within a
scheduling interval (T =100 s) and their arrival times are generated by a uniform
distribution within the range (0, 100]. The required memory sizes are randomly
distributed within the range of {1 GB,2 GB,3 GB,4 GB}. Each VM request con-
sists of 1–7 subtasks whose value is uniformly generated with the average number
of four subtasks. The workload of each subtask is considered as a random integer
uniformly distributed within the range of {100,000, 120,000, 140,000, 160,000,…,
500,000} MI. The deadline restriction allocated to each VM request is set as the
sum of average estimated runtime with a 10% variation. The budget allocated to
each VM request is set as the value of the maximum workload of all its subtasks
divided by the average processing speed of all computing nodes, multiplying by the
number of subtask and the average price with a 10% variation. Most of the config-
urations mentioned above are similar to those adopted in [11, 15, 17, 18]. In order
to avoid the influence of causal factors, we run each experiment 1000 times, and the
results presented in this paper are the mean value of the results obtained by the 1000
experiments.

It is to be noted that the resource attributes of CNs can be obtained according
to their configurations and the attribute information (such as CPU core and memory
requirements, task length, etc.) ofVMrequests can also be achieved by someprediction
techniques, such as [41, 42]. The two twofold inputs of the proposed algorithm can
be both obtained by existing techniques and thus the simulation configurations are
feasible.
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5.2 Performance metrics

In order to verify the efficiency of the developed CGDPS algorithm, we compare
it with the other three related algorithms, i.e., PSO [11], FCFS [15] and MinCTT
[18], with the following five performance metrics. The first performance metric is
the successful execution ratio of VM requests (SERoV), which can be calculated by
Eq. (1). The second metric is the average execution cost (AEC), which is the total
combined cost [calculated by Eq. (2)] divided by the number of successfully executed
VM requests. The third metric is the average makespan (AMS), which is the average
value of all the successfully executed VM requests’ makespans [11]. The makespan of
a successfully executed VM request is defined as the time span between its submitted
time and completed time. The fourth metric is the fairness deviation of profit (FDoP)
among the computing nodes, which can be calculated by Eq. (5). The last performance
metric is the overall user satisfaction (OUS), which is the sum of the satisfactions of all
cloud users according to the obtained scheduling result. Denote by usi the satisfaction
of the cloud user, who submits the VM require Vi, according to the scheduling result,
so we have

US �
n∑

i�1

usi . (9)

In Eq. (9), usi is determined by three factors, i.e., whether VM request Vi is suc-
cessfully executed or not, the makespan and the execution cost of VM request Vi.
Denote by makespani and costi the makespan and the execution cost of VM request
Vi, respectively, so we have

usi � ϕi × [
(di − makespani )/di + (bi − costi )/bi

]
. (10)

5.3 Simulation results

5.3.1 Experiment 1

To evaluate the performance of the proposedCGDPS algorithm,we randomly generate
six groups of VM requests in this experiment by the methods mentioned above. In
the six VM request groups, the number of computing nodes is the same, i.e., 100
computing nodes, and the numbers of VM requests are 75, 100, 125, 150, 175 and
200, respectively. The six groups simulate the cloud environments with general system
workloads, which can be used to evaluate the performance of the proposed algorithm
under general system workloads.

Successful execution ratio of VM requests (SERoV) Successful execution of a VM
request means that the VM request is completed before its deadline with the cost
less than its budget. The higher SERoV a cloud data center provides, the more interest
users have in performing their businesses through the data center. The results of SERoV
obtained by the four compared algorithms are listed in Table 1.
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Table 1 Results of SERoV
obtained by different algorithms
with varied system workloads

No. of VM
requires

Algorithm

FCFS (%) MinCTT (%) PSO (%) GDPS (%)

75 93.26 99.77 99.31 99.91

100 89.04 98.52 98.31 99.74

125 84.12 95.93 94.69 99.48

150 78.57 88.42 87.3 96.17

175 72.38 82.54 81.61 89.7

200 61.89 74.63 73.65 80.64
Bold values reflects the optimal
value of each line

From the results listed in Table 1, it can be observed that the proposed CGDPS
algorithm can obtain the highest successful execution rate. Specifically, when the
numbers of VM requests are 100, 125, 150, 175 and 200, the SERoV obtained by
CGDPS algorithm is 10.7, 15.36, 17.6, 17.32 and 18.75%, respectively, higher than
that of FCFS algorithm, 1.22, 3.55, 7.75, 7.16 and 6.01%, respectively, higher than
that of MinCTT algorithm and 1.43, 4.79, 8.87, 8.09 and 6.99%, respectively, higher
than that of PSO algorithm.

The reason is as follows: For the VM requests with tight QoS constraints, few
computing nodes can satisfy their requirements. Assigning high priority to the VM
requests with tight QoS constraints can increase the possibility of these VM requests
to be scheduled. The proposed CGDPS algorithm exactly adopts the idea mentioned
above and preferentially schedules the VM requests with tight QoS constraints, as
presented in lines 11–16 and 19–22 of Algorithm 1. Therefore, CGDPS algorithm can
obtain the highest successful execution ration of VM requests among the compared
algorithms.

Also, fromTable 1, it can be seen that the SERoVobtained by the four algorithms all
decreases with the increasing of the number of VM requests. This is because with the
increasing of VM requests, the system workload increases, but the resource capacity
of the data center is fixed (i.e., 100 computing nodes), and thus, it leads to the decrease
in the SERoV.

Furthermore, Fig. 1 shows the results of the number of successfully executed VM
requests (SEVR) obtained by different algorithms. As shown in Fig. 1, the proposed
CGDPSalgorithmcan successfully executemoreVMrequests than the other compared
algorithms. Specifically, when the numbers of VM requests are 125, 150, 175 and 200,
the SEVR obtained by CGDPS algorithm are 12.97, 15.6, 14.65 and 14.98%, respec-
tively, higher than that of FCFS algorithm, 5.17, 8.38, 7.98 and 7.18%, respectively,
higher than that of MinCTT algorithm and 6.39, 9.36, 8.94 and 7.73%, respectively,
higher than that of PSO algorithm. The trend of the metric of SEVR is the same with
that of the metric of SERoV. The reason lies in that the proposed CGDPS algorithm
preferentially schedules the VM requests with tight QoS constraints.

Average execution cost (AEC) Average execution cost of all VM requests can be
calculated by the total combined cost [Eq. (2)] divided by the number of successfully
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Fig. 1 Number of SEVR obtained by different algorithms with varied system workloads

Table 2 Results of AEC
obtained by different algorithms
with varied system workloads

No. of VM
requires

Algorithm

FCFS MinCTT PSO GDPS

75 2.502 2.329 2.238 2.041

100 2.519 2.234 2.176 1.994

125 2.467 2.157 2.089 1.972

150 2.395 2.136 2.057 2.043

175 2.124 2.033 1.92 1.9

200 1.826 1.936 1.88 1.944
Bold values reflects the optimal
value of each line

executed VM requests. The smaller the average execution cost is, the lower the cost
(users need to pay for their VM requests) is. The results of AEC obtained by different
algorithms are listed inTable 2. It can be seen thatwhen the numbers ofVMrequests are
75, 100, 125, 150 and 175, the average execution cost obtained by CGDPS algorithm
is 18.42, 20.84, 20.06, 14.7 and 10.54%, respectively, smaller than that obtained by
FCFS algorithm, 12.36, 10.74, 8.58, 4.35 and 6.54%, respectively, smaller than that
obtained by MinCTT algorithm, and 8.8, 8.36, 5.6, 0.68 and 1.04%, respectively,
smaller than that obtained by PSO algorithm.

The proposed CGDPS algorithm can obtain the lowest average execution cost
among the compared algorithms in almost all the varied system workload situations.
This is because the proposed CGDPS algorithm tries to schedule a VM request to the
candidate computing node with the lowest cost (shown in line 21 of Algorithm 1),
which can lead to a lower execution cost.

Average makespan (AMS) This performance metric indicates the average time that an
algorithm needs to complete a VM request. The smaller the value of averagemakespan
is, the shorter the time that the corresponding algorithm needs to complete users’ VM
requests is. Table 3 shows the results of average makespan of all successfully executed
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Table 3 Results of AMS
obtained by different algorithms
with varied system workloads

No. of VM
requires

Algorithm

FCFS MinCTT PSO GDPS

75 0.692 0.648 0.724 0.772

100 0.704 0.661 0.716 0.752

125 0.69 0.666 0.702 0.741

150 0.69 0.677 0.697 0.747

175 0.683 0.68 0.69 0.741

200 0.668 0.677 0.671 0.747
Bold values reflects the optimal
value of each line

VM requests obtained by different algorithms. It can be seen that MinCTT algorithm
can obtain the shortest average makespan and the proposed CGDPS algorithm does
not perform well on this metric. The reason for this is that makespan is one of the
optimization objectives of MinCTT algorithm and the algorithm always schedules a
VM request to the computing node which can minimize the weighting sum of execu-
tion cost and makespan. However, when CGDPS algorithm schedules a VM request,
makespan is just as one of the restrictions [shown in Eq. (6)], which is used to deter-
mine whether a computing node is the candidate node for the VM request (shown
in Definition 1). Thus, the proposed CGDPS algorithm cannot perform well on the
performance metric of average makespan.

Moreover, although FCFS algorithm can obtain relatively low average execu-
tion cost and short average makespan, the successful execution rate of VM requests
obtained by the algorithm is much lower than other algorithms. The VM requests
rejected by FCFS algorithm are those with tight budget or deadline constriction. In
other words, these rejected VM requests are either the ones who contain too many
subtasks or the ones whose workloads of subtasks are too long. Most of its success-
fully executed VM requests are the ones with a few subtasks or with short subtask
workload. Thus, FCFS algorithm performs relatively well on the two metrics.

Fairness deviation of profits (FDoP) The fairness deviation of profits means that all
computing nodes provided by the cloud provider have equal opportunities to offer
their resources and can obtain fair profits according to their resource capacities. FDoP,
shown in Eq. (5), indicates the dispersion of all computing nodes’ profit rates. The
smaller the value of FDoP is, the fairer all the computing nodes’ profits are. Table 4
shows the results of FDoP obtained by different algorithms with varied system work-
loads. As listed in Table 4, when the numbers of VM requests are 75, 100, 125, 150,
175 and 200, the FDoP obtained by CGDPS algorithm is 45.7, 41.7, 38.2, 30.5, 30.3
and 29.9%, respectively, smaller than that of FCFS algorithm, 32.1%, 28.9.4, 25.6,
18.3, 18.7 and 20.5%, respectively, smaller than that of MinCTT algorithm, and 27.5,
24.7, 23.1, 16.4, 18.7 and 20.8%, respectively, smaller than that of PSO algorithm.

It can be seen that the proposed CGDPS algorithm can obtain the lowest fairness
deviation of profits. The reason is that once CGDPS algorithm successfully schedules
a VM request, the price adjusting function (shown in Algorithm 2) will be invoked to

123



3034 H. Xu et al.

Table 4 Results of FDoP
obtained by different algorithms
with varied system workloads

No. of VM
requires

Algorithm

FCFS MinCTT PSO GDPS

75 0.315 0.252 0.236 0.171

100 0.324 0.266 0.251 0.189

125 0.319 0.265 0.256 0.197

150 0.308 0.262 0.256 0.214

175 0.293 0.251 0.251 0.204

200 0.277 0.244 0.245 0.194
Bold values reflects the optimal
value of each line

Fig. 2 Overall user satisfaction obtained by different algorithms with varied system workloads

execute to dynamically adjust the price of all computing nodes in its candidate node set.
If a candidate computing node obtains theVM request, thenCGDPS algorithm slightly
increases its price to prevent it from always being selected in following scheduling;
otherwise, CGDPS algorithm slightly decreases its price to avoid the computing node
never being selected in following scheduling. Thus, the proposed algorithm can ensure
FDoP better than the other compared algorithms.

Overall user satisfaction (OUS) The OUS represents the degree of users’ satisfaction
based on the obtained scheduling result (i.e., the scheduling matrix). Higher OUS
means meeting user satisfaction better. The comparison results of OUS obtained by
different algorithms are presented in Fig. 2. It can be seen that the proposed CGDPS
algorithm can obtain the highest degree of user satisfaction. Specifically, when the
numbers of VM requests are 75, 100, 125, 150, 175 and 200, the OUS of CGDPS
algorithm are 38.4, 37.1, 45.6, 48.5, 34.6 and 34.2%, respectively, higher than that of
FCFS algorithm, 1.2, 10, 19.3, 24.2, 18.8 and 15.1%, respectively, higher than that of
MinCTT algorithm, and 18.6, 22.4, 29.7, 31.7, 22.5 and 17.8%, respectively, higher
than that of PSO algorithm. It is evident that the proposed CGDPS algorithm can meet
users’ satisfaction best.
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Table 5 Results of all metrics
obtained by different algorithms
under a large-scale data center

Metrics Algorithm

FCFS MinCTT PSO GDPS

SERoV 78.59% 85.63% 86.12% 91.92%

AEC 2.41 2.07 1.99 1.89

AMS 0.69 0.691 0.697 0.727

FDoP 0.243 0.218 0.196 0.139

OUS 249.1 303.2 289.7 359.6
Bold values reflects the optimal
value of each line

5.3.2 Experiment 2

To evaluate the performance of the proposed algorithm in a large-scale cloud envi-
ronment, this experiment randomly generates a cloud data center with 600 computing
nodes and 1000 VM requests submitted by cloud users, using the methods discussed
in Sect. 5.1.

Table 5 shows the results of the five performance metrics obtained by the compared
algorithms under a large-scale cloud data center. It can be seen that, in most cases, the
comparison results are similar to the results presented in Sect. 5.3.1. In particular, the
overall user satisfaction (OUS) obtained by CGDPS algorithm is comparatively 44.3%
higher than FCFS algorithm, 18.6% higher thanMinCTT algorithm and 24.1% higher
than PSO algorithm. It means that CGDPS algorithm can guarantee cloud users’ QoS
requirements better. Therefore, we can conclude that the proposed CGDPS algorithm
is effective to be adopted in large-scale cloud data centers.

5.3.3 Experiment 3

In this section, we verify the practicability of the proposed CGDPS algorithm under
real-life workload traces [43, 44], which are also widely adopted in related research.
WeuseDAS2 fs1 trace as the simulatedworkload because it records the similar resource
attributes required by a VM request. There are total 40,315 records in the workload,
from which we choose 196 ones as VM requests in the experiment to limit the sim-
ulation time. The 196 records are selected by a principle that the number of subtasks
contained in a recordmust be in the range of 1–7. Each record has detailed descriptions
of the submitted time, runtime, required CPU cores and memory size, and some other
descriptions. However, some QoS requirements, such as deadline and budget con-
straints, still need to be randomly generated using the methods discussed in Sect. 5.1
since the real-life workload trace does not contain any information about them. Also,
we also normalize the submitted times of the selected records within the range of [0,
100] so that we can schedule all of them in a scheduling interval.

Table 6 shows the results of the five performance metrics obtained by different
algorithms under the real-life workload trace of DAS2 fs1. As listed in Table 6, the
proposed CGDPS algorithm can achieve the highest successful execution rate of VM
requests, relatively lower average execution cost, the lowest fairness deviation of profit,
and, most important, the highest degree of user satisfaction.
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Table 6 Results of all metrics
obtained by different algorithms
under real-life workload trace

Metrics Algorithm

FCFS MinCTT PSO GDPS

SERoV 82.94% 88.55% 90.42% 98.43%

AEC 1.13 1.27 1.05 1.09

AMS 0.58 0.52 0.52 0.63

FDoP 0.72 0.68 0.65 0.54

OUS 48.65 52.68 50.5 59.32
Bold values reflects the optimal
value of each line

This section conducts experiment under the real workload trace. From the results
and analysis presented above, we can find that the proposed algorithm can also perform
pretty well under the real-life workload trace. Therefore, it can be concluded that the
proposed CGDPS algorithm can be practically applied to real-life cloud environments.

6 Conclusions

Cloud users and cloud provider are two important entities in a cloud system, and they
make autonomous scheduling decisions with different incentives of interest, which
makes the problem of VM scheduling in cloud computing more complex than ever
before.

This paper formulates VM scheduling in cloud computing as amulti-objective opti-
mization problem and develops a heuristic-based CGDPS algorithm. In each iterative
step, CGDPS algorithm sets high priority toVM requestswith few candidate nodes and
schedules a VM request to the candidate computing node with the lowest cost. After
successfully scheduling a VM request, CGDPS algorithm adopts the price adjusting
function to dynamically adjust the price of all qualified computing nodes to avoid the
fairness deviation becoming worse. The simulation results clearly illustrate that the
developed method can achieve the highest degree of users’ satisfaction.

Although this paper considers the scenario of multi-core physical machines, there
is a constraint that each of PM’s CPU cores cannot be allocated to more than one
VM. However, in modern cloud environments, multi-core physical machines are more
promising and each of PM’s CPU cores can be shared by cores of multiple multi-core
VMs. So as a future work, we will conduct research on the more real-life scenario of
multi-core PMs, which may lead to a more complex scheduling issue.
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