
J Supercomput (2018) 74:87–104
https://doi.org/10.1007/s11227-017-2109-4

General queuing model for optimal seamless delivery
of payload processing in multi-core processors

Esther Salamí1 · Cristina Barrado1 ·
Antonia Gallardo1 · Enric Pastor1

Published online: 10 July 2017
© The Author(s) 2017. This article is an open access publication

Abstract Recent developments in unmanned aerial systems (UAS) provide new
opportunities in remote sensing application. In contrast to satellite and conventional
(manned) aerial tasks, UAS flights can be operated in a very short period of time.
UAS can also be more specifically focused toward a given task such as crop recon-
naissance or electric line tower inspection. For some applications, the delivery time
of the remote sensing results is crucial. The current three-phase procedure of data
acquisition, data downloading and data processing, performed sequentially in time,
represents a drawback that reduces the benefits of using unmanned aerial systems. In
this paper, we present a parallel processing strategy, based on queuing theory, in which
the data processing phase is performed on board in parallel with data acquisition. The
unmanned aerial system payload has been enlarged with low-cost, lightweight, multi-
core boards to facilitate remote sensing data processing during flight. The storage
of the raw sensing data is also done for possible further analysis; however, the ulti-
mate decision support information can be seamless delivered to the customer upon
landing. Furthermore, text alarms and limited imagery can also be provided during
flight.

B Esther Salamí
esalami@ac.upc.edu

Cristina Barrado
cristina.barrado@upc.edu

Antonia Gallardo
agallard@ac.upc.edu

Enric Pastor
enric@ac.upc.edu

1 Department of Computer Architecture, Universitat Politècnica de Catalunya, Castelldefels, Spain

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-017-2109-4&domain=pdf
http://orcid.org/0000-0002-4635-2963


88 E. Salamí et al.

Keywords Multi-core · Queuing analysis · Real-time · Remote sensing · Remotely
piloted aircraft

1 Introduction

Unmanned aerial systems (UAS, also known asUAV,RPASor drones) are increasingly
being used to support remote sensing tasks [1–4]. In combination with or as a substi-
tution for other remote sensing vehicles, UAS have the advantages of fast deployment
and easy payload reconfigurability [5–7]. Moreover, UAS are well suited to poorly
accessible areas and dangerous flight conditions [8–12]. In remote sensing tasks, their
ability to operate very-low-level flights makes UAS highly useful. Nevertheless, most
UAS used currently in remote sensing tasks acquire data during the flight and need
later post-processing before the results are delivered. Assuming that flights are usually
performed in remote areas, with no or slow communication facilities, the customer
may have to wait one or two days before the final product is available.

For certain applications, twodays of delay can be unacceptable. In precision agricul-
ture, the watering levels, harvest time, and detection of plagues require fast responses.
Some plagues are more vulnerable in a certain short period of time, during which they
can be extinguishedwith a quick and cheap treatment. In these cases, a timely precision
application reduces the impact of plagues and increases the harvest [13]. During a fire
detection flight, notifications of hotspots need to be relayed as soon as possible. For
homeland missions, the detection of and urgent alerting to migrant boats in real time
can save lives. Currently, solutions to such time-restrictive applications are based on
human operators. For instance, homeland drones fly beyond light of sight, use visual
cameras and transmit video downstream using satellite communication [14]. A ground
operator (who may also be the remote pilot) is devoted to the observation of the video
and to raising an alarm when necessary. However, this human-based solution has two
main drawbacks: The cost of the operation increases because of the high bandwidth
communication and the operator costs, and the human factors on long, dull tasks can
be concerning.

This paper explores a strategy for performing the necessary computation on-board
the UAS during flight. For each specificmission, a particular sequence of data process-
ing algorithms, mainly for image processing, needs to be continuously executed upon
each new payload acquisition. That is, an ad hoc pipeline of processing is constructed
for each mission, therein conducting the flow of the sensed data. The execution time
of the whole pipeline defines the minimum delay for the delivery of the final product.
This time is on the order of a few seconds. However, given the continuous feed-in
of sensing data into the processing pipeline, the throughput of the system at a given
acquisition rate is limited by the slowest algorithm in the chain, which can block the
complete flow.

Several inexpensive processing boards with multi-core capacity are currently avail-
able with commercial off-the-shelf technology. In this paper, queuing theory is used
to pre-calculate the optimal pipeline configuration and maximum acquisition rate
supported for each particular mission with the processing and acquisition resources
available on board. Queuing models have being extensively used in many fields, espe-

123



General queuing model for optimal seamless delivery of payload ... 89

cially in networking applications, resource optimization, and performance modeling
of computer systems [15–20]. In their taxonomy of scheduling in general-purpose
distributed computing systems [21], Casavant and Kuhl include queueing theoretic as
a basic category of task allocation algorithms which can be used to arrive at an assign-
ment of processes to processors. Chou and Abraham [22] use the general queueing
model to derive closed form expressions to analyze the behavior of load redistribution
algorithms. Deng and Purvis [23] develop a principle for multi-core task dispatch-
ing and validate the approach using exponential and deterministic models for packet
processing and image search applications. Li [24] considers the problem of optimal
partitioning of a multi-core server by modeling the server processor as a group of
queueing systems.

Whereas in previous work [25] we relied onMarkov M/M/S queues, in this paper,
we propose the use of general G/G/S queues instead. The reason for this is that the
arrival rate in these applications does not follow a random process; rather, it is fixed
by the payload configuration and the mission requirements. On the other hand, the
service time is given by the execution time of the data processing algorithms, whose
probability distribution function is also far enough from an exponential distribution
function. The number of servers has to be decided considering the limitations in terms
of availability, weight, and power consumption. It is widely accepted that analytical
queueing modeling is a cost-effective alternative to multi-core benchmark simulation
in terms of both simulation time and resources. Nevertheless, the analysis of non-
exponential queuing systems is mainly avoided because of analytical intractability
reasons [22,23]. In this study, the approximations presented in [30] are used for the
general queue model analysis. This model provides performance metrics based on
the first two moments of the general inter-arrival time and service-time distributions.
Finally, an agent-based simulation is used to validate the strategy on the two example
missions.

The proposed queue-based strategy could also be applied to other conventional
remote sensing platforms, such as manned aviation and satellites, if they possess on-
board parallel computation capabilities with a flexible configuration. The problem is
not specific of UAS or remote sensing tasks, but it differs from other scenarios like
operating systems schedulers, where the inter-arrival time and processes to be executed
are not known in advance.

The structure of this paper is as follows: Sect. 2 briefly describes the algorithms
for payload processing and analyzes their execution times on a multi-core board for
several levels of parallelism. Section 3 presents the theory and the proposed strategy
for applying the general queuing network model to schedule the parallel computation
of the payload. In Sect. 4, the strategy is validated using an agent-based simulation
that replicates the data flow of the flight using hardware in the loop. Finally, Sect. 5
concludes the paper and provides future research directions.

2 Analysis of on-board data processing algorithms

A set of ten data processing algorithms have been developed by the research group
for on-board processing the data captured by the payload. This section provides a

123



90 E. Salamí et al.

Table 1 On-board data processing algorithms (VI = Visual, IR = Infrared)

Algorithm Input Output

Fusion VI image, IR image,
telemetry

TIFF image with thermal information on the visual image [27]

Georef Telemetry, image pixel Geographic coordinates using direct georeferencing [27]

Geotif VI image, telemetry TIFF image: undistort, georeference and rectify

Hotspot IR image List of hotspots: center of mass, bounding box, etc. [27]

Jellyfish VI image Image with bounding boxes and list of jellyfish [28]

Mosaic 4 × (VI image, telemetry) TIFF image panorama using georeferencing

Overlap 2 × (VI image, telemetry) Overlapping percentages of the two images

Quality VI image Blur (sharpness grade) and entropy (over- or under-exposure)
metrics

Resize VI image, new size Scaled image

Stitch 4 × VI image Panorama image using invariant local features [29]

general description of such algorithms together with an analysis of their execution on
the oDroid-XU3 board [26]. It is assumed that this multi-core board is used as a co-
processor, only dedicated to data processing tasks. The oDroid-XU3 is not involved in
any flight management, guidance and control, conflict detection, or any other safety-
critical tasks.

2.1 Algorithms description

The processing has been divided into stand-alone programs, and, depending on the
UASmission, several of the programs are executed in sequence. Table 1 lists the devel-
oped algorithms. The programs are written in C++with the OpenCV3 [30] core library
to support most image processing algorithms. Input data include images captured by
visual and thermal cameras and telemetry, which is the position (latitude, longitude,
and altitude) and attitude (yaw, pitch and roll) of the UAS. The resolution of the images
used in this study is 320×240 pixels for thermal images and 5MP for visual images.
Output data can be either a geo-referenced or non-geo-referenced image, text with
relevant information and/or one or more numeric values.

2.2 Execution time analysis

The execution time of the algorithms has been characterized on the ODROID-XU3
commercial off-the-shelf embeddedboard,whichhas twoasymmetric quad-coreCPUs
(one Samsung Exynos5422 CortexTM-A15 2.0 GHz and one CortexTM-A7) [26]. The
pthreads [31] parallelization framework already implemented in the OpenCV libraries
was used to exploit the potential parallelism of the algorithms. The execution times
were obtained from processing up to 100 images. The arithmetic mean (τ ) and the
coefficient of variation (c), which is the standard deviation of the execution time

123



General queuing model for optimal seamless delivery of payload ... 91

Table 2 Mean (τ ) and coefficient of variation (c) of the execution time (in seconds) of data processing
algorithms on the ODROID-XU3 for 1, 2, and 4 threads

Algorithm 1 thread 2 threads 4 threads
τ c τ c τ c

Fusion 1.254 0.007 0.881 0.009 0.633 0.038

Georef 0.003 0.030 0.003 0.013 0.003 0.013

Geotif 1.125 0.008 0.744 0.008 0.542 0.010

Hotspot 0.036 0.064 0.034 0.069 0.034 0.068

Jellyfish 7.794 0.015 7.802 0.015 7.799 0.015

Mosaic 4.490 0.007 2.970 0.006 2.151 0.008

Overlap 0.777 0.070 0.477 0.063 0.316 0.059

Quality 0.555 0.023 0.514 0.026 0.497 0.027

Resize 0.336 0.014 0.286 0.017 0.261 0.024

Stitch 13.259 0.487 13.537 0.499 14.665 0.468

divided by its mean, are shown in Table 2. The results are given for execution with 1,
2, and 4 threads.

Notice that only four of the algorithms scale for parallel execution: Fusion,Geotiff,
Mosaic, andOverlap (2.0X, 2.1X, 2.1X, and 2.5X performance speed-up, respectively,
over 1 thread execution when they are running with 4 threads). Note also that most
algorithms exhibit a coefficient of variation of approximately zero. This low variability
is maintained when the number of threads increases. In general terms, we can say that,
for the algorithms under study, the runtime follows a distribution that is much closer
to a deterministic distribution (coefficient of variation equal to zero) rather than an
exponential distribution (coefficient of variation equal to one). The exception is the
Stitch algorithm, which exhibits the highest variability (coefficient of variation equal
to 0.5). Having a number of cores available and with a low penalty in terms of power
consumption for each additional core in use, the question becomes which is the best
scheduling strategy for a given payload processing mission.

3 Resource optimization using the general queuing model

Weconsider a payload data processing application as a queuingmodel inwhich remote
sensing data act as incoming clients that request a set of services. The offered service is
the execution of a set of data processing algorithms. This section presents the use of the
general queuing model, which considers the specific characteristics of the input rate
and the execution time of on-board processing algorithms, as the optimizing strategy
for on-board parallel execution of the payload data processing.

3.1 General queuing model

In Kendall’s notation, the G/G/S queue represents a system with S identical servers
in parallel, unlimited queue length, and first-in first-out queue discipline, where inter-

123



92 E. Salamí et al.

arrival times follow a general (arbitrary) distribution of average arrival rate λ and the
service times follow a general independent distribution of average service rate μ (the
inverse of the average service time τ ) [32]. Particular cases are given for arrival rates
and service rates that follow a Poisson distribution (M/M/S model), also known as
Markov processes [33], and for deterministic models, in which the inter-arrival time
or service time is fixed and known (D/M/S or M/D/S models).

Metrics used to measure the performance of the queue include the average waiting
time (Wq ), average time in the system (W ), average number of clients in the queue (Lq ),
average number of clients in the system (L), and utilization factor or traffic intensity
(ρ). All these metrics are clearly related: first by the expressions W = Wq + τ and
L = Lq + Ls , with Ls being the average number of clients in the servers; second by
the definition ρ = λ · τ/S; and finally by Little’s Law L = λ · W and Lq = λ · Wq .
Thus, the results herein will focus onWq . A smallWq ensures that the waiting queues
remain within tractable limits; however, a too small value will result in non-efficient
resource usage. On the contrary, a large Wq represents a long waiting time, and when
beyond the limit given by Eq. 1 (let us name it λin f ), it makes the system non-stable.

λ < λin f = S · μ = S/τ (1)

An exact formulation can be used in certain models; however, approximations
and/or computer simulations are required for more complex situations. In this study,
the approximations presented in [34] are used for the G/G/S queue analysis. This
model depends on only five parameters: the arrival rate (λ), the squared coefficient
of variation of the inter-arrival time (c2a), the average service time (τ ), the squared
coefficient of variation of the service time (c2s ), and the number of servers (S).

Most remote sensing applications use programmable cameras in which the acquisi-
tion rate can be set to a fixed value. This means that the time between consecutive input
data is deterministic, in opposite to Poisson processes, which model random events.
Furthermore, as seen in the previous section, the probability distribution function of
the execution time of the algorithms for the payload data processing is also far enough
from an exponential distribution function. Figure 1 shows the difference between the
responses of both systems, the D/M/S model (deterministic inter-arrival time and
exponential service time, with mean service rate from Table 2) and the D/G/S model
(deterministic inter-arrival time and general service time, with mean and coefficient of
variation from Table 2). The figure shows the system waiting timeWq as a function of
the arrival rate λ. The results are given for two different image processing algorithms,
Mosaic and Stitch, executing on 1 thread and for the number of servers S equal to 1, 2
and 4. The plots have been scaled to the average execution time of the algorithm (4.490
and 13.259s, respectively). Solid lines represent the D/G/S model, and dashed lines
represent the D/M/S model.

Notice that both models satisfy Eq. 1 and λ asymptotically approaches λin f with
increasing waiting time, even though the D/M/S model has a smoother behavior in
reaching the limit. For any given arrival rate lower than λin f , the average waiting time
is always higher under the D/M/S model compared to the D/G/S model. This is
perfectly reasonable becauseMarkov queues model random behaviors . By comparing
the D/G/S plots of the two algorithms in Fig. 1, one can also notice the effect of the

123



General queuing model for optimal seamless delivery of payload ... 93

Fig. 1 Comparison of the average waiting time in the D/G/S and D/M/S models for the a Mosaic and
b Stitch algorithms

variability of the service time. While the Mosaic execution time has a very small
coefficient of variation (0.007), the Stitch execution time exhibits higher variability
(0.487). The effect of a small coefficient of variation is to provide a very pronounced
change in the curve of the average waiting time. In contrast, a high coefficient of
variation makes the curve closer to the D/M/S curve.

3.2 Heuristic for establishing �heu

The goal of our payload processing architecture is to be able to process data at a
reasonable arrival rate using a parallel hardware configuration that consumes less
power and provides faster outputs. The arrival rate is limited by the speed of the sensor
and by the maximum throughput of the system. For example, looking at the graphical
response of the D/G/S model in Fig. 1, it can be inferred than the ODROID-XU3 is

123



94 E. Salamí et al.

Fig. 2 Selection of the upper threshold for the arrival rate in a service by limiting the waiting time up to
1.00, 0.10, or 0.01% τ for the a Mosaic and b Stitch algorithms

able to produce approximately 0.2 mosaics per second (one mosaic every 5 s) when
using a single core. Considering that theMosaic algorithm processes four input images
to produce one output image, the system can manage a maximum camera capture
rate of no more than 0.8 images per second (this is a minimum latency between
consecutive images of 1.3 s) unless more resources are provided. When using the
four cores to compute four consecutive mosaics in parallel, the maximum throughput
increases up to approximately 0.9 mosaics per second (one image captured every
0.3 s).

Inequality in Eq. 1 provides a long-term stability condition of the system, but it is
not enough to satisfy real-time constrains. In real-time systems, the time in which the
actions take place is significant. Our goal is to find an optimal arrival rate �heu that
guarantees the highest possible flow, while trying to keep the average response time
as short as possible. Being W = Wq + τ , it entails to limit the maximum average
waiting time Wq .

123



General queuing model for optimal seamless delivery of payload ... 95

Figure 2 focuses on the response of the D/G/S model when executing theMosaic
and Stitch algorithms on one core. Three thresholds are depicted:Wq equal to 1.00% τ ,
0.10% τ , and 0.01%τ . The points at which the threshold line cuts the plots sets the
corresponding λ value. The closer the value from �heu to �in f , the closer we are to
the optimal use of resources. But selecting �heu equal to 1.00% τ leads to a waiting
time is too close to the asymptote for a deterministic algorithm (see blue vertical line
in Fig. 2). To establish a balance between both extreme situations, we decided to use
the next order of magnitude and limit the average waiting time up to 0.10% τ . The
value of �heu is then determined using Eq. 2.

�heu = {λ | Wq = 0.001τ } (2)

The obtained �heu for the Mosaic and Stitch algorithms is then 0.218 and 0.004
panoramas per second, respectively.

Table 3 shows the value of �heu for the full set of data processing algorithms
executing on 1 thread and for number of servers S equal to 1, 2 and 4. The �heu value
using the Markov model and the �in f limit are also included for comparison. It can
be seen that using the general model instead of the Markov model allows for more
aggressive arrival rates.

3.3 Queuing network model

Up to this point, we have considered data processing algorithms as isolated services.
As depicted in Fig. 3, the full mission can be modeled as a queue network in which
remote sensing data act as incoming clients who request a sequence of such services
(nodes).We consider the arrival rate to be deterministic for the first node of the network
(ca1 = 0) but general for the individual nodes following the first node.

In a steady state, the average departure rate for each node should be equal to the
average arrival rate to that node [35]. The coefficient of variation of the inter-arrival
time to the node Nn (can ) can be calculated using Eq. 3 [36].

c2an = 1 + (1 − ρ2
n−1)(c

2
an−1

− 1) + ρ2
n−1√
Sn−1

(c2sn−1
− 1) (3)

As expressed in Eq. 4, the throughput of the network is upper limited by two factors:
first, by the maximum data acquisition rate (�acq ), which depends on the technical
characteristics of the sensors being used; and second, by themaximum data processing
rate supported by the network (�net ), which depends on the involved algorithms and
available resources, and is limited by the lowest �heu in the pipeline. Herein, we call
�mission the upper threshold of the mission arrival rate.

λout ≤ �mission = min
{
�acq ,�net

}
(4)

The average total service time of the network is the sum of the individual service times,
and the average waiting time is the sum of the average waiting times of the individual
services.

123



96 E. Salamí et al.

Ta
bl

e
3

�
h
eu

an
d

�
in

f
of

da
ta
pr
oc
es
si
ng

al
go
ri
th
m
s
ex
ec
ut
in
g
on

1
th
re
ad

on
th
e
O
D
R
O
ID

-X
U
3
fo
r
th
e
ge
ne
ra
la
nd

M
ar
ko
v
m
od
el
s
w
ith

1,
2,
an
d
4
se
rv
er
s

A
lg
or
ith

m
1
se
rv
er

2
se
rv
er
s

4
se
rv
er
s

D
/
M

/
1

D
/
G

/
1

D
/
M

/
4

D
/
G

/
4

D
/
M

/
2

D
/
G

/
2

�
h
eu

�
h
eu

�
in

f
�
h
eu

�
h
eu

�
in

f
�
h
eu

�
h
eu

�
in

f

Fu
si
on

0.
00

7
0.
77

8
0.
79

7
0.
12

8
1.
57

6
1.
59

4
0.
78

6
3.
17

0
3.
18

9

G
eo
re
f

2.
53

3
21

2.
50

4
28

7.
93

6
46

.1
60

48
9.
74

4
57

5.
87

1
28

3.
71

4
10

57
.1
71

11
51

.7
42

G
eo
tif

0.
00

8
0.
86

5
0.
88

9
0.
14

3
1.
75

4
1.
77

8
0.
87

6
3.
53

1
3.
55

6

H
ot
sp
ot

0.
24

7
13

.5
67

28
.0
38

4.
49

5
36

.7
81

56
.0
76

27
.6
27

88
.1
43

11
2.
15

2

Je
lly

fis
h

0.
00

1
0.
11

6
0.
12

8
0.
02

1
0.
24

4
0.
25

7
0.
12

6
0.
50

0
0.
51

3

M
os
ai
c

0.
00

2
0.
21

8
0.
22

3
0.
03

6
0.
44

1
0.
44

5
0.
21

9
0.
88

7
0.
89

1

O
ve
rl
ap

0.
01

1
0.
58

9
1.
28

7
0.
20

6
1.
62

5
2.
57

4
1.
26

8
3.
95

5
5.
14

7

Q
ua
lit
y

0.
01

6
1.
46

8
1.
80

2
0.
28

9
3.
23

5
3.
60

5
1.
77

6
6.
81

5
7.
21

0

R
es
iz
e

0.
02

6
2.
71

8
2.
97

7
0.
47

7
5.
68

6
5.
95

4
2.
93

3
11

.6
29

11
.9
08

St
itc

h
0.
00

1
0.
00

4
0.
07

5
0.
01

2
0.
02

9
0.
15

1
0.
07

4
0.
11

7
0.
30

2

123



General queuing model for optimal seamless delivery of payload ... 97

Fig. 3 Sequential network of queues. Arrival rate is deterministic for the first node of the network but
general for the following nodes

3.4 Algorithm for setting the optimizing strategy and establishing �net

As stated above, our goal is to establish an optimum configuration for the system to
be able to process data arriving at a fixed arrival rate in real time and in the most
efficient manner. The objective is minimizing the average time of the clients in the
system by ensuring that the waiting queues remain within small limits. We propose
an iterative method starting with the configuration that uses the minimum number
of resources, that is, all algorithms running on a single core. Then, one additional
resource is assigned on each iteration until either the desired arrival rate is reached
or until there are no more resources (which means that it is not possible to work at
the desired frequency with the available resources). Note that the maximum number
of iterations is limited by the number of available resources. On each step, the mean
and variability of the algorithm execution time is used to compute the upper threshold
of the arrival rate in the queue network (�net ). If �net does not fit the target arrival
rate, then an additional core is given to the most restrictive algorithm, which is the
algorithm with the lowest �heu .

To illustrate the mechanism, we will focus on the case of a hotspot mission. In this
mission, the UAS scans an area in a post-fire scenario in order to quickly detect hot
areas and prevent fire revivals over a forest for the rapid detection of hot areas to prevent
fire revivals. The UAS payload consists of a thermal camera, a visual camera and a
positioning system. The data processing is modeled as a queuing network that consists
of the following sequence of algorithms:Hotspots,Georef,Quality, and Fusion. First,
each thermal image is processed on-board with the Hotspots algorithm. If a hotspot
is detected, the geographic position of the hotspot center of mass is calculated with
Georef. In addition, the paired visual image is selected and processed: first, theQuality
algorithm is executed, and upon achieving the positive threshold, the Fusion algorithm
overlaps the thermal and visual images. For positive detections, both the information
about the hotspot magnitude and geolocation and the fused image can be sent to the
ground as a firefighters’ alarm.

From Table 3, it can be seen that Fusion is the most restrictive algorithm (�heu =
0.778 images per second), whereas Georef is the least restrictive algorithm (�heu =
212.504 images per second). Executing the four algorithms on one core (c1) results
in an equivalent service with a τ of 1.848s per image and a �heu of 0.523 images
per second (iteration 1 in Table 4). The average service time of the equivalent service
is computed as the sum of the average execution time of the algorithms; in addition,

123



98 E. Salamí et al.

Table 4 Core allocation, τnet (seconds) and �net (arrivals/second) in the Hotspot mission (H=Hotspot ,
G=Geore f , Q=Quali t y, F= Fusion)

Algorithm S×threads τ �heu Core τnet �net

1 HGQF 1×1th 1.848 0.523 c1 1.848 0.523

2 HGQ 1 × 1th 0.594 1.394 c1 1.848 0.778

F 1 × 1th 1.254 0.778 c2
3.a HGQ 1×1th 0.594 1.394 c1 1.475 1.092

F 1×2th 0.881 1.092 c2, c3

3.b HGQ 1 × 1th 0.594 1.394 c1 1.848 1.394

F 2 × 1th 1.254 1.575 c2, c3

the coefficient of variation of the service rate has been calculated considering that the
variance of the sum of the algorithms is the sum of their individual variances.

Imagine that we want to process one image per second (λin = 1), and suppose that
this is supported by the maximum acquisition rate of the cameras (that is, �acq ≥ 1
image per second). Then, to ensure the proper functioning of the system, the pipeline
configurationmust provide�net ≥ 1 image per second. Because the initial�net (0.523
images per second) does not satisfy this requirement, the most restrictive algorithm in
the chain, that is, Fusion, is moved to a second core (c2) (see iteration 2 in Table 4).
In the first core, the service consisting of Hotspots, Georef, and Quality (HGQ) has
a �heu equal to 1.394 images per second, whereas the core executing Fusion (F)
obtains the most restrictive �heu , equal to 0.778 images per second. As a result,
�net is increased to 0.778 images per second, which is still below the desired limit.
Because Fusion is again more restrictive than the other three algorithms together, an
additional core (c3) is assigned to it (iteration 3 in Table 4). Now, Hotspots, Georef,
and Quality are executed on c1, and Fusion is executed on c2 and c3. However, there
are two options for utilizing the two cores: executing Fusion with 2 threads (3.a in
Table 4) and executing two different instances of Fusion in parallel on each core (3.b
in Table 4). Both options reach the target �net ≥ 1 image per second (�net equal to
1.092 and 1.394, respectively). Thus, the option of choice would be 3.a because that
option minimizes the execution time (τnet = 1.475s) while ensuring the desired λin .

4 Model validation

Two use cases are run to validate the contributions of this paper. Each use case repro-
duces a UAS mission: a surveillance mission to detect jellyfish shoals, and a mission
to detect of hotspots. The involved data processing algorithms are the following: Jel-
lyfish for the first mission and Hotspots, Georef, Quality and Fusion for the second
mission. For each mission, at least two runs are executed: one run with λin set to the
�mission threshold obtained by the proposed algorithm and another run in which λin
is set to�mission +0.1. Expectations are that the queue network is stable for λin equal
to �mission and becomes unstable when a small increment of input flow is entered
into the system. The data processing algorithms are executed on the actual UAS pay-

123



General queuing model for optimal seamless delivery of payload ... 99

load hardware (the ODROID-XU3) and process a sequence of one hundred images
taken from the visual and/or thermal cameras, with sizes of 5M and/or 80K pixels,
respectively. We assume that the sensors have a maximum �acq equal to 1.0 image
per second.

As in a real UAS flight, we build a parallel software system, in which each image
processing algorithm is executed as an agent. Then UAS sensors are simulated with
new agents that are programmed to publish an image at �mission rate. The communi-
cation between the agents is conducted via multi-language middleware, namely, the
lightweight communication and marshaling (LCM) software bus [37], which supports
the publish/subscribe communications paradigm. Figure 4 shows the example of the
agents involved in the Hotspot mission. Observe that the agents involved in the data
processing execute the real algorithms in the actual UAS hardware as if they were
airborne. No physical allocation to the ODROID-XU3 cores is forced, and no specific
priority is set to its Linux operating system scheduler.

Prior to the execution, the arrival rate of the mission is calculated using the resource
allocation algorithm and the heuristic described in Sect. 3.4. The algorithm returns a
�mission threshold for λin and a specific configuration of the algorithms (sequential or
parallel execution, one or multiple cores, and one or multiple threads). The involved
agents are deployed on the hardware, with the specific configuration, while the sensor
agents, which simulate the cameras, are deployed in another computer. The LCM
middleware runs over the UDP protocol; thus, when an image is published but there
is no service available, the image is simply lost.

4.1 Jellyfish: a use case of D/G/S single-node queuing model to validate �heu

Imagine a surveillance UAS with daily flights along a route parallel to the shoreline
with the objective of informing the coast guards and the citizens about the proximity
of jellyfish shoals. The UAS has a visual camera taking images of the water at regular
intervals. The images are sent to the on-board processing system, which executes the
jellyfish algorithm and obtains the number of jellyfish in the image. From the results,
the UAS can send alarms in real time to the coast guards. In addition, the UAS can
obtain relevant statistics about the jellyfish proliferation and their movements.

In the jellyfish mission, the network is composed of only one service, the Jellyfish
algorithm. Thus, the�net of this network will be equal to the�heu of its single queue.
The Jellyfish algorithm is CPU intensive (7.794s). Because it is not scalable, the only
reasonable parallelization strategy is to execute several jellyfish algorithms with a
single thread, thus working in parallel on different images arriving at the queuing
node.

We execute our iterative algorithm to find a faster but feasible input rate (�mission)
at which the system is not saturated.Observe in Table 5 the evolution of the iterations of
the algorithm, starting with one core (�net = 0.116 images per second still lower than
�acq ), followed by two cores (�net = 0.244 images per second), etc. The algorithm
finishes after the 4th iteration (with �net = 0.5 images per second) once all the
resources (the four cores of the ODROID-XU3) have been assigned. From Eq. 4, we
obtain that the �mission of the jellyfish mission is limited by �net , this is, by the

123



100 E. Salamí et al.

Table 5 Core allocation, τnet
(seconds) and �net
(arrivals/second) in the Jellyfish
mission

Algorithm S×threads Core τnet �net

1 Jellyfish 1×1th c1 7.794 0.116

2 Jellyfish 2×1th c1, c2 7.794 0.244

3 Jellyfish 3×1th c1, c2, c3 7.794 0.372

4 Jellyfish 4×1th c1, c2, c3, c4 7.794 0.500

available computational resources. Thus, the acquisition rate of the camera (�acq =
1.0 image per second) is not achievable for this mission.

We validate this result using the agent-based software: Four instances of the single-
thread version of the Jellyfish algorithm are deployed, one instance for each processor
core. When we set λin to 0.5 images per second, the�mission calculated threshold, the
results show that all input images have been satisfactorily processed in slightly over
than 3min. In contrast, when λin is set to 0.6 images per second, a value above the
λin f limit, the simulation ends faster; however, some processed images start failing
after the 23rd image. From the total of 100 images, only 84 images were processed.
The remaining 16 images were neglected because the agents were busy processing
other images. Once the system starts to exhibit instability, the mission images start
randomly missing at a rate of 2–3 images every 10 images. The execution shows that
the proposed heuristic for selecting the �heu of a service performs satisfactorily for a
network consisting of a single node.

4.2 Hotspots: a use case of G/G/S queuing network model to validate �net

The seconduse case is the hotspotmission presented inSect. 3.4. Figure 4 shows, below
the LCM component, the four image processing agents of the hotspot mission, which
constitute the queuing network. Above the LCM,we find the two agents simulating the
cameras and the mission agent. The two cameras publish an image every λ−1

in s. A total
of 200 images (100 visual images and 100 thermal ones) are used for the validation.
Approximately, half of this set of images does not include a hotspot, whereas the
other half does include a hotspot. This benchmark is set to simulate a flight wherein
the initial surveillance is performed over a cold area, and when entering the hot area,
almost all the images contain hotspots. The mission agent is responsible for the initial
dispatching the parallel agents, acts as a central hub for all the mission messages,
receives the results, and presents them to the end user. The specific configuration
resulting from our algorithm is that the Hotspots, Georef and Quality algorithms are
executed on one core, and the Fusion algorithm executes with two threads on another
two cores. The 4th core remains inactive, thereby not consuming any power. In this
case, �mission is limited by �acq , this is, 1.0.

The execution of the validation when λin is 1.0 images per second creates a stable
flow and finds all the hotspots in the last 49 images. The 49 tagged output images
are correctly generated. In addition, the text information of each hotspot (its geoloca-
tion and magnitude) is returned. The list of hotspots may contain up to nine hotspots,

123



General queuing model for optimal seamless delivery of payload ... 101

Fig. 4 Agent-based simulation setup

thereby being the most saturated input images processed consecutively in the simula-
tion, in the same way that they would appear in a real flight.

Two more executions are also used to test situations with saturation. First, a λin of
1.1 images per second is attempted using the same parallel configuration and resource
allocation as before. Then, a λin of 1.0 is also attempted but using the one-thread
Fusion algorithm, therein executing the whole data processing network with only two
cores. In the first case, the number of input images processed by theHotspots algorithm
is correct (100 images), and the number of geolocations returned is also correct (49
lists of hotspot locations); however, the number of fused images is only 32. For the
second non-stable case, the algorithms executing on the first core perform correctly as
before, but the Fusion algorithm is able to process only 25 images, namely one every
two images.

5 Conclusions

Real-time payload processing is a key feature that UAS should integrate on board to
provide fast response to the endusers of the system. Fire fighting and search-and-rescue
tasks are clear examples of the usefulness of such immediate information. In addition,
in precision agriculture, infrastructure maintenance, coastal guarding, etc., the rapid
availability of results can bemore useful than perfect accuracy. Quick response actions
can be applied while being out in the field, rather than after returning to a computing
facility, post-processing the payload data and providing results, which may already be
obsolete after the processing period.

In this paper, we presented a method for matching the execution time of the payload
processing necessities of a mission with available processing and acquisition capac-
ities of on-board resources. Two contributions are presented: The first contribution
is a heuristic for the selection of a suitable arrival rate of a service based on general

123



102 E. Salamí et al.

queuing theory and applied to the real execution time and variability of the process-
ing algorithms using the same multi-core board equipped by the UAS. The second
contribution is the algorithm that selects the best resource allocation for a network
of services composed of the processing algorithms executed in the pipeline, again
using the extension of general queuing theory for networks of services. The proposed
algorithm is fast and easy to implement. The algorithm obtains an optimal resource
allocation of the payload services and an arrival rate that ensures the stability of the
execution. The use of the general queuing model, instead of the previous Markov
queuing model, results in higher arrival rates and thus a better utilization of resources.

Examples of payload processing are given using several image processing algo-
rithms developed for different UAS missions. Ten independent algorithms, which use
the OpenCV libraries compiled for parallel execution, are presented. Their execu-
tion times are given for an embedded, low-cost, low-power, multi-core board with
sequential and parallel execution using 2–4 threads. Finally, a hardware-in-the-loop
simulation is presented to validate the correctness of the contributions. The executions
demonstrate the necessity of setting the correct parameters to ensure the stability of
the system. Small variations in these parameters are also tested to demonstrate the
negative effects that an incorrect estimation can produce.

In our mission implementation, with queues of length zero, any task arriving at
the service was simply ignored if the resource was not available. In this sense, some
of the images captured by the cameras are simply not processed. This may result in
the necessity for a repeated flight if the number of missing images is excessive or if
there is a missing output that is considered essential. With any luck, the flight could be
repeated on the same day, thus only increasing flight costs and not field costs. Another
solution to avoid the loss of images could be to store the pending tasks in a queue for
later processing. However, if the network system is unstable, then the memory of the
queues will overflow, and the results could be poor. For instance, a blocking of the
processor, which could also be performing other critical tasks, or a fatal increase in
the power consumption could affect the safety of the UAS.

Our immediate future work is to attempt to produce the presented solution for real
UASflights. An extension to additional alternative hardware boards andmoremissions
also represents future work. New boards for integration include the 64-core Epiphany-
IV and the small, low-cost and low-power Raspberry Pi. In parallel to this, efforts to
improve the fine-grain parallelism shall be applied together with incorporation into our
catalog of new payload processing algorithms required in future UAS applications.

Additional future work is the inclusion of more related parameters and functional-
ities as part of the queuing network. For instance, the UAS altitude and flight speed
are directly related to the capturing setup of the camera. When requesting a mosaic of
a flight area, for example, the images must overlap by 60–80%. Flying at high speeds
may stress the requested acquisition rate; on the other hand, flying at high altitude can
relax this requirement. In addition, the downstream communication of the results pro-
duced on board requires a limited bandwidth channel. The available bandwidth shall
be in line with the throughput of the queuing network and with the image resolution
of the equipment.

An important feature that requires further study is the power consumption. Espe-
cially for small UAS powered by batteries, the payload power consumption is a

123



General queuing model for optimal seamless delivery of payload ... 103

fundamental metric to be considered in the selection of the best strategy for achiev-
ing a successful mission. The inclusion of the power consumption can be addressed
using a similar methodology based on a priori experimental profile generation; then,
it can be modeled using a mathematical approximation function, which will then be
incorporated into the network queuing model as part of the resources used in the
system.

Acknowledgements Thiswork has been partially funded by theMinistry of Economy andCompetitiveness
of Spain under grants number TRA2013-45119-R and TRA2016-77012-R.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Everaerts J (2009) NEWPLATFORMS–unconventional platforms (unmannedaircraft systems) for
remote sensing. Europ Sp Data Res (EuroSDR) Tech rep, 56:58–103

2. Zhou G, Ambrosia V, Gasiewski AJ, Bland G (2009) Foreword to the special issue on unmanned
airborne vehicle (UAV) sensing systems for earth observations. IEEE Trans Geosci Remote Sens
47(3):687–689

3. Colomina I, Molina P (2014) Unmanned aerial systems for photogrammetry and remote sensing: a
review. ISPRS J Photogramm Remote Sens 92:79–97

4. Salamí E,BarradoC, Pastor E (2014)UAVflight experiments applied to the remote sensing of vegetated
areas. Remote Sensing 6(11):11051–11081. doi:10.3390/rs61111051

5. Austin R (2010) Unmanned aircraft systems—UAVS design, development and deployment
6. Watts AC, Ambrosia VG, Hinkley EA (2012) Unmanned aircraft systems in remote sensing and

scientific research: classification and considerations of use. Remote Sens 4(6):1671–1692
7. ZhangC,Kovacs JM (2012)The application of small unmanned aerial systems for precision agriculture:

a review. Precis Agric 13(6):693–712. doi:10.1007/s11119-012-9274-5
8. Ackerman E (2011) Japan earthquake: global hawk UAVmay be able to peek inside damaged reactors.

Spectr IEEE 17:490
9. Reavis B, Hem B (2011) Honeywell T-Hawk aids Fukushima Daiichi disaster recovery: unmanned

micro air vehicle provides video feed to remote monitors. Honeywell Aerospace Media Center Hon-
eywell International Inc 19

10. Baker RE (2012) Combining micro technologies and unmanned systems to support public safety and
homeland security. Civil Eng Archit 6(10):1399–1404

11. Turner D, Lucieer A, Watson C (2012) An automated technique for generating georectified mosaics
from ultra-high resolution unmanned aerial vehicle (UAV) imagery, based on structure from motion
(SfM) point clouds. Remote Sens 4(5):1392–1410

12. Ambrosia V, Buechel S,Wegener S, SullivanD, Enomoto F, Hinkley E, Zajkowski T (2011) Unmanned
airborne systems supporting disaster observations: near-real-time data needs. In: Proceedings of 34th
International Symposium on Remote Sensing of Environment. CD Proceedings, paper reference, vol
144, pp 1–4

13. Oliveira I, Pereira JA, Lino-Neto T, Bento A, Baptista P (2012) Fungal diversity associated to the olive
moth, prays oleae bernard: a survey for potential entomopathogenic fungi. Microbial Ecol 63(4):964–
974

14. Skinnemoen H (2014) UAV and satellite communications live mission-critical visual data. In:
Aerospace Electronics and Remote Sensing Technology (ICARES), 2014 IEEE International Con-
ference on, pp 12–19, 10.1109/ICARES.2014.7024391

15. Govil MK, Fu MC (1999) Queueing theory in manufacturing: a survey. J Manuf Syst 18(3):214–240

123

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.3390/rs61111051
http://dx.doi.org/10.1007/s11119-012-9274-5


104 E. Salamí et al.

16. Hsu CF, Liu TL, Huang NF (2002) Performance analysis of deflection routing in optical burst-switched
networks. In: Proceedings Twenty-First Annual Joint Conference of the IEEE Computer and Commu-
nications Societies INFOCOM 2002, IEEE, vol 1, pp 66–73. doi:10.1109/INFCOM.2002.1019247

17. Menasce DA, Dowdy LW, Almeida VAF (2004) Performance by design: computer capacity planning
by example. Prentice Hall PTR, Upper Saddle River

18. Qiu T, Feng L, Jiang H, Sun W (2013) Queueing model analysis and scheduling strategy for embed-
ded multi-core SoC based on task priority. Comput Electr Eng 39(1):24–33 (special issue on Recent
Advanced Technologies and Theories for Grid and Cloud Computing and Bio-engineering) doi:10.
1016/j.compeleceng.2012.03.001

19. Munir A, Gordon-Ross A, Ranka S, Koushanfar F (2014) A queueing theoretic approach for
performance evaluation of low-power multi-core embedded systems. J Parallel Distrib Comput
74(1):1872–1890. doi:10.1016/j.jpdc.2013.07.003

20. Qiu T, Zhao A, Ma R, Chang V, Liu F, Fu Z (2016) A task-efficient sink node based on embedded
multi-core soc for internet of things. Future Gener Comput Syst, doi:10.1016/j.future.2016.12.024

21. Casavant TL, Kuhl JG (1988) A taxonomy of scheduling in general-purpose distributed computing
systems. IEEE Trans Softw Eng 14(2):141–154

22. Chou TCK, Abraham JA (1983) Load redistribution under failure in distributed systems. IEEE Trans
Comput 32(9):799–808

23. Deng JD, Purvis MK (2011) Multi-core application performance optimization using a constrained tan-
dem queueing model. J Netw Comput Appl 34(6):1990–1996. doi:10.1016/j.jnca.2011.07.004 control
and Optimization over Wireless Networks

24. Li K (2015) Optimal partitioning of a multicore server processor. The J Supercomput 71(10):3744–
3769

25. Salamí E, Soler JA, Cuadrado R, Barrado C, Pastor E (2015) Virtualizing supercomputation on-board
UAS. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information
Sciences XL-7/W3:1291–1298, doi:10.5194/isprsarchives-XL-7-W3-1291-2015

26. Lee J (2014) ODROID-XU3: The fastest computer made by hardkernel so far! ODROIDMagazine pp
22–23

27. Salamí E, Barrado C, Pastor E, Royo P, Santamaria E (2013) Real-time data processing for the airborne
detection of hot spots. J Aerospace Inform Syst 10(10):444–451

28. Barrado C, Ja Fuentes, Salamí E, Royo P, Olariaga aD, López J, Fuentes VL, Gili JM, Pastor E (2014)
Jellyfish monitoring on coastlines using remote piloted aircraft. IOP Conf Series: Earth and Environ
Sci 17(012):195. doi:10.1088/1755-1315/17/1/012195

29. BrownM,LoweDG(2007)Automatic panoramic image stitching using invariant features. Int JComput
Vis 74(1):59–73. doi:10.1007/s11263-006-0002-3

30. Pulli K, Baksheev A, Kornyakov K, Eruhimov V (2012) Real-time computer vision with openCV.
Commun ACM 55(6):61–69. doi:10.1145/2184319.2184337

31. Lewis B, Berg DJ (1998) Multithreaded programming with pthreads. Prentice-Hall Inc, Upper Saddle
River

32. Kendall DG (1953) Stochastic processes occurring in the theory of queues and their analysis by the
method of the embedded markov chain. The Ann Math Statis 24(3):338–354

33. Gautam N (2012) Analysis of queues: methods and applications. CRC Press
34. Whitt W (1993) Approximations for the GI/G/m queue. Prod Oper Manag 2(2):114–161
35. Bertsekas D, Gallager R (1992) Data networks, 2nd edn. Prentice-Hall Inc, Upper Saddle River
36. Whitt W (1983) The queueing network analyzer. Bell Syst Tech J 62(9):2779–2815. doi:10.1002/j.

1538-7305.1983.tb03204.x
37. Huang AS, Olson E, Moore DC (2010) LCM: lightweight communications and marshalling. In:

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2010 , pp 4057–4062.
doi:10.1109/IROS.2010.5649358

123

http://dx.doi.org/10.1109/INFCOM.2002.1019247
http://dx.doi.org/10.1016/j.compeleceng.2012.03.001
http://dx.doi.org/10.1016/j.compeleceng.2012.03.001
http://dx.doi.org/10.1016/j.jpdc.2013.07.003
http://dx.doi.org/10.1016/j.future.2016.12.024
http://dx.doi.org/10.1016/j.jnca.2011.07.004
http://dx.doi.org/10.5194/isprsarchives-XL-7-W3-1291-2015
http://dx.doi.org/10.1088/1755-1315/17/1/012195
http://dx.doi.org/10.1007/s11263-006-0002-3
http://dx.doi.org/10.1145/2184319.2184337
http://dx.doi.org/10.1002/j.1538-7305.1983.tb03204.x
http://dx.doi.org/10.1002/j.1538-7305.1983.tb03204.x
http://dx.doi.org/10.1109/IROS.2010.5649358

	General queuing model for optimal seamless delivery of payload processing in multi-core processors
	Abstract
	1 Introduction
	2 Analysis of on-board data processing algorithms
	2.1 Algorithms description
	2.2 Execution time analysis

	3 Resource optimization using the general queuing model
	3.1 General queuing model
	3.2 Heuristic for establishing Λheu
	3.3 Queuing network model
	3.4 Algorithm for setting the optimizing strategy and establishing Λnet

	4 Model validation
	4.1 Jellyfish: a use case of D/G/S single-node queuing model to validate Λheu
	4.2 Hotspots: a use case of G/G/S queuing network model to validate Λnet

	5 Conclusions
	Acknowledgements
	References




