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Abstract Software transactionalmemory (STM) is oneof the techniques used towards
achieving non-blocking process synchronization in multi-threaded computing envi-
ronment. In spite of its high potential, one of the major limitations of transactional
memory (TM) is that in order to ensure data consistency as well as progress condition,
TM often forces transactions to abort. This paper proposes a new concurrency control
mechanism. It starts with the existing TM implementations for obstruction freedom
and eventually builds a new STM methodology. The primary objective is to reduce
aborting of transactions in some typical scenarios. A programming model is described
for a chain of update transactions that share the same data object among themselves.
Using the proposed approach, any new update transaction appended in this chain need
not wait for the earlier transactions to finish. The proposed STM allows wait-free,
non-blocking implementation of a mix of read and multiple update transactions on the
same shared data object with higher throughput.
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1 Introduction

Software transactional memory (STM) [20] is a promising technique to facilitate con-
current programming in modern multi-processor environment. A transaction in an
STM executes series of reads and writes on shared data and then either commits or
aborts. When two threads concurrently access the transactional data and at least one
of these accesses is a write, conflict occurs.

The progress property of an STM demands that every transaction should even-
tually commit. The three different levels of progress guarantee for non-blocking
process synchronization are wait freedom, lock freedom and obstruction freedom.
The obstruction freedom [11] guarantees progress by ensuring that one thread makes
progress if it executes in isolation. In presence of contention a transaction is allowed
to abort the conflicting transaction or back off for arbitrary time interval to ensure
progress [11,12]. Thus, one of the major challenges for STM-based solutions is con-
current abort-free execution of transactions maintaining progress condition, and data
consistency.

One of the notable STM implementations is DSTM (Software Transactional Mem-
ory for Dynamic-sized Data Structures) [12]. It offers an abort-free non-blocking
synchronization approach that guarantees progress when a thread executes in isola-
tion. When a transaction faces contention with another, it consults with contention
manager to decide which transaction to delay or abort and when to restart an aborting
transaction.

There exist a few STMs [2,4–6,17] that have aimed to avoid spurious aborts. The
propositions either use time stamp from a global clock [6], or maintain multiple ver-
sions [5,17], or use conflict serializability scheduling as in [2,4]. All these approaches
are able to achieve abort-free execution for read-only transactions to some extent.
However, none of them consider reducing abort for write transactions.

In very recent time, an obstruction-free non-blocking synchronization is proposed
[8] that claims abort-free execution. However, the work in [8] is tailored for two
concurrent transactions only. Moreover, the first transaction may be aborted by the
second transaction under certain conditions. In this paper, we have proposed a new
non-blocking, concurrency control approach for multi-threaded environment. The
designing goal of the proposed algorithm is to allow multiple read and write trans-
actions on the same data object. The proposed STM does not require aborting a
transaction except towards handling a typical exception as detailed in procedure
tryCommit (Step 50–58) of the algorithm proposed in Sect. 3. Thus, in this method
every transaction with in a group is able to commit in a finite number of steps. The key
idea of the algorithm is to create a chain of update transactions while accessing same
data object concurrently. Every transaction in the chain shares the data value among
them and always commits after satisfying certain conditions.

Although DSTM [12] is unable to provide desired progress guarantee, its imple-
mentation simplicity motivates us to build our solution using a data structure that is
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very similar to what is used for DSTM. Unlike DSTM, the proposed algorithm in
Sect. 3 of this paper does not require any contention manager as the transactions are
capable to resolve contention on their own.

The rest of the paper is organized as follows. Section 2 reviews the state of the art
scenario for non-blocking process synchronization and explains some of its important
terminologies and conceptions. In Sect. 3, the formal model of the proposed system is
described. Section 4 presents the critical analysis of the proposed model. In Sect. 5, a
comparative study of the proposedmodel is presented. The paper endswith concluding
remarks in Sect. 6.

2 Review

The non-blocking synchronization technique in STM implementation ensures that
at least some threads must commit while running concurrently. This property is
known as progress condition. STM provides two levels of progress [10] i.e., transac-
tional memory level (TM-level) progress and transaction level progress. At TM-level,
progress means completion of the individual TM operation, whereas at transaction
level, progress implies execution of a thread through a successful commit. At either
of these two levels, non-blocking synchronization technique ensures that a thread
pre-empted during its execution cannot prevent other transaction to make progress.
Depending on the level of progress, three types of non-blocking progress guaran-
tees are found [15]. Among these, the obstruction freedom guarantees that a thread
makes progress if it executes in isolation. In obstruction free transactional memory
(OFTM) [11], a transaction T of a process P may be forcefully aborted, if it concur-
rently executes with some process other than P [9]. Thus, in presence of contention,
choosing which transaction to abort and when to restart an aborting transaction is
a crucial task. In order to cope up with the situation, OFTM takes help form con-
tention manager. The contention management comprises of notification method for
various events alongwith request methods that ask contentionmanager tomake a deci-
sion. The notifications include beginning of a transaction, successful/unsuccessful
commit, acquire of an object etc. The request method asks contention manager
to decide whether to back off the transaction or to abort competing transactions
[19].

The first OFTM that is implemented by Herlihy et al. [12], to manage dynamic set
of data is known as DSTM (Software Transactional Memory for Dynamic-sized Data
Structures). Since the inception of DSTM, several OFTM systems are implemented
[7,14,16,21] that work upon the limitations of OFTM and propose a better solu-
tion. All of them include contention management policies to avoid conflicts among
transactions. However, any contention management policy for obstruction freedom
always eventually aborts a competing transaction to avoid deadlock [18]. There are
different types of contention management policies those are evolved to work with
a specific OFTM and to achieve better throughput. Thus, selecting a specific con-
tention manager for a particular OFTM is a challenging task. In [19], the experimental
evaluation shows that improper selection of contention manager deteriorates the
throughput.
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There are few works [2,5,6,17] on the conflict avoidance between transactions to
reduce abort. These implementations either use time stamp from a global clock or
maintain multiple versions or employ conflict serializability scheduling. In lazy Snap-
shot algorithm [6], every shared object gets a timestamp from a discrete logical global
clock. The implementation retains multiple versions for each object and if sufficient
versions available, then read-only transactions can commit without any back-off or
abort. Multi-Version Permissive System (MV-Permissive) [17] also maintains mul-
tiple versions to avoid spurious aborts for read-only transactions. The SwissTM [5]
combines global clock with hybrid conflict detection technique i.e., eager conflict
detection for a write/write transactions and lazy conflict detection for read/write trans-
actions. The approach gets best result when read transactions commit before writes.
The garbage collection i.e., cleaning up of the older object versions is a challenging
task for these algorithms. Moreover, they have focused on avoiding aborts for read-
only transactions; how to reduce the number of aborts for write transaction has not
been considered.

In [2], the conflict serializability model of database management system (DBMS)
is introduced to reduce the rate of aborts. The system maintains a serializability
order number for every transaction. In presence of contention, the transactions exe-
cute as per their order number without causing any abort. Construction of unique
serializability order number is a crucial task as without this number the transaction
cannot be serialized. Although this implementation is able to achieve a better through-
put but cannot ensure that every transaction will commit in presence data accessing
conflict.

In [4], a wait-free non-blocking synchronization is designed to exploit parallelism
between read and write transactions without involving contention manager. The algo-
rithm maintains a list of instructions for each sharable data object. A scheduler places
the transactions’ instruction in the appropriate list. The list is chosen in such a way
so that contention between transactions can be avoided. The major drawback of this
implementation is that every transaction must know list of instructions in advance,
which is a quite challenging task.

Attiya andMilani presented a BIMODAL transactional scheduler [1] in the context
of read-dominated workload. The algorithm specially tailored for abort-free execution
of read-only transactions without causing any delay to the early-write transactionmost
of the cases. The throughput of the algorithm is significantly deteriorated for late-write
transactions, where updates are made at commit time.

The proposed work designs a new non-blocking algorithm to achieve concurrency
control for multi-threaded environment. This non-blocking thread synchronization
algorithm is an improvisation of OFTM that focuses on lowering transaction aborts
for update-executions in presence of contention. The proposed method doesn’t require
to include any existing contention management policies [19] as the update trans-
actions are able to resolve conflicts themselves while accessing the sharable data
concurrently.

In case of read–write contention, there are several comprehensive works and tested
approaches towards lowering the abort for read executions in STM [2,4,5,17]. This
paper focuses onwrite–write contention andmaintaining the read executions is beyond
the scope of this paper.
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3 Proposed method

3.1 Basic concept

Two transactions running concurrently may face contention with each other, if both
try to acquire the same data object simultaneously and at least one of these is involved
in a write operation. In typical OFTM implementation [12], the transaction has two
options in such situation. Either abort one of the conflicting transactions, or back off
for some arbitrary time interval. In the proposed method both the transactions are
allowed to access the data object without causing any abort or delay.

Let’s explain the scenario with an example. Suppose a transaction Tk has opened a
sharable object X for write and it is in active state. Now, another write transaction Tx
wants to access X. In this situation, in contrast to OFTM, the proposed method allows
Tx to access the data object from Tk after forming a chain of transactions.

Figure 1 depicts a situation, where four write transactions simultaneously access the
same data object by forming a chain of transactions. Let, Tk be the first transaction in
the chain, known as header, that owns the sharable object X. Transaction Tx is the next
one that reads X, while Tm and Tz appear next in that order. The header transaction,
Tk in this example, is also referred as owner transaction. A transaction is termed as
immediate-predecessor transaction when it occurs immediately before a transaction.
Thus in the example, Tk is the immediate-predecessor transaction to Tx , which again is
immediate-predecessor to Tm and so on. The header can directly access the data object
and commit without any dependencies. At commit point every transaction, other than
header, ensures that its immediate-predecessor transaction is committed and the data
value that it has read is consistent.

3.2 Data structure

The data Structure for the proposed model is similar but not identical to those used in
[8] and DSTM [12] (Fig. 2). The Transactional Data Structure, Data Object and
Locator are similar to those used in [8,12]. However, to match with the adapta-
tion proposed in our algorithm, a new status called READY is incorporated. These
revised data structures are briefly described here for the sake of completeness. The

Fig. 1 Chain of transactions sharing Data Object
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Fig. 2 Transactional Data
Structure with Data Object and
Locator

transactional memory object (TMObject) in Sect. 3.2.3 is newly introduced in this
paper.

3.2.1 Transactional data structure

TheTransactionalDataStructure consists of a Status fieldwith four states:ACTIVE,
COMMITTED, READY and ABORTED states. These states are used to determine
the current state of a transaction (Fig. 2a). ACTIVE status means that a transaction has
began and in operation; COMMITTEDmeans successfully completed all its tasks and
READY means the transaction has completed its operations and waiting to commit.

It is important to mention here that the Transactional Data Structure also maintains
the status ABORTED. This is apparently in conflict with the desired goal to achieve
concurrent execution of transactions. Aborting of transactions is used in OFTM [11] to
ensure that a new transaction is not blockedby anolder transaction. The same technique
is implemented in other reported citations [7,12,14,16,21]. However, indiscriminate
use of such transaction aborting may seriously affect performance of a system. On the
contrary, STM is used as an alternative of the conventional deadlock handling mea-
sures like mutual exclusion to avoid contention. However, a policy of never aborting
the transactions may lead to a cyclic concurrency conflict situation where processes
holding multiple shared resources may form a closed wait-for cycle. In order to handle
such exceptions, a transaction Tx may be allowed to abort its immediate-predecessor
transaction Tk , which is owner of the data object and Tx has waited for a very long
time. This is expected to increase the throughput of overall system.

3.2.2 Data object and locator object

Figure 2b, c depicts Data Object and Locator object respectively. Data Object
contains the last committed data. The Transaction field of the locator points to the
transaction that creates the locator. In OldData field transaction copies the read data
value and in NewData transaction stores last undated value at the time of execution.
When transaction successfully commits, the stored value of NewData field is being
saved into Data object.
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Fig. 3 TMObject sructure

3.2.3 Transactional memory object (TMObject)

TMObject (Fig. 3) encapsulates a program object that can be accessed by the transac-
tion. TMObject has two fields:

• *WriterTransactions: This field points to an array of pointers. Each element of
this array points to the transaction locator opened in a cascading manner to access
the data object. The first element of the array points to the transaction locator of
the first initiated transaction in the chain that owns the sharable object. In the rest
of the paper the first array element is termed as header. Rest of the transaction
locators in the chain other than header are the pseudo owners of that sharable
object.

• *Data This field points to the Data object to read the recent committed data.

3.2.4 Proposed concurrency control mechanism

This section describes the proposed algorithm that aims to reduce the number of
aborts for write execution while accessing common shared object. Before the new
algorithm is described, let’s state the assumption on how multiple write transactions
forms a cascading chain. We assume that if a write transaction faces contention
with other transaction(s) while accessing a sharable object then it includes itself
as the last element in a chain of active transactions and reads the sharable object’s
value. Thus, in the chain of transactions, the header is the owner of the sharable
object and all other transactions are the pseudo owner of that same sharable object.
When the header transaction wants to commit, as it is the owner, it can commit
directly.

When a transaction, which is the pseudo owner of the data object, wants to
commit, it checks the status of its immediate-predecessor transaction. If the immediate-
predecessor transaction is in committed state then transaction checks the data
consistency with the recently committed data value and re-executes its write operation
if necessary. If the pseudo owner finds that its immediate-predecessor transaction is
Ready/Active state then the transaction checks for the data consistency and re-executes
it write operation if necessary. The pseudo owner transaction cannot commit until its
immediate-predecessor transaction commits successfully.

Let us explain the commit process from the transaction’s point of view. At commit
point a transaction checks the status of its immediate-predecessor transaction. In the
example (Fig. 4) Tm will check the status of its immediate-predecessor transaction
i.e., Tx .

• If Tx ’s status is Committed; then Tm checks for the data consistency with its old
value and Data Object’s value (as Data Object stores the recent committed data
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Fig. 4 Concurrent write for transactions in presence of contention

updated by Tx ). If the data is consistent then Tm commits otherwise Tm re-executes
write operation after reading recent data value and then commits.

• If Tx ’s status is Ready; then Tm checks the data consistency with its OldField
and Tx ’s NewField value. If data value is consistent then Tm backs off for some
arbitrary time and if data is inconsistent then Tm re-executes its write operation
after reading data value from Tx ’s NewField and backs off for a very small interval
and retries to commit.

• If Tx ’s status is Active; then Tm follows the steps same as Tx is in ready state and
backs off for some arbitrary time to give chance to Tx to commit.

The proposed solution is presented in Algorithm 1. The workflow of this algo-
rithm is as follows: a transaction, T , tries to acquire an object X (Line 2). If T finds
that the sharable data object is not currently owned by any other transaction then T
becomes the owner of that data object. Otherwise, T becomes the pseudo owner of
the sharable object. Pseudo owner implies that, although transaction is accessing the
sharable object, it may face inconsistency at commit time. In this process a chain of
transactions is formed (Line 12–28), where the first transaction in the chain is the
owner of the sharable object and rest of the transactions are pseudo owners. Each
transaction in the chain points to their respective transaction locator to point old and
new versions of the sharable object. In the execution process, transaction executes
its update query (Line 3) and tries to commit (Line 4–10). If the transaction, say T ,
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is the owner of the sharable object then it can commit immediately (Line 6, 29–34),
otherwise T executes tryCommit() (Line 8, 35–65) after an arbitrary time of back-off
until it becomes the owner of the data object.

4 New concurrency control mechanism: a critical analysis

The proposed methodology is based on the foundations of OFTM, while it provides
a completely new mechanism for write transactions to execute concurrently while
sharing common data object.

Suppose, T1, T2, T3, . . . , Tk are consecutive write transactions in the chain. These
transactions have formed the chain in the order as these are mentioned. The statements
of Lemmas 1, 2 and 3 are stated for these transactions in the chain.

Lemma 1 Transaction Ti can commit only when Ti−1 is committed for i ∈ [2..k].
Proof Suppose T1 and T2 are consecutive transactions in a chain, appearing in the
order in which these are mentioned. Transaction Tk is executed by a process Pi and
let Tk be the owner of the sharable object X. So, Committed [Tk] is true for k = 1.
For k = 2, T1 ← T2
Thus T2 will commit when Committed[T1] is true and T1[X, New]= T2[X, Old]. Now
it is to be shown that Tm−1 ← Tm i.e., to commit Tm , Tm−1 must be committed.
Committed[Tm−1] is true iff Committed[Tm−2] is true and Tm−1[X, New] = Tm−2[X,
Old].
Hence, Committed[Tm] is true iff Committed[Tm−1] is true and Tm−1[X, New] =
Tm[X, Old].
So we can say, Ti can commit only when Committed[Ti−1] is true for i = 2, 3, . . . , k.

��

Algorithm 1 Proposed Algorithm
.
� acq_st:Acquired State; either exclusive owner or pseudo owner.
� t_state: Transaction state; Committed, Active, Ready, Aborted.
� cmt_st: Commit status; true or false. Initial value is false.

1: upon write of sharable object x by Tk do
2: acq_st = Acquire(Tk , x);
3: executeUpdate(Tk , x);
4: repeat
5: if acq_st= ’owner’ then
6: cmt_st = Commit(Tk )
7: else if acq_st= ’pseudo_owner’ then
8: cmt_st = tryCommit()
9: end if
10: until cmt_st = true
11: return ok
12: procedure Acquire (Tk , x)
13: if x is free then
14: acq_st = ’owner’;
15: front = 1;
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Algorithm 1 (continued)
16: *WritetrTransactions[front] = locator(Tk );
17: rear = front;
18: *WritetrTransactions[front].locator.TransactionStatus = ’Active’;
19: return acq_st;
20: else
21: acq_st = ’pseudo_owner’;
22: rear = rear+1;
23: *WriterTransactions[rear]=locator(Tk );
24: *WriterTransactions[rear].locator(Tk ).OldData = WriterTransaction[rear-1].locator(Tk ).NewData;
25: *WriterTransactions[rear].locator.TransactionStatus = ’Active’;
26: return acq_st;
27: end if
28: end procedure � The header of the transaction-chain is the exclusive owner and it can commit

tryCommit(T) also calls this procedure
29: procedure Commit(Tk )
30: *Data = *WriterTransactions[front].locaotr(Tk ).NewData;
31: *WriterTransactions[front].locaotr(Tk ).TransactionStatus = ’Commited’;
32: front=front+1;
33: return true;
34: end procedure � When a transaction tries to commit, either it can commit or re-execute or

back off. When a transaction backs-off for several times it may abort its immediate-predecessor, if that
transaction is the header in the chain.

35: procedure tryCommit(Tk )
36: pos = findElementPosition(*WriterTransactions, locator(Tk ))
37: if pos = front then
38: Commit(Tk );
39: return true;
40: else
41: *WriterTransactions(pos).locaotor.TransactionStatus = ’Ready’;
42: t_state = *WriterTransactions(pos-1).locaotor.TransactionStatus;
43: if t_state = ’Ready’ or t_state = ’Active’ then
44: if *WriterTransactions(pos).locator.OldData = *WriterTransactions(pos-1).locator.NewData

then
45: *WriterTransactions(pos).locator.OldData = *WriterTransactions(pos-1).locator.NewData;
46: *WriterTransactions(pos).locaotor.TransactionStatus = ’Active’;
47: Re-executeUpdate();
48: return false;
49: else
50: back-off();
51: if back-off_time >back-off_limit and pos-1=front then
52: WriterTransactions(pos).t_state=’Aborted’;
53: if *WriterTransactions(pos).locator.OldData = *Data then
54: WriterTransactions(pos).locator.OldData = *Data;
55: Re-executeUpdate();
56: end if
57: Commit(Tk )
58: return true;
59: end if
60: return false;
61: end if
62: return false;
63: end if
64: end if
65: end procedure
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Lemma 2 Ti will re-execute its write operation when Committed[Ti−1] is true or
Active[Ti−1] = true and Ti−1[X, New] �= Ti [X, Old] for i ∈ [2..k], where k is the
total number of transactions in the chain.

Proof Suppose a transaction T1 is executed by a process Pi ·T1 is owner of the sharable
object X.

Now, T2 is another transactionwhere T1 ← T2. T2 will re-execute its write operation
when Committed[T1] is true or Active[T1] = true and T1[X, New] �= T2[X, Old].
Now it is to be shown that Tm−1 ← Tm i.e., Tm will re-execute its write operation
iff Tm−1 writes data value for the sharable object X after Tm read the value of X
from Tm−1. Using Lemma 1 it can be proved that Ti re-executes its write operation
for the sharable object X when Committed[Ti−1] is true or Active[Ti−1] = true and
Ti−1[X, New] �= Ti [X,Old] for i = 2, 3, . . . , n. ��
Lemma 3 Proposed algorithm is step contention Free.

Proof Atransaction Tk of a process Pi encounters a step contentionwhen someprocess
other than Pi executes a step between first event of Tk and before commit/abort of Tk
[9]. In presence of step contention, generally, transaction may be forcefully aborted.
In the proposed method, transaction Tk (assumed as firstly initiated transaction) can
only own the sharable object. All other Ti transactions, for i = 2, 3, 4, . . . , n, are
pseudo owners and depend on the values owned by the Ti−1 transaction. Hence trans-
actions are step contention free and thus no transaction is forcefully aborted while
accessing sharable object concurrently.

Although the proposed algorithm claims to be step contention free, in only one
scenario a transaction, say Tx is allowed to forcefully abort its immediate-predecessor
transaction, say Tk , if Tk is the owner of the sharable object and Tx has backed off
more than a certain duration. This abort mechanism facilitates to overcome the infinite
wait problem which otherwise may affect, cumulatively, the average execution time
of other transactions in the chain. ��

5 Performance evaluation

We have considered the efficiency of the proposed algorithm on the basis of transac-
tions’ start time, access time of the sharable object and the execution length. The data
sets are considered and grouped to cover all possible classes of scenarios that may
occur between transactions in terms of these parameters As for example, a typical
scenario may consider that the second transaction occurs at a time when the first trans-
action has already accessed the shared resource, but could not commit itself as the first
transaction is yet to commit. In another scenario, the second transactionmay occur and
then start accessing the shared resource even before the first transaction could access
the resource although first transaction is initiated before the second transaction. For
each and every scenario, data sets are taken with random values in the range of that
particular group. The throughput of the proposed STM is evaluated and compared
with conventional lock-based concurrency control algorithm [3,13] for each scenario.

The proposed algorithm has a single iterative step and it iterates exactly n times,
where n is the number of transactions in the chain. If average time of execution for
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Fig. 5 Symbols and
abbreviations used in this
section

each transaction is τ , then the worst case performance is O (nτ), which is equivalent to
serial execution of the transactions one after another. However, the actual turn-around
time for a group of n transactions would be much less than nτ , due to the concurrent
execution of transactions.

It is not quite realistic to make a best-case or even an average-case time estimation
for the proposed algorithm as execution time would depend on the relative length
of successive transactions as well as on the actual time of accessing the shared data
object. Thus, in this section, the performance evaluation is done using an abstracted
view. All possible scenarios are grouped into three distinct types of cases in Sects. 5.1,
5.2 and 5.3. At first the different scenarios in terms of the access times of the successive
transactions are considered for two arbitrary transactions T1 and T2, where transaction
T1 is the immediate-predecessor transaction of T2. Subsequently, to make the analysis
true for multiple transactions, the result set of five transactions executing in cascading
manner and sharing same sharable object has been considered. In this section, we
have included various diagrams regarding the commit process of two transactions in
different scenarios for a better understandability. The tables in this section list some
representative cases to study the effectiveness of the proposed algorithm. Figure 5
shows different symbols and abbreviated forms used in the diagrams and tables. In
figures and tables, the legend for the proposed newSTM is termed as PSTM for brevity.
Few symbols and abbreviations (e.g. S, A, C etc.) those are self-explanatory are not
described. The other abbreviations used in the tables and figures are as follows:

• SZ is the size of each transaction in terms of clock cycle and hence a large value
indicates more clock cycle to commit.

• ST is the initiation time of a transaction.
• Access Time AC is the number of cycles after which a transaction accesses a
sharable object.

• EL is the write execution length in clock cycles.
• The term CommitPoint implies the commit point of the transaction in absence of
contention.

• R_B states the number of re-execution of write process and/or number of back-
offs. For example, R2B3 implies transaction has re-executed its write operations
for two times and backed off three times before commit.

• T1 and T2 are consecutive transactions in the chain, appearing in the order in which
these are mentioned.

• PSTM: The legend for the Proposed STM.
• LOCK: Lock-based concurrency control algorithm.
• EET: Effective Execution Time of Proposed Method over Lock-based Synchro-
nization.

• T1 and T2: Are two update-transactions, where T1 has initiated before T2.
• Access (T2) > Access(T1): transaction T2 accesses the sharable object after T1.
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• Access (T2) < Access(T1): transaction T2 accesses the sharable object before T1.
• CommitPoint (T2) > Commit Point (T1): transaction T2 reaches its commit
point after T1.

• CommitPoint (T2) < Commit Point (T1): transaction T2 reaches its commit
point before T1.

5.1 Case I: transaction T2 accesses sharable object after transaction T1

In this case transaction T2 accesses the sharable object after T1. So, hopefully, at the
commit point T2 will find T1 in committed state with consistent value of the data
object that T2 has read. In such case, T2 can commit without any back-off. Figure 6
shows this scenario and Table 1 analyzes the result set. In Table 1, in all five cases,
T2 has accessed the object after T1 and the size of T2 and/or update execution length
is greater than T1. Thus T2 is expected to commit after T1. The result set shows that
the proposed algorithms perform better or at par in comparison with conventional
lock-based commit protocol.

In the next scenario, transaction T2 accesses the object after T1, as in earlier case,
but T2 reaches the commit point when T1 is in active state due to T2’s shorter size
and/or update execution length. Thus T2 will back off for certain time to give the
chance to T1 to commit. T2 will retry to commit after back-off time period. In the
proposed algorithm this back-off time is decided to make same as transaction’s write
execution time to avoid the intervention of contention manager and its overheads.

Figure 7 shows that T2 has to back off two times before it can commit. Result set
in Table 2 shows that T2 requires back off one or more time but re-execution is not
necessary until T2 gets an inconsistent data value at commit time.

It is important to mention here that the number of back-offs is dependent on the size
and/or execution length (EL) of the second transaction; lesser size/EL implies higher

Fig. 6 Access(T2) >

Access(T1) and
CommitPoint(T2) >

Commit Point (T1)

Table 1 Efficiency: Access(T2) > Access(T1) and CommitPoint(T2) > Commit Point (T1)

– Transaction 1 (T1) Transaction 2 (T2) Commit time –

SL SZ ST AC EL SZ ST AC EL R_B PSTM LOCK EET (%)

1 60 1 7 53 65 10 10 55 R0B0 74 115 64.30

2 90 1 25 65 85 15 30 55 R0B0 99 145 68.30

3 33 1 15 35 38 15 5 33 R0B0 52 66 78.79

4 27 22 10 17 29 25 12 17 R0B0 53 65 81.50

5 20 6 13 7 20 14 15 5 R0B0 33 33 100.00
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Fig. 7 Access(T2) >

Access(T1) and
CommitPoint(T2) <

Commit Point (T1)

Table 2 Efficency: Access(T2) > Access(T1) and CommitPoint(T2) < CommitPoint(T1)

– Transaction 1 (T1) Transaction 2 (T2) Commit time –

SL SZ ST AC EL SZ ST AC EL R_B PSTM LOCK EET (%)

1 50 5 15 35 30 10 12 18 R0B1 56 72 77.78

2 89 57 51 38 74 61 59 15 R0B1 148 160 92.50

3 99 1 41 58 91 3 58 33 R0B1 125 132 94.70

4 20 1 10 10 12 5 8 4 R0B2 22 24 91.67

5 86 49 33 53 76 59 54 22 R0B1 155 156 99.36

Fig. 8 Access(T2) < Access(T1); CommitPoint(T2) < Commit Point (T1) and EL(T2) < EL(T1)

Fig. 9 Access(T2) < Access(T1); CommitPoint(T2) � Commit Point (T1) and EL(T2) � EL(T1)

number of back-offs. Although second transaction may back off for several times, still
it produces better throughput than lock-based method.

5.2 Case II: transaction T2 accesses sharable object before transaction T1

When T2 accesses the sharable object before T1, it is obvious that at commit time T2
will get an inconsistent data value, and thus, T2 must re-execute its write operation (i.e.,
same as its execution length, EL). At new commit point T2 checks for data consistency
again, if inconsistent then T2 re-executes its write operation, otherwise checks for the
status of T1. If T1 is in active state then T2 backs off, otherwise commit. Figures 8 and
9 depict this scenario. In Fig. 8, EL of T2 is less than EL of T1 and in Fig. 9 EL of T2
is much lesser than EL of T1 [EL(T2) � EL(T1)]. Record of row 4 in Table 3 shows a
special case where second transaction requires to re-execute and back off for several
times (i.e., R5B4) due to its lesser execution length but still proposed method shows
a better efficiency than lock based.
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Table 3 Efficency: Access(T2) > Access(T1) and CommitPoint(T2) < CommitPoint(T1)

– Transaction 1 (T1) Transaction 2 (T2) Commit Time –

SL SZ ST AC EL SZ ST AC EL R_B PSTM LOCK EET (%)

1 20 1 10 10 15 2 7 8 R1B0 23 28 82.14

2 70 1 53 17 40 18 25 15 R1B0 71 85 83.53

3 51 15 10 65 30 10 10 20 R1B1 77 85 90.59

4 20 10 10 10 10 3 8 2 R5B4 30 31 96.80

5 20 1 10 10 10 2 7 3 R1B3 23 23 100.00

Fig. 10 Access(T2) < Access(T1); CommitPoint(T2) > Commit Point (T1) and EL(T2) > EL(T1)

Table 4 Access(T2) < Access(T1); CommitPoint(T2) > Commit Point (T1) and EL(T2) > EL(T1)

– Transaction 1 (T1) Transaction 2 (T2) Commit time –

SL SZ ST AC EL SZ ST AC EL R_B PSTM LOCK EET (%)

1 85 1 60 25 65 22 35 30 R1B0 115 115 100.00

2 71 1 53 18 69 4 49 20 R1B0 91 91 100.00

3 71 1 53 18 71 3 50 21 R1B0 93 92 101.09

4 85 1 60 25 75 15 40 35 R1B0 123 120 102.50

5 71 1 53 18 71 5 45 26 R1B0 100 97 103.09

In the next scenario, the performance of proposedmethod deteriorates due to higher
EL of second transaction. It means whenever EL(T2) is larger than EL(T1), the update
re-execution process takes long time to complete. Hence, T2 requires long time to
commit. Figure 10 explains this case, where T2 has to re-execute its write operation
as it finds a data inconsistency at the commit time. As the execution length of T2 is
larger, it takes long time to re-execute and hence requires longer time to commit. The
result set (Table 4) shows that proposed algorithm has same or worse performance
than Lock-based approach.

5.3 Case III: transaction T2 accesses sharable object after commit of
transaction T1

In this case, transaction T2 accesses the sharable object after commit of transaction T1
(Fig. 11). Thus, at commit time, T2 does not face any contention with T1 and commits
without any re-execution or back-off. Results in Table 5 show that this condition
has the same performance result for the proposed algorithm and lock-based commit
algorithm.
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Fig. 11 Access(T2) > Commit (T1)

Table 5 Access(T2) > Commit (T1)

– Transaction 1 (T1) Transaction 2 (T2) Commit time –

SL SZ ST AC EL SZ ST AC EL R_B PSTM LOCK EET (%)

1 70 1 60 10 65 40 35 30 R0B0 104 104 100.00

2 40 5 20 20 35 30 25 10 R0B0 64 64 100.00

3 35 1 12 23 30 28 9 21 R0B0 57 57 100.00

4 25 1 10 15 23 20 17 6 R0B0 42 42 100.00

5 20 1 5 15 20 10 12 8 R0B0 29 29 100.00

5.4 Performance of PSTM over Loack based for a chain of transactions

The Figs. 12 and 13 along with Table 6 show the throughput comparison between
the proposed algorithm and the conventional lock-based commit protocol. In this
comparison, throughput is tested where five write transactions are accessing the same
sharable object in a cascading manner by forming a chain (Table 6). Figure 12 shows
the result set from row 1 to 5 and row 6 to 10 of Table 6. Result set shows that
PSTM is able to achieve a better throughput than the Lock-based algorithm. Figure 13
shows same or a deteriorated performance of the proposed STM in some cases. This is
due to larger execution length (and/or size) of the transactions in comparison to their
immediate-predecessor transaction (Table 6, Row 11–20). It is worthwhile to mention
here that the deteriorated commit time affects other transactions in the chain i.e., the
delay in commit time for transaction T1, in the above example, will affect commit time
for transaction T2, T3 and so on. The abbreviations used in the Table 6 have already
been described in Sect. 5. Due to the scarcity of space in Table 6, the commit time of
PSTM and LOCK are written as P and L respectively. The column P1 and L1 shows
the commit time for the first write transaction, whereas P2 and L2 show the commit
time for the second write transactions in case of proposed STM and lock based and
so on.

6 Concluding remarks

In this paper, a new non-blocking concurrency control mechanism for multi-threaded
environment is proposed. The proposed STM aims to avoid aborting transactions
excepting typical scenarios that may otherwise lead to a long denial of access to
shared object. In this algorithm, when a write transaction faces contention with other
write transactions, it neither aborts the conflicting transaction nor backs off. Instead,
the transaction adds itself as an element in the chain of write transactions and reads
the data object. Thus, multiple write transactions are allowed to execute concurrently
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Fig. 12 Performance Analysis of PSTM vs. lock-based protocol (Table 6, Row 1–5 and Row 6–10)
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Fig. 13 Performance analysis of PSTM vs. lock-based commit protocol (Table 6, Row 11–15 and Row
16–20)
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by forming a cascading chain of transactions without causing any immediate abort
or back-off to any transactions. Moreover, the proposed method doesn’t include any
additional contention manager as the transactions are able to resolve conflicts on their
won. The uniqueness of the proposed implementation in this paper is in achieving
reduced number of aborts for write transaction on top of obstruction-free non-blocking
architecture. No such similar approach is found in the existing literature.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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