
J Supercomput (2013) 63:323–325
DOI 10.1007/s11227-012-0743-4

Guest Editors’ introduction

Abhinav Vishnu · Pavan Balaji · Yong Chen

Published online: 21 February 2012
© Springer Science+Business Media, LLC 2012

The last decade has observed a tremendous rise in high-end computing architec-
tures from commercial off the shelf clusters to system-on-a-chip architectures and
accelerator-based systems. Significant advances in many aspects of overall archi-
tectures with multi-core design (Intel, AMD, IBM), upcoming memory architec-
tures such as memory cubes with 3D design, a variety of SIMD units (GPUs, Intel
MIC, AMD Fusion and IBM Cell Architectures), commodity networking technolo-
gies (Ethernet, InfiniBand) and proprietary technologies (Cray Gemini/Seastar, IBM
BlueGene, Myrinet, Quadrics) are playing a critical role in addressing the computa-
tional needs of scientific applications. With Exascale systems on the horizon, there is
a significant push for revolutionary approaches in hardware design.

However, much of the above effort would not be of use without an appropriate
system software stack, which “rides” the architectural wave to provide the best per-
formance, while addressing the impending energy and reliability challenges. This
special issue is a small, but an important step toward research and best practices for
designing programming models and systems software for the future.

A. Vishnu (�)
Pacific Northwest National Laboratory, Richland, USA
e-mail: abhinav.vishnu@pnnl.gov

P. Balaji
Argonne National Laboratory, Lemont, USA
e-mail: balaji@mcs.anl.gov

Y. Chen
Texas Tech University, Lubbock, USA
e-mail: yong.chen@ttu.edu

mailto:abhinav.vishnu@pnnl.gov
mailto:balaji@mcs.anl.gov
mailto:yong.chen@ttu.edu


324 A. Vishnu et al.

1 In this issue

In “Deadline and Energy Constrained Dynamic Resource Allocation in a Heteroge-
neous Computing Environment”, Young et al. present that Energy-efficient resource
allocation within clusters and data centers is important because of the growing cost of
energy. They study the problem of energy-constrained dynamic allocation of tasks to
a heterogeneous cluster computing environment. The overall goal is to complete as
many tasks by their individual deadlines and within the system energy constraint
as possible given that task execution times are uncertain and the system is over-
subscribed at times. They use Dynamic Voltage and Frequency Scaling (DVFS) to
balance the energy consumption and execution time of each task. They design and
evaluate (via simulation) a set of heuristics and filtering mechanisms for making allo-
cations in our system. They show that the appropriate choice of filtering mechanisms
improves performance more than the choice of heuristic.

In “Restricted Admission Control in View Oriented Transactional Memory”, Le-
ung et al. present a Restricted Admission Control (RAC) scheme for View-Oriented
Transactional Memory. The scheme can control the number of threads concurrently
accessing a view in order to reduce the number of aborts of transactions. The RAC
scheme has the merits of both the locking mechanism and the transactional memory.
A theoretical model is proposed to analyze the performance of the RAC scheme and
to provide guidance for dynamic adjustment of the number of concurrent threads ac-
cessing the same view. Experimental results demonstrate that theoretical RAC model
can mostly provide correct guidance to transactional concurrency control. Their RAC
implementation shows that RAC can optimize concurrency control of transactions
and performs much better than conventional transactional memory systems such as
TinySTM that have no dynamic admission control.

In “Multi-Domain Job Scheduling for Leadership Computing Systems”, Tang et
al. present that current supercomputing centers usually deploy a large-scale compute
system together with an associated data analysis or visualization system. Multiple
scenarios have driven the demand that some associated jobs co-execute on different
machines. They propose a multi-domain co-scheduling mechanism, providing the
ability to coordinate execution between jobs on multiple resource management do-
main without manual intervention. They have evaluated their mechanism based on
real job traces from Intrepid and Eureka, the production Blue Gene/P system and
a cluster with the largest GPU installation, deployed at Argonne National Labora-
tory. The experimental results show that co-scheduling can be achieved with limited
impact on system performance under varying workloads.

In “Concurrent Programming Constructs for Parallel MPI Applications”, Berka et
al. present that Concurrency and parallelism have long been viewed as important, but
somewhat distinct concepts. While concurrency is extensively used to amortize la-
tency (for example, in web- and database-servers, user interfaces, etc.), parallelism is
traditionally used to enhance performance through execution on multiple functional
units. Motivated by an evolving application mix and trends in hardware architecture,
there has been a push toward integrating traditional programming models for con-
currency and parallelism. Use of conventional threads APIs (POSIX, OpenMP) with
messaging libraries (MPI), however, leads to significant programmability concerns,



Guest Editors’ introduction 325

owing primarily to their disparate programming models. In this paper, they describe a
novel API and associated runtime for concurrent programming, called MPI Threads
(MPIT), which provides a portable and reliable abstraction of low-level threading
facilities. They describe various design decisions in MPIT, their underlying motiva-
tion, and associated semantics. They provide performance measurements for their
prototype implementation to quantify overheads associated with various operations.
Finally, they discuss two real-world use cases: an asynchronous message queue and a
parallel information retrieval system. They demonstrate that MPIT provides a versa-
tile and a low overhead programming model that can be leveraged to program large
parallel ensembles.

We hope the articles in this special issue will provide relevant insights into the
emerging trends in parallel programming models and systems software for HEC sys-
tems.


	Guest Editors' introduction
	In this issue


