
Oleg Grigoriev

Marek Nasieniewski

Krystyna Mruczek-Nasieniewska

Yaroslav Petrukhin

Vasily Shangin

Axiomatizing
a Minimal
Discussive Logic

Abstract. In the paper we analyse the problem of axiomatizing the minimal variant of

discussive logic denoted as D0. Our aim is to give its axiomatization that would correspond

to a known axiomatization of the original discussive logic D2. The considered system is

minimal in a class of discussive logics. It is defined similarly, as Jaśkowski’s logic D2 but

with the help of the deontic normal logic D. Although we focus on the smallest discussive

logic and its correspondence to D2, we analyse to some extent also its formal aspects, in

particular its behaviour with respect to rules that hold for classical logic. In the paper we

propose a deductive system for the above recalled discussive logic. While formulating this

system, we apply a method of Newton da Costa and Lech Dubikajtis—a modified version

of Jerzy Kotas’s method used to axiomatize D2. Basically the difference manifests in the

result—in the case of da Costa and Dubikajtis, the resulting axiomatization is pure modus

ponens-style. In the case of D0, we have to use some rules, but they are mostly needed to

express some aspects of positive logic. D0 understood as a set of theses is contained in D2.

Additionally, any non-trivial discussive logic expressed by means of Jaśkowski’s model of

discussion, applied to any regular modal logic of discussion, contains D0.

Keywords: Discussive logics, The smallest discussive logic, Discussive operators, Accessi-

bility relations, Modal logic, da Costa and Dubikajtis, Embedding.

Mathematics Subject Classification: 03B53.

1. Introduction

Stanis�law Jaśkowski proposed a model presenting an analysis of inconsistent
theories within some consistent framework. A certain model of discussion
was used since it permits intuitively present theories containing inconsistent
statements. Moreover, acting on such an inconsistent basis no one would
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conclude from the information collected during the conversation, that every-
thing follows; in other words, debaters can formulate pairwise contradictory
theses, but none of the observers would agree that everything follows from
such a discussion.1 The role of an external observer in Jaśkowski’s intuitive
model consists in rendering a discussion assertion, which relies on preceding
each thesis of the system with a proviso: “according to the view of one of
the participants in the discussion” or “with a certain acceptable meaning of
the words used”. In Jaśkowski’s motivation, such a role could be played by
an impartial mediator who might understand this way the theses of partic-
ular participants in the discussion. So, from an intuitive point of view, the
external observer should rather not be a discussant simultaneously. The so-
called discussive connectives of conjunction and implication represent some
aspects of communication acts holding between participants.

We will assume the reader’s familiarity with the basic notion connected
with normal modal logics.

2. Variants of Discussive Logics

Jaśkowski considered a discussion in which every one of two debaters can
respond to each other. It can be treated as a simulation of the full accessibil-
ity relation determining the modal logic S5.2 While defining the discussive
logic D2 you do not need all theses of S5 (see [5,18–20,24]). On the other
hand it is not the case that using any normal modal logic one obtains the
very same D2.

From the intuitive point of view Jaśkowski’s logic could be seen as ‘demo-
cratic’ in the sense that everyone is allowed to formulate a statement and
everyone can respond to any statement made by anyone else. However, as
we know from everyday experience, the situation may be different. One can
observe that in some cases not everyone is in position to react to each state-
ment. Such situations can be connected, for example, with some charisma
of particular debaters. Hence, using the language of Kripke-style seman-
tics, one can say that participants of a discussion are usually connected by
some accessibility relation that determines which persons are in a position
to react to the statements of a given debater. In this context, one can ask

1Further considerations on this matter can be found e.g. in [12].
2Although Kripke semantics was not discovered at that time yet, Wajsberg’s result on

the connection of S5 with the first-order logic was known to Jaśkowski—he was referring
to this connection in [7,8].
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whether each accessibility relation is suitable to represent this aspect of dis-
cussion within this more general variant of Jaśkowski’s model. The answer is
obvious—not every accessibility relation. As an extremum one can indicate
the empty relation that would not lead to any reactions. In the context of
Jaśkowski’s way of describing the current stage of a discussion by means of
the point of view of the external observer who treats voices of a discussion
as possible, it is also obvious that members of a discussive group who have
the empty set of alternatives, i.e. as one could say, people whose opinions are
not taken into account by others while formulating their own statements,
are not included in the outcome of the discussion. Moreover, since we are
interested in stating at the end what follows logically, we should be able to
vary the considered point of view, so everyone who is meant to be a debater
in the given discussion should be connected to some other participant. Se-
mantically this means that we have to consider discussive groups in which
everyone is connected with at least one member (the case of self-connection
is not excluded). So seriality is the most general and weakest stipulation for
groups of debaters meant to intuitively represent models used to semanti-
cally express the considered smallest variant of discussive logic.

In what follows we keep Jaśkowski’s original understanding of discussive
connectives of implication and conjunction. Jaśkowski’s discussive implica-
tion →d is meant intuitively as saying: “if anyone states that p, then q” (see
[7, p. 150, 1969], [8]), in the modal language: ♦p → q. Nowadays, discus-
sive conjunction added to discussive language later in 1949 ([9]) is usually
treated as saying “p and someone said q” and in the modal language is
translated as p ∧ ♦q. In the case of D2, the possibility operator meant to
give an interpretation of discussive connectives in the modal language, intu-
itively is used to express statements presented by some participant during
the discussion. In our interpretation we would like to rely on the relation
that ‘connects’ debaters. Possibility is used by Jaśkowski also to simulate an
evaluation made by an ‘impartial arbiter’. Hence, according to Jaśkowski,
theses of the discussive system have to be preceded by the stipulation: “if
a thesis is recorded in a discursive system, its intuitive sense ought to be
interpreted so as if it were preceded by the symbol Pos” ([7, p. 149, 1969],
[8]), where ‘Pos’ was used to denote the possibility operator.

Preserving the described way of formulating discussive logic, one can de-
fine discussive logic by taking any normal modal logic or even any modal
logic. Formulas of the discussive language Ford become theses of some spe-
cific discussive system, if their translation into modal logic is a possible
truth of the underlying modal system. In some cases, one can obtain even
the empty set of theses, if a given modal logic does not have respective
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theses that could act as results of the translations used to define discussive
logic. As an obvious example one can consider the logic K and try to define
discussive logic on its basis. Since K has no thesis of the form ♦A, the re-
sulting discussive logic would be the empty set. So, the necessary condition
for a normal modal logic to be used to define a nontrivial discussive logic
is to have at least one thesis of the form ♦A. But by monotonicity, such
a logic contains the axiom (D): ♦(p → p). As one can easily see the same
holds for regular modal logics. In particular, taking into account the stan-
dard semantics for regular logics, where frames with non-normal worlds are
considered, one can observe that for any thesis ♦A of the normal deontic
logic D, ♦A also belongs to D23—the smallest regular logic containing the
axiom (D). So, the intended discussive logic D0 defined on the basis of the
logic D (equivalently on the basis of D2) can be seen as the intersection
of the family of all non-trivial discussive logics defined by means of normal
or regular modal logics using Jaśkowski’s translations. More precisely, D0 is
minimal in the following sense: consider any normal or regular modal logic
L and define Jaśkowski’s discussive logic obtained on the basis of L exactly
in the same way as D2 is defined on the basis of S5 (of course, with some
fixed translations for discussive connectives, in our case with right discus-
sive conjunction and discussive implication). If one sticks only to non-empty
resulting discussive logics (as we mentioned, starting with K, the resulting
discussive logic would be just the trivial logic—the empty set), D0 would
be contained in every such discussive logic or in other words D0 would be
the intersection of all these discussive logics. In the language of D0 we take
¬,∨,∧d,→d,↔d, however, if we would restrict the language, for example,
to ¬,∨,→d, we would obtain a logic—let us call it—D−

0 . Thus D−
0 would be

even a weaker than D0 logic, but due to the reduction of the language.
From this follows that D0 is really the smallest logic in the class of all non-

empty discussive logics defined on the basis of regular logics (notice that the
family of normal modal logics is contained in the family of all regular logics).
But taking into account the fact that weaker modal logics can have the same
modal theses as a given normal logic, one could suspect that the minimality
of D0 can be saved also for some bigger classes of modal logics. However,
this question could be the matter of some further research. Summarising the
introduction, we would like to stress that the postulated minimality refers
to the very specific class of logics, obtainable by a natural generalisation of
the model of discussion developed by Jaśkowski. By taking other possible

3Notice that D2 is a modal logic while D2 is Jaśkowski’s discussive logic.
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explications of ‘discussiveness’ expressed possibly by a modified model of
discussion, one could obtain other ‘discussive-like’ minimal logics.

3. Syntax

As usually for the case of discussive logic, to formally express the logic un-
der consideration one can make a translation from discussive language to
the modal one. Modal formulas are formed in the standard way from propo-
sitional letters: ‘p’, ‘q’, ‘r’, ‘s’, ‘t’, ‘p0’, ‘p1’, ‘p2’, . . . ; truth-value operators:
‘¬’, ‘∨’, ‘∧’, ‘→’, and ‘↔’; modal operators: the necessity and possibility op-
erators ‘�’ and ‘♦’; and the brackets. Let Form denote the set of all modal
formulas and Greek letters ϕ,ψ, etc. range over Form.

The object language of discussive logic is built out of propositional letters,
truth-value operators ‘¬’ and ‘∨’, discussive implication (→d) and discussive
conjunction (∧d) Ford denotes the set of all discussive formulas, while letters
A,B,C, etc. range over Ford.

Let us recall that in Jaśkowski’s intuitive model of D2 every two debaters
are in connection, while the antecedent of discussive implication is inter-
preted as saying: ‘if anyone states that p’. The similar modal operation is
applied to the whole formula, i.e. the possibility functor before the whole
formula is meant as a kind of tool used by an external observer who acts
as a judge. This external observer adjudicates the validity of a formula by
referring to a given discussive group. Of course, since we are interested in
setting the logical truth, we have to consider any discussive group treated
as a model. Thus, formally, Jaśkowski’s discussive logic D2 is definable by
means of S5 as follows:

D2 := { A ∈ Ford : ♦i1(A) ∈ S5 } ,

where i1 is a translation of the discussive language to the modal one, in
particular i1 is a function from Ford to Form, where we stipulate:

1 i1(a) = a, for any propositional letter a,

2 for any A,B ∈ Ford:

(a) i1(¬A) = ¬i1(A),
(b) i1(A ∨ B) = i1(A) ∨ i1(B),
(c) i1(A ∧d B) = i1(A) ∧ ♦i1(B),
(d) i1(A →d B) = ♦i1(A) → i1(B).
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We continue an investigation on the system D0 given in [13] by the defi-
nition:

D0 := { A ∈ Ford : ♦i1(A) ∈ D } (defD0)

The set D0 is a logic:

Fact 1. ([13]) The set D0 is closed under substitution and modus ponens
with respect to →d.

4. Axiomatization of the Smallest Discussive Logic

As it was observed in [13], various classical theses fail to belong to D0. Also
standard—for classical logic—inferences are not saved in the case of D0:

A →d B B →d C

A →d C
(Syl)

To see this it is enough to take A := p, B := (p ∨ ¬p) ∧d p and C := (p ∨
¬p) ∧d ((p ∨ ¬p) ∧d p). These circumstances can be given as an explanation
for the specific form of the given axiom system.

Let us recall a result of the adaption of Kotas’ method [11] (used by him
to determine an axiomatization of D2) that was used to axiomatize D0 (see
[13]).

Let Φ be a set of modal formulas. The result of ‘removing’ ♦ from el-
ements of Φ will be denoted by ♦-Φ, while let �Φ4 denote the set of all
formulas resulting from adding � before every element of Φ. Thus, we use
the following notation:

♦-Φ := {A ∈ Form : ♦A ∈ Φ} (1)

�Φ := {�A : A ∈ Φ} (2)

♦Φ := {♦A : A ∈ Φ} (3)

By definitions for any normal logic S ⊇ D:

�S � S ⊆ ♦-S
It is known that (see [24, p. 68]):

Fact 2.

♦-D = D (4)

4The respective similar symbols M-S5 and LS5 for the case of S5 were used by J. Ko-
tas [11].
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For the sake of legibility let us denote for any A,B ∈ Ford (resp. ϕ, ψ ∈
Form), the formula �¬A ∨ B� as �A →c B� (resp. �¬ϕ ∨ ψ� as �ϕ →c ψ�).

Consider the following Frege-�Lukasiewicz-Hilbert axiomatization of clas-
sical propositional logic:

p → (q → p) (A1)

(p → (q → r)) → ((p → q) → (p → r)) (A2)

p ∧ q → p (A3)

p ∧ q → q (A4)

p → (q → p ∧ q) (A5)

p → p ∨ q (A6)

q → p ∨ q (A7)

(p → q) → ((r → q) → (p ∨ r → q)) (A8)

(p ↔ q) → (p → q) (A9)

(p ↔ q) → (q → p) (A10)

(p → q) → ((q → p) → (p ↔ q)) (A11)

(¬p → ¬q) → (q → p) (A12)

As in the case of sets of formulas, we use a similar custom for the case of
names of formulas resulting from preceding a given formula with �. In this
way, for example, for formulas:

♦p ↔ ¬�¬p (df♦)

�(p → q) → (�p → �q) (K)

�p → ♦p (D)

we have respectively:

�(♦p ↔ ¬�¬p) (�df♦)

�(�(p → q) → (�p → �q)) (�K)

�(�p → ♦p) (�D)

We put Ω := {(�Ai) : 1 � i � 12} ∪ {(�df♦), (�K), (�D)}.

As it is known, every normal logic has (K♦) as theses:

�(p → q) → (♦p → ♦q) (K♦)
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Let us recall the logic D� ([13]) being a set of theses with respect to the
consequence relation � determined by the set Ω as axioms, the substitution
rule and the following ones:

�ϕ

��ϕ
(�nec)

�ϕ, �(ϕ → ψ)
�ψ

(�mp)

ϕ, �(ϕ → ψ)
ψ

(�mp−)

♦ϕ

ϕ
(pos⇐)

We know that:

Lemma 3 ([13]) D = D�.

We recall an axiomatization of D2 given in [21]. It is indirectly an adap-
tation of an axiomatization given in [4] (which is further modified in [1])
and directly a correction of an axiomatization proposed in [3]. The axioma-
tization given in [4] refers to a variant of discussive logic with left discussive
conjunction. Non-adequacy of this axiomatization with respect to the orig-
inal D2 was observed by Ciuciura [3].5

We recall the final axiomatization of D2 given in [21].

(D1) A →d (B →d A)

(D2) (A →d (B →d C )) →d ((A →d B) →d (A →d C ))

(D3) ((A →d B) →d A) →d A

(D4) A ∧d B →d A

(D5) A ∧d B →d B

(D6) A →d (B →d (A ∧d B))

(D7) A →d A ∨ B

(D8) B →d A ∨ B

(D9) (A →d C ) →d ((B →d C ) →d (A ∨ B →d C ))

(D10) A →d ¬¬A
(D11) ¬¬A →d A

5The problem was that at some point Achtelik and others’ axiomatization was treated
as an axiomatization of D2 with right discussive conjunction.
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(D12) ¬(A ∨ ¬A) →d B

(D13) ¬(A ∨ B) →d ¬(B ∨ A)

(D14) ¬(A ∨ B) →d (¬A ∧d ¬B)

(D15) ¬(¬¬A ∨ B) →d ¬(A ∨ B)

(D16) (¬(A ∨ B) →d C ) →d ((¬A →d B) ∨ C )

(D17) ¬((A ∨ B) ∨ C ) →d ¬(A ∨ (B ∨ C ))

(D18) ¬((A →d B) ∨ C ) →d (A ∧d ¬(B ∨ C ))

(D19) ¬((A ∧d B) ∨ C ) →d (B →d ¬(A ∨ C ))

(D20) ¬(¬(A ∨ B) ∨ C ) →d (¬(¬A ∨ C ) ∨ ¬(¬B ∨ C ))

(D21) ¬(¬(A →d B) ∨ C ) →d (A →d ¬(¬B ∨ C ))

(D22) ¬(¬(A ∧d B) ∨ C ) →d (¬(¬A ∨ C ) ∧d B)

where the only rule of inference is modus ponens (MP→d) for →d. First
observe that:

Fact 4. (D11) and (D15) are dependent on the rest of the above axiomati-
zation.

Proof. Indeed by (D16), we have (¬(¬A∨A) →d ¬(A∨¬A)) →d ((¬¬A →d

A)∨¬(A∨¬A)), hence by (D13) and (MP→d) we infer ((¬¬A →d A)∨¬(A∨
¬A)). However, standardly by positive logic ((D1), (D2) and (D9)) and (D13)
we have B ∨ ¬(A ∨ ¬A) →d B . Using ¬¬A →d A as B and again applying
(MP→d) we get (D11).

For the case of (D15), again, by (D16), we have (¬((¬¬A ∨ B) ∨ ¬(A ∨
B)) →d ¬(A ∨ ¬A)) →d ((¬(¬¬A ∨ B) →d ¬(A ∨ B)) ∨ ¬(A ∨ ¬A)). While
by (D13), (D20) and transitivity of →d,

¬((¬¬A∨B)∨¬(A∨B)) →d ¬(¬A∨ (¬¬A∨B))∨¬(¬B ∨ (¬¬A∨B)) (5)

Standardly, as is the case of the usual associativity, using (D13), (D17) and
transitivity of →d we have ¬(¬A ∨ (¬¬A ∨ B)) →d ¬((¬A ∨ ¬¬A) ∨ B),
hence by (D14), (D4), (D12) and transitivity of →d we receive ¬(¬A∨(¬¬A∨
B)) →d C. Quite similarly, using (D13), (D17), (D14), (D5), (D12) and tran-
sitivity of →d we receive ¬(¬B ∨ (¬¬A ∨ B)) →d C. Thus, using the last
two formulas, (D9), (5), transitivity of →d and substitution for C, we get
¬((¬¬A ∨ B) ∨ ¬(A ∨ B)) →d ¬(A∨ ¬A), hence using the initial formula of
this proof and (MP→d) we obtain (¬(¬¬A∨B) →d ¬(A∨B))∨¬(A∨¬A).
Next, similarly as in the case of the proof of (D11) we get the announced
result.
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The proofs given above are minorly adapted versions of the proofs given
in [1]. We will use the idea of the first proof also in the case of D0 for (D�

0 3)
on page 11.

For any formula A we use the following shortcuts:


A :=A →c A (6)

⊥A :=¬(A →c A) (7)

In particular, 
p and ⊥p denote p →c p and ¬(p →c p), respectively.

Definition 5. Let D�
0 be the set of theses with respect to an inference

system � determined by the set of axiom schemes:

(D01) A →d 
p ∧d (B →d A)

(D02) A ∧d B →d 
p ∧d A

(D03) A ∧d B →d 
p ∧d (
p ∧d B)

(D04) A →d 
p ∧d (A ∨ B)

(D05) B →d 
p ∧d (A ∨ B)

(D06) ¬(A ∨ B) →d 
p ∧d ¬(B ∨ A)

(D07) ¬((¬(A ∨ B) →d C) ∨ D) →d 
p ∧d ¬((¬(B ∨ A) →d C) ∨ D)

(D08) ¬(A ∨ B) →d ((
p ∧d ¬A) ∧d ¬B)

(D09) (A →d B) ∧d A →d 
p ∧d B

(D010) ¬(¬(A →d C) ∨ ¬(B →d C)) →d 
p ∧d (A ∨ B →d C)

(D011) A →d 
p ∧d ¬¬A
(D012) A →d 
p ∧d A

(D013) ¬(A ∨ ¬A) →d B

(D014) ¬(¬¬A ∨ B) →d (
p ∧d ¬(A ∨ B))

(D015) ¬(¬(¬¬A →d B) ∨ C) →d (
p ∧d ¬(¬(A →d B) ∨ C))

(D016) ¬(¬(A →d B) ∨ C) →d 
p ∧d ¬(¬(¬¬A →d B) ∨ C)

(D017) ¬((A →d B) ∨ C) →d 
p ∧d ¬((¬¬A →d B) ∨ C)

(D018) ¬(((¬⊥p ∧d A) ∨ (¬B →d C)) ∨ D) →d 
p ∧d ¬((¬(A ∨ B) →d

C) ∨ D)

(D019) (¬(A ∨ B) →d C ) →d 
p ∧d ((¬A →d (
p ∧d B)) ∨ C )

(D020) ¬((A ∨ B) ∨ C ) →d 
p ∧d ¬(A ∨ (B ∨ C ))

(D021) ¬((A →d B) ∨ C ) →d 
p ∧d (¬(B ∨ C ) ∧d A)
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(D022) ¬(¬(A ∨ B) ∨ C ) →d 
p ∧d (¬(¬A ∨ C ) ∨ ¬(¬B ∨ C ))

(D023) ¬(¬(A →d B) ∨ C ) →d (
p ∧d ¬((¬B ∧d A) ∨ C ))

(D024) ¬(¬(A ∧d B) ∨ C ) →d 
p ∧d (¬(¬A ∨ C ) ∧d B)

(D025) (A ∨ ¬A →d ⊥p) →d ⊥p

(D026) (A →d (B ∨ C)) →d 
p ∧d (B ∨ (A →d C))

(D027) ¬(A ∨ (B ∧d C)) →d 
p ∧d (¬(A ∨ B) ∨ ¬(A ∨ ¬(C →d ⊥p)))

with the following rules:


p ∧d B

B
(∧d

−
r )

A →d B; A

B
(MP→d)

A →d B ∧d C

(C →d D) →d 
p ∧d (A →d D)
(Trax1 )

B →d 
p ∧d C

(A →d B) →d 
p ∧d (A →d C)
(Trax2 )

B →d C

(A →d 
p ∧d B) →d 
p ∧d (A →d C)
(Trax3 )

¬(¬A ∨ B) →d ⊥p

A ∧d C →d 
p ∧d (B ∧d C)
(Trax4 )

A
B →d 
p ∧d ¬(¬A ∨ ¬B)

(Add∧c)

A →d B

p ∧d A →d 
p ∧d B

(Mon)

The proofs presented below are partially adapted proofs given in [4, Part
II], but some other had to be done independently, given the very weak tools
available in the considered system.

First, let us observe that the following rules are provable:
A ∧d B

B
(∧d

−
rg)

A →d B ∧d C; C →d D

A →d D
(Tr−)

A →d B; C →d B

A ∨ C →d B
(Syl∨)

One can see that (∧d
−
rg) follows by (D03) and (∧d

−
r ).



866 O. Grigoriev et al.

To obtain the second inference, it is enough to apply (Trax1 ), (MP→d) and
(∧d

−
rg).
For the case of (Syl∨) we give the following inference:

1. A →d B Asm.
2. C →d B Asm.
3. (C →d B) →d 
p ∧d ¬(¬(A →d B) ∨ ¬(C →d B)) 1 and (Add∧c)
4. ¬(¬(A →d B) ∨ ¬(C →d B)) →d 
p ∧d (A ∨ C →d B) (D010)
5. (C →d B) →d 
p ∧d (A ∨ C →d B) 3, 4 and Tr−

6. 
p ∧d (A ∨ C →d B) 2, 5 and (MP→d)
7. A ∨ C →d B 6 and (∧d

−
r )

The below formula (D�
0 1) will be used in the very same Lemma 6, but

also in lemmas 7, 8 and 10. The formula (D�
0 2) will be used to obtain (D�

0 3)
but also applied in Lemma 9. The formulas (D�

0 3) and (D�
0 4) will be needed

in the proof of Lemma 8.

Lemma 6. The following discussive formulas are theses of D�
0 .

(D�
0 1) ⊥A →d B

(D�
0 2) (¬(¬A ∨ B) →d ⊥p) →d 
p ∧d (¬¬A →d 
p ∧d B)

(D�
0 3) ¬¬A →d 
p ∧d A

(D�
0 4) ¬(A ∨ B) →d 
p ∧d ¬B

Proof. Ad (D�
0 1)—follows by (D06), (D013) and (Tr−).

Ad (D�
0 2)

1. (¬(¬A ∨ B) →d ⊥p) →d 
p ∧d ((¬¬A →d 
p ∧d B) ∨ ⊥p) (D019)
2. (¬¬A →d 
p ∧d B) →d 
p ∧d (¬¬A →d 
p ∧d B) (D012)
3. ⊥p →d 
p ∧d (¬¬A →d 
p ∧d B) (D�

0 1)
4. ((¬¬A →d 
p ∧d B) ∨ ⊥p) →d 
p ∧d (¬¬A →d 
p ∧d B) 2, 3 and

(Syl∨)
5. (¬(¬A ∨ B) →d ⊥p) →d 
p ∧d (¬¬A →d 
p ∧d B) 1, 4 and (Tr−)

Ad (D�
0 3)

1. ¬(¬A ∨ A) →d ⊥p (D�
0 1)

2. (¬(¬A ∨ A) →d ⊥p) →d 
p ∧d (¬¬A →d 
p ∧d A) (D�
0 2)

3. ¬¬A →d 
p ∧d A 1, 2, (MP→d), and (∧d
−
r )

Ad (D�
0 4)—follows by (D08), (D012) and (Tr−).

The next lemma provides some inferable rules. In particular, (⊥−
p ) will

be used in the proof of Lemma 8, while (Weak⊥) and (Weak→d) in the proof
of Lemma 9.
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Lemma 7. The following rules are inferable on the basis of �:

A →d ⊥p ∨ B

A →d B
(⊥−

p )

A →d ⊥B


p ∧d A →d ⊥B
(Weak⊥)

A →d B
A →d (C →d B)

(Weak→d)

Proof. Consider the following inferences.

1. A →d ⊥p ∨ B Asm.
2. (A →d (⊥p ∨ B)) →d 
p ∧d (⊥p ∨ (A →d B)) (D026)
3. 
p ∧d (⊥p ∨ (A →d B)) 1, 2 and (MP→d)
4. ⊥p ∨ (A →d B) 3 and (∧d

−
rg)

5. ⊥p →d 
p ∧d (A →d B) (D�
0 1)

6. (A →d B) →d 
p ∧d (A →d B) (D012)
7. ⊥p ∨ (A →d B) →d 
p ∧d (A →d B) 1, 2 and (Syl∨)
8. (A →d (⊥p ∨ B)) →d 
p ∧d (A →d B) 2, 7 and (Tr−)
9. 
p ∧d (A →d B) 1, 8 and (MP→d)
10. A →d B 9 and (∧d

−
rg)

1. A →d ⊥B Asm.
2. 
p ∧d A →d 
p ∧d ⊥B 1 and (Mon)
3. ⊥B →d ⊥B (D�

0 1)
4. 
p ∧d A →d ⊥B 2, 3 and (Tr−)

1. A →d B Asm.
2. B →d 
p ∧d (C →d B) (D01)
3. (A →d B) →d 
p ∧d (A →d (C →d B)) 2 and (Trax2 )
4. 
p ∧d (A →d (C →d B)) 1, 3 and (MP→d)
5. A →d (C →d B) 4 and (∧d

−
r )

The provability of (D�
0 14)–(D�

0 16), (A1tr)–(A12tr) will be needed for the
proof of Theorem 13. Formulas (D�

0 8)–(D�
0 13), (D�

0 19)–(D�
0 21), (D�

0 24)–
(D�

0 26) are used for the proofs of subsequent formulas in the below lemma,
while (D�

0 6), (D�
0 7), (D�

0 17) will be used for other formulas within this lemma
but also in Lemma 10. Formulas (D�

0 22), (D�
0 23) and (D�

0 27) will be used
in Lemma 9. Finally, (D�

0 18) and (D�
0 28) will be needed in Lemma 10 while

(D�
0 5) will be used in Lemma 11.

Lemma 8. The following discussive formulas are theses of D�
0 :
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(D�
0 5) ¬(¬A ∨ A) →d ⊥p

(D�
0 6) ¬(A ∨ B) →d 
p ∧d ¬A

(D�
0 7) ¬(A ∨ (B ∨ C )) →d 
p ∧d ¬((A ∨ B) ∨ C )

(D�
0 8) ¬(¬¬A ∨ (¬(¬A ∨ B) ∨ (¬A ∨ C))) →d ⊥p

(D�
0 9) ¬(¬¬B ∨ (¬(¬A ∨ B) ∨ (¬A ∨ C))) →d ⊥p

(D�
0 10) ¬(¬C ∨ (¬(¬A ∨ B) ∨ (¬A ∨ C))) →d ⊥p

(D�
0 11) ¬(¬(¬B ∨ C) ∨ (¬(¬A ∨ B) ∨ (¬A ∨ C))) →d ⊥p

(D�
0 12) ¬(¬A ∨ (C ∨ (¬(¬A ∨ C) ∨ ¬(¬B ∨ C)))) →d ⊥p

(D�
0 13) ¬(¬B ∨ (C ∨ (¬(¬A ∨ C) ∨ ¬(¬B ∨ C)))) →d ⊥p

(D�
0 14) ¬(¬(¬A →d ⊥p) ∨ ¬(A →d ⊥p)) →d ⊥p

(D�
0 15) ¬¬(¬(¬¬(A →d ⊥p) ∨ ¬(¬¬A →d ⊥p)) ∨

∨ ¬(¬¬(¬¬A →d ⊥p) ∨ ¬(A →d ⊥p))) →d ⊥p

(D�
0 16) ¬(¬(¬(¬A ∨ B) →d ⊥p) ∨ (¬(¬A →d ⊥p) ∨ (¬B →d ⊥p))) →d ⊥p

(D�
0 17) ¬(¬(¬(¬A ∨ B) →d ⊥p) ∨ (¬(B →d ⊥p) ∨ (A →d ⊥p))) →d ⊥p

(D�
0 18) ¬(¬(¬(¬A ∨ B) →d ⊥p) ∨ (¬¬(A →d ⊥p) ∨ ¬(B →d ⊥p))) →d ⊥p

(D�
0 19) (A →d B) ∨ C →d 
p ∧d (A →d B ∨ C)

(D�
0 20) (¬(A ∨ ⊥p) →d C ) →d 
p ∧d ((¬A →d ⊥p) ∨ C )

(D�
0 21) ¬A →d 
p ∧d ¬(A ∨ ⊥p)

(D�
0 22) ¬(¬A →d ⊥p) →d 
p ∧d (
p ∧d ¬A)

(D�
0 23) ¬(A →d ⊥p) →d 
p ∧d (
p ∧d A)

(D�
0 24) A ∨ ⊥p →d 
p ∧d A

(D�
0 25) (¬A →d ⊥p) ∨ (
p ∧d ¬(A ∨ ⊥B))

(D�
0 26) ¬B →d 
p ∧d ¬(¬(¬A ∨ A) ∨ B)

(D�
0 27) ¬B →d 
p ∧d (¬A ∨ ¬(¬A ∨ B))

(D�
0 28) ¬(A ∨ ¬B) ∧d C →d 
p ∧d (B ∧d C).

and

(A1tr) ¬(¬A ∨ (¬B ∨ A)) →d ⊥p

(A2tr) ¬(¬(¬A ∨ (¬B ∨ C)) ∨ (¬(¬A ∨ B) ∨ (¬A ∨ C))) →d ⊥p

(A3tr) ¬(¬¬(¬A ∨ ¬B) ∨ A) →d ⊥p
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(A4tr) ¬(¬¬(¬A ∨ ¬B) ∨ B) →d ⊥p

(A5tr) ¬(¬A ∨ (¬B ∨ ¬(¬A ∨ ¬B))) →d ⊥p

(A6tr) ¬(¬A ∨ (A ∨ B)) →d ⊥p

(A7tr) ¬(¬B ∨ (A ∨ B)) →d ⊥p

(A8tr) ¬(¬(¬A ∨ C) ∨ (¬(¬B ∨ C) ∨ (¬(A ∨ B) ∨ C))) →d ⊥p

(A9tr) ¬(¬¬(¬(¬A ∨ B) ∨ ¬(¬B ∨ A)) ∨ (¬A ∨ B)) →d ⊥p

(A10tr) ¬(¬¬(¬(¬A ∨ B) ∨ ¬(¬B ∨ A)) ∨ (¬B ∨ A)) →d ⊥p

(A11tr) ¬(¬(¬A ∨ B) ∨ (¬(¬B ∨ A) ∨ ¬(¬(¬A ∨ B) ∨ ¬(¬B ∨ A)))) →d ⊥p

(A12tr) ¬(¬(¬¬A ∨ ¬B) ∨ (¬B ∨ A)) →d ⊥p

Proof. Ad (D�
0 5)—follows by (D06), (D013) and (Tr−).

Ad (D�
0 6)—follows by (D06), (D�

0 4) and (Tr−).
Ad (D�

0 7)—follows standardly by (D06), (D020), (D06), (D020), (D06),
and (Tr−).
Ad (A1tr).

1. ¬(¬A ∨ (¬B ∨ A)) →d 
p ∧d ¬((¬A ∨ ¬B) ∨ A) Ax. (D�
0 7)

2. ¬((¬A ∨ ¬B) ∨ A) →d 
p ∧d ¬(A ∨ (¬A ∨ ¬B)) Ax. (D06)
3. ¬(A ∨ (¬A ∨ ¬B)) →d 
p ∧d ¬((A ∨ ¬A) ∨ ¬B)) Ax. (D�

0 7)
4. ¬(¬A ∨ (¬B ∨ A)) →d 
p ∧d ¬((A ∨ ¬A) ∨ ¬B)) 1, 2, 3 and (Tr−)
5 ¬((A ∨ ¬A) ∨ ¬B) →d 
p ∧d ¬(A ∨ ¬A) (D�

0 6)
6. ¬(A ∨ ¬A) →d ⊥p (D013)
7. ¬(¬A ∨ (¬B ∨ A)) →d ⊥p 4–6 and (Tr−)

Ad (D�
0 8).

1. ¬(¬¬A ∨ (¬(¬A ∨ B) ∨ (¬A ∨ C))) →d

→d 
p ∧d ¬((¬¬A ∨ ¬(¬A ∨ B)) ∨ (¬A ∨ C)) Ax. (D�
0 7)

2. ¬((¬¬A ∨ ¬(¬A ∨ B)) ∨ (¬A ∨ C)) →d

→d 
p ∧d ¬(((¬¬A ∨ ¬(¬A ∨ B)) ∨ ¬A) ∨ C) Ax. (D�
0 7)

3. ¬(((¬¬A ∨ ¬(¬A ∨ B)) ∨ ¬A) ∨ C) →d

→d 
p ∧d ¬((¬¬A ∨ ¬(¬A ∨ B)) ∨ ¬A) (D�
0 6)

4. ¬((¬¬A ∨ ¬(¬A ∨ B)) ∨ ¬A) →d

→d 
p ∧d ¬(¬A ∨ (¬¬A ∨ ¬(¬A ∨ B))) (D06)
5. ¬(¬A ∨ (¬¬A ∨ ¬(¬A ∨ B))) →d

→d 
p ∧d ¬((¬A ∨ ¬¬A) ∨ ¬(¬A ∨ B)) (D�
0 7)

6. ¬((¬A ∨ ¬¬A) ∨ ¬(¬A ∨ B)) →d∧d ¬(¬A ∨ ¬¬A) (D�
0 6)

7. ¬(¬A ∨ ¬¬A) →d ⊥p (D013)
8. ¬(¬¬A ∨ (¬(¬A ∨ B) ∨ (¬A ∨ C))) →d ⊥p 1–7 and (Tr−)
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Ad (D�
0 9).

1. ¬(¬¬B ∨ (¬(¬A ∨ B) ∨ (¬A ∨ C))) →d

→d 
p ∧d ¬(B ∨ (¬(¬A ∨ B) ∨ (¬A ∨ C))) (D014)
2. ¬(B ∨ (¬(¬A ∨ B) ∨ (¬A ∨ C))) →d

→d 
p ∧d ¬((B ∨ ¬(¬A ∨ B)) ∨ (¬A ∨ C)) (D�
0 7)

3. ¬((B ∨ ¬(¬A ∨ B)) ∨ (¬A ∨ C)) →d

→d 
p ∧d ¬(((B ∨ ¬(¬A ∨ B)) ∨ ¬A) ∨ C) (D�
0 7)

4. ¬(((B ∨ ¬(¬A ∨ B)) ∨ ¬A) ∨ C) →d

→d 
p ∧d ¬((B ∨ ¬(¬A ∨ B)) ∨ ¬A) (D�
0 6)

5. ¬((B ∨ ¬(¬A ∨ B)) ∨ ¬A) →d

→d 
p ∧d ¬(¬A ∨ (B ∨ ¬(¬A ∨ B))) (D06)
6. ¬(¬A ∨ (B ∨ ¬(¬A ∨ B))) →d 
p ∧d ¬((¬A ∨ B) ∨ ¬(¬A ∨ B)) (D�

0 7)
7. ¬((¬A ∨ B) ∨ ¬(¬A ∨ B)) →d ⊥p (D013)
8. ¬(¬¬B ∨ (¬(¬A ∨ B) ∨ (¬A ∨ C))) →d ⊥p 1–7 and (Tr−)

Ad (D�
0 10).

1. ¬(¬C ∨ (¬(¬A ∨ B) ∨ (¬A ∨ C))) →d

→d 
p ∧d ¬((¬C ∨ ¬(¬A ∨ B)) ∨ (¬A ∨ C)) (D�
0 7)

2. ¬((¬C ∨ ¬(¬A ∨ B)) ∨ (¬A ∨ C)) →d

→d 
p ∧d ¬(((¬C ∨ ¬(¬A ∨ B)) ∨ ¬A) ∨ C)) (D�
0 7)

3. ¬(((¬C ∨ ¬(¬A ∨ B)) ∨ ¬A) ∨ C) →d


p ∧d ¬(C ∨ ((¬C ∨ ¬(¬A ∨ B)) ∨ ¬A)) (D06)
4. ¬(C ∨ ((¬C ∨ ¬(¬A ∨ B)) ∨ ¬A)) →d


p ∧d ¬((C ∨ (¬C ∨ ¬(¬A ∨ B))) ∨ ¬A) (D�
0 7)

5. ¬((C ∨ (¬C ∨ ¬(¬A ∨ B))) ∨ ¬A) →d


p ∧d ¬(C ∨ (¬C ∨ ¬(¬A ∨ B))) (D�
0 6)

6. ¬(C ∨ (¬C ∨ ¬(¬A ∨ B))) →d 
p ∧d ¬((C ∨ ¬C) ∨ ¬(¬A ∨ B)) (D�
0 7)

7. ¬((C ∨ ¬C) ∨ ¬(¬A ∨ B)) →d 
p ∧d ¬(C ∨ ¬C) (D�
0 6)

8. ¬(C ∨ ¬C) →d ⊥p (D013)
9. ¬(¬C ∨ (¬(¬A ∨ B) ∨ (¬A ∨ C))) →d ⊥p 1–8 and (Tr−)

Ad (D�
0 11).

1. ¬(¬(¬B ∨ C) ∨ (¬(¬A ∨ B) ∨ (¬A ∨ C))) →d

→d 
p ∧d (¬(¬¬B ∨ (¬(¬A ∨ B) ∨ (¬A ∨ C)))∨
∨¬(¬C ∨ (¬(¬A ∨ B) ∨ (¬A ∨ C)))) Ax. (D022)

2. (¬(¬¬B ∨ (¬(¬A ∨ B) ∨ (¬A ∨ C)))∨
∨¬(¬C ∨ (¬(¬A ∨ B) ∨ (¬A ∨ C)))) →d ⊥p (D�

0 9), (D�
0 10) and (Syl∨)

3. ¬(¬(¬B ∨ C) ∨ (¬(¬A ∨ B) ∨ (¬A ∨ C))) →d ⊥p 1–2 and (Tr−)
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Ad (A2tr).

1. ¬(¬(¬A ∨ (¬B ∨ C)) ∨ (¬(¬A ∨ B) ∨ (¬A ∨ C))) →d

→d 
p ∧d (¬(¬¬A ∨ (¬(¬A ∨ B) ∨ (¬A ∨ C)))∨
∨¬(¬(¬B ∨ C) ∨ (¬(¬A ∨ B) ∨ (¬A ∨ C)))) (D022)

2. (¬(¬¬A ∨ (¬(¬A ∨ B) ∨ (¬A ∨ C)))∨
∨¬(¬(¬B ∨ C) ∨ (¬(¬A ∨ B) ∨ (¬A ∨ C)))) →d ⊥p

(D�
0 8), (D�

0 11) and (Syl∨)
3. ¬(¬(¬A ∨ (¬B ∨ C)) ∨ (¬(¬A ∨ B) ∨ (¬A ∨ C))) →d ⊥p 1–2 and (Tr−)

Ad (A3tr).

1. ¬(¬¬(¬A ∨ ¬B) ∨ A) →d 
p ∧d ¬((¬A ∨ ¬B) ∨ A) (D014)
2. ¬((¬A ∨ ¬B) ∨ A)) →d 
p ∧d ¬(A ∨ (¬A ∨ ¬B))) (D06)
3. ¬(A ∨ (¬A ∨ ¬B)) →d 
p ∧d ¬((A ∨ ¬A) ∨ ¬B) (D�

0 7)
4. ¬((A ∨ ¬A) ∨ ¬B) →d 
p ∧d ¬(A ∨ ¬A) (D�

0 6)
5. ¬(A ∨ ¬A) →d ⊥p (D013)
6. ¬(¬¬(¬A ∨ ¬B) ∨ A) →d ⊥p 1–5 and (Tr−)

Ad (A4tr).

1. ¬(¬¬(¬A ∨ ¬B) ∨ B) →d 
p ∧d ¬((¬A ∨ ¬B) ∨ B) (D014)
2. ¬((¬A ∨ ¬B) ∨ B) →d 
p ∧d ¬(A ∨ (¬B ∨ B)) (D020)
3. ¬(A ∨ (¬B ∨ B)) →d 
p ∧d ¬(¬B ∨ B) (D�

0 4)
4. ¬(¬B ∨ B) →d 
p ∧d ¬(B ∨ ¬B) (D06)
5. ¬(B ∨ ¬B) →d ⊥p (D013)
6. ¬(¬¬(¬A ∨ ¬B) ∨ B) →d ⊥p 1–5 and (Tr−)

Ad (A5tr).

1. ¬(¬A ∨ (¬B ∨ ¬(¬A ∨ ¬B))) →d 
p ∧d ¬((¬A ∨ ¬B) ∨ ¬(¬A ∨ ¬B))
(D�

0 7)
2. ¬((¬A ∨ ¬B) ∨ ¬(¬A ∨ ¬B))) →d ⊥p (D013)
3. ¬(¬A ∨ (¬B ∨ ¬(¬A ∨ ¬B))) →d ⊥p 1–2 and (Tr−)

Ad (A6tr).

1. ¬(¬A ∨ (A ∨ B)) →d 
p ∧d ¬((¬A ∨ A) ∨ B)) (D�
0 7)

2. ¬((¬A ∨ A) ∨ B) →d 
p ∧d ¬(¬A ∨ A) (D�
0 6)

3. ¬(¬A ∨ A) →d 
p ∧d ¬(A ∨ ¬A) (D06)
4. ¬(A ∨ ¬A) →d ⊥p (D013)
5. ¬(¬A ∨ (A ∨ B)) →d ⊥p 1–4 and (Tr−)
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Ad (A7tr).

1. ¬(¬B ∨ (A ∨ B)) →d 
p ∧d ¬((A ∨ B) ∨ ¬B) (D06)
2. ¬((A ∨ B) ∨ ¬B) →d 
p ∧d ¬(A ∨ (B ∨ ¬B)) (D020)
3. ¬(A ∨ (B ∨ ¬B)) →d 
p ∧d ¬(B ∨ ¬B) (D�

0 4)
4. ¬(B ∨ ¬B) →d ⊥p (D013)
5. ¬(¬B ∨ (A ∨ B)) →d ⊥p 1–4 and (Tr−)

Ad (D�
0 12).

1. ¬(¬A ∨ (C ∨ (¬(¬A ∨ C) ∨ ¬(¬B ∨ C))))
→d 
p ∧d ¬((¬A ∨ C) ∨ (¬(¬A ∨ C) ∨ ¬(¬B ∨ C))) (D�

0 7)
2. ¬((¬A ∨ C) ∨ (¬(¬A ∨ C) ∨ ¬(¬B ∨ C))) →d

→d 
p ∧d ¬(((¬A ∨ C) ∨ ¬(¬A ∨ C)) ∨ ¬(¬B ∨ C)) (D�
0 7)

3. ¬(((¬A ∨ C) ∨ ¬(¬A ∨ C)) ∨ ¬(¬B ∨ C)) →d

→d 
p ∧d ¬((¬A ∨ C) ∨ ¬(¬A ∨ C)) (D�
0 6)

4. ¬((¬A ∨ C) ∨ ¬(¬A ∨ C)) →d ⊥p (D013)
5. ¬(¬A ∨ (C ∨ (¬(¬A ∨ C) ∨ ¬(¬B ∨ C)))) →d ⊥p 1–4 and (Tr−)

Ad (D�
0 13)—similarly as above: 2 × (D�

0 7), (D06), (D�
0 7), (D�

0 6), (D06),
(D013) and (Tr−).
Ad (A8tr).

1. ¬(¬(¬A ∨ C) ∨ (¬(¬B ∨ C) ∨ (¬(A ∨ B) ∨ C))) →d

→d 
p ∧d ¬((¬(¬A ∨ C) ∨ ¬(¬B ∨ C)) ∨ (¬(A ∨ B) ∨ C)) (D�
0 7)

2. ¬((¬(¬A ∨ C) ∨ ¬(¬B ∨ C)) ∨ (¬(A ∨ B) ∨ C)) →d

→d 
p ∧d ¬((¬(A ∨ B) ∨ C) ∨ (¬(¬A ∨ C) ∨ ¬(¬B ∨ C))) (D06)
3. ¬((¬(A ∨ B) ∨ C) ∨ (¬(¬A ∨ C) ∨ ¬(¬B ∨ C))) →d

→d 
p ∧d ¬(¬(A ∨ B) ∨ (C ∨ (¬(¬A ∨ C) ∨ ¬(¬B ∨ C)))) (D020)
4. ¬(¬(A ∨ B) ∨ (C ∨ (¬(¬A ∨ C) ∨ ¬(¬B ∨ C)))) →d

→d 
p ∧d ¬(¬A ∨ (C ∨ (¬(¬A ∨ C) ∨ ¬(¬B ∨ C))))∨
∨¬(¬B ∨ (C ∨ (¬(¬A ∨ C) ∨ ¬(¬B ∨ C)))) (D022)

5. ¬(¬A ∨ (C ∨ (¬(¬A ∨ C) ∨ ¬(¬B ∨ C))))∨
∨¬(¬B ∨ (C ∨ (¬(¬A ∨ C) ∨ ¬(¬B ∨ C)))) →d ⊥p

(D�
0 12), (D�

0 13) and (Syl∨)
6. ¬(¬(¬A ∨ C) ∨ (¬(¬B ∨ C) ∨ (¬(A ∨ B) ∨ C))) →d ⊥p 1–5 and (Tr−)

(A9tr), (A10tr) and (A11tr) are special cases respectively of (A3tr), (A4tr)
and (A5tr).
Ad (A12tr).

1. ¬(¬(¬¬A ∨ ¬B) ∨ (¬B ∨ A)) →d

→d 
p ∧d (¬(¬¬¬A ∨ (¬B ∨ A)) ∨ ¬(¬¬B ∨ (¬B ∨ A))) (D022)
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2. ¬(¬¬¬A ∨ (¬B ∨ A)) →d 
p ∧d ¬(¬A ∨ (¬B ∨ A)) (D014)
3. ¬(¬A ∨ (¬B ∨ A)) →d 
p ∧d ¬((¬A ∨ ¬B) ∨ A)) (D�

0 7)
4. ¬((¬A ∨ ¬B) ∨ A) →d 
p ∧d ¬(A ∨ (¬A ∨ ¬B)) (D06)
5. ¬(A ∨ (¬A ∨ ¬B)) →d 
p ∧d ¬((A ∨ ¬A) ∨ ¬B) (D�

0 7)
6. ¬((A ∨ ¬A) ∨ ¬B) →d 
p ∧d ¬(A ∨ ¬A) (D�

0 6)
7. ¬(A ∨ ¬A) →d ⊥p (D013)
8. ¬(¬¬¬A ∨ (¬B ∨ A)) →d ⊥p 2–7 and (Tr−)
9. ¬(¬¬B ∨ (¬B ∨ A))) →d 
p ∧d ¬(B ∨ (¬B ∨ A)) (D014)
10. ¬(B ∨ (¬B ∨ A))) →d 
p ∧d ¬((B ∨ ¬B) ∨ A)) (D�

0 7)
11. ¬((B ∨ ¬B) ∨ ¬A) →d 
p ∧d ¬(B ∨ ¬B) (D�

0 6)
12. ¬(B ∨ ¬B) →d ⊥p (D013)
13. ¬(¬¬B ∨ (¬B ∨ A))) →d ⊥p 9–12 and (Tr−)
14. ¬(¬¬¬A ∨ (¬B ∨ A)) ∨ ¬(¬¬B ∨ (¬B ∨ A)) →d ⊥p 8, 13 and (Syl∨)
15. ¬(¬(¬¬A ∨ ¬B) ∨ (¬B ∨ A)) →d ⊥p 1, 14 and (Tr−)

Ad (D�
0 14).

1. ¬(¬(¬A →d ⊥p) ∨ ¬(A →d ⊥p)) →d

→d (
p ∧d ¬(¬(A →d ⊥p) ∨ ¬(¬A →d ⊥p))) (D06)
2. ¬(¬(A →d ⊥p) ∨ ¬(¬A →d ⊥p)) →d 
p ∧d (A ∨ ¬A →d ⊥p) (D010)
3. (A ∨ ¬A →d ⊥p) →d ⊥p (D025)
4. ¬(¬(¬A →d ⊥p) ∨ ¬(A →d ⊥p)) →d ⊥p 1–3 and (Tr−)

Ad (D�
0 15).

1. ¬¬(¬(¬¬(A →d ⊥p) ∨ ¬(¬¬A →d ⊥p))∨
∨¬(¬¬(¬¬A →d ⊥p) ∨ ¬(A →d ⊥p))) →d

→d 
p ∧d (¬(¬¬(A →d ⊥p) ∨ ¬(¬¬A →d ⊥p))∨
∨¬(¬¬(¬¬A →d ⊥p) ∨ ¬(A →d ⊥p))) (D�

0 3)
2. ¬(¬¬(A →d ⊥p) ∨ ¬(¬¬A →d ⊥p)) →d

→d 
p ∧d ¬((A →d ⊥p) ∨ ¬(¬¬A →d ⊥p)) (D014)
3. ¬((A →d ⊥p) ∨ ¬(¬¬A →d ⊥p)) →d

→d 
p ∧d ¬(¬(¬¬A →d ⊥p) ∨ (A →d ⊥p)) (D06)
4. ¬(¬(¬¬A →d ⊥p) ∨ (A →d ⊥p)) →d

→d 
p ∧d ¬(¬(A →d ⊥p) ∨ (A →d ⊥p)) (D015)
5. ¬(¬¬(A →d ⊥p) ∨ ¬(¬¬A →d ⊥p)) →d ⊥p

(D06), (D013), 2, 3, 4 and (Tr−)
6. ¬(¬¬(¬¬A →d ⊥p) ∨ ¬(A →d ⊥p)) →d

→d 
p ∧d ¬((¬¬A →d ⊥p) ∨ ¬(A →d ⊥p)) (D014)
7. ¬((¬¬A →d ⊥p) ∨ ¬(A →d ⊥p)) →d

→d 
p ∧d ¬(¬(A →d ⊥p) ∨ (¬¬A →d ⊥p)) (D06)
8. ¬(¬(A →d ⊥p) ∨ (¬¬A →d ⊥p)) →d
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→d 
p ∧d ¬(¬(¬¬A →d ⊥p) ∨ (¬¬A →d ⊥p)) (D016)
9. ¬(¬¬(¬¬A →d ⊥p) ∨ ¬(A →d ⊥p)) →d ⊥p

(D06), (D013), 6, 7, 8 and (Tr−)
10. (¬(¬¬(A →d ⊥p) ∨ ¬(¬¬A →d ⊥p))∨

∨¬(¬¬(¬¬A →d ⊥p) ∨ ¬(A →d ⊥p))) →d ⊥p 5, 9 and (Syl∨)
11. ¬¬(¬(¬¬(A →d ⊥p) ∨ ¬(¬¬A →d ⊥p))∨

∨¬(¬¬(¬¬A →d ⊥p) ∨ ¬(A →d ⊥p))) →d ⊥p 1, 10 and (Tr−)

Ad (D�
0 16).

1. ¬(¬(¬(¬A ∨ B) →d ⊥p) ∨ (¬(¬A →d ⊥p) ∨ (¬B →d ⊥p))) →d

→d 
p ∧d ¬((¬(¬A →d ⊥p) ∨ (¬B →d ⊥p)) ∨ ¬(¬(¬A ∨ B) →d ⊥p))
(D06)

2. ¬((¬(¬A →d ⊥p) ∨ (¬B →d ⊥p)) ∨ ¬(¬(¬A ∨ B) →d ⊥p)) →d

→d 
p ∧d ¬(¬(¬A →d ⊥p) ∨ ((¬B →d ⊥p) ∨ ¬(¬(¬A ∨ B) →d ⊥p)))
(D020)

3. ¬(¬(¬A →d ⊥p) ∨ ((¬B →d ⊥p) ∨ ¬(¬(¬A ∨ B) →d ⊥p))) →d

→d 
p ∧d ¬((¬⊥p ∧d ¬A) ∨ ((¬B →d ⊥p) ∨ ¬(¬(¬A ∨ B) →d ⊥p)))
(D023)

4. ¬((¬⊥p ∧d ¬A) ∨ ((¬B →d ⊥p) ∨ ¬(¬(¬A ∨ B) →d ⊥p))) →d

→d 
p ∧d ¬(((¬⊥p ∧d ¬A) ∨ (¬B →d ⊥p)) ∨ ¬(¬(¬A ∨ B) →d ⊥p))
(D�

0 7)
5. ¬(((¬⊥p ∧d ¬A) ∨ (¬B →d ⊥p)) ∨ ¬(¬(¬A ∨ B) →d ⊥p)) →d

→d 
p ∧d ¬((¬(¬A ∨ B) →d ⊥p) ∨ ¬(¬(¬A ∨ B) →d ⊥p)) (D018)
6. ¬((¬(¬A ∨ B) →d ⊥p) ∨ ¬(¬(¬A ∨ B) →d ⊥p)) →d ⊥p (D013)
7. ¬(¬(¬(¬A ∨ B) →d ⊥p) ∨ (¬(¬A →d ⊥p) ∨ (¬B →d ⊥p))) →d ⊥p

1–6 and (Tr−)

Ad (D�
0 17).

1. ¬(¬(¬(¬A ∨ B) →d ⊥p) ∨ (¬(B →d ⊥p) ∨ (A →d ⊥p))) →d

→d 
p ∧d ¬((¬(B →d ⊥p) ∨ (A →d ⊥p)) ∨ ¬(¬(¬A ∨ B) →d ⊥p))
(D06)

2. ¬((¬(B →d ⊥p) ∨ (A →d ⊥p)) ∨ ¬(¬(¬A ∨ B) →d ⊥p)) →d

→d 
p ∧d ¬(¬(B →d ⊥p) ∨ ((A →d ⊥p) ∨ ¬(¬(¬A ∨ B) →d ⊥p)))
(D020)

3. ¬(¬(B →d ⊥p) ∨ ((A →d ⊥p) ∨ ¬(¬(¬A ∨ B) →d ⊥p))) →d

→d 
p ∧d ¬((¬⊥p ∧d B) ∨ ((A →d ⊥p) ∨ ¬(¬(¬A ∨ B) →d ⊥p)))
(D023)

4. ¬((¬⊥p ∧d B) ∨ ((A →d ⊥p) ∨ ¬(¬(¬A ∨ B) →d ⊥p))) →d

→d 
p ∧d ¬(((¬⊥p ∧d B) ∨ (A →d ⊥p)) ∨ ¬(¬(¬A ∨ B) →d ⊥p))
(D�

0 7)
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5. ¬(((¬⊥p ∧d B) ∨ (A →d ⊥p)) ∨ ¬(¬(¬A ∨ B) →d ⊥p)) →d

→d 
p ∧d ¬(((¬⊥p ∧d B) ∨ (¬¬A →d ⊥p)) ∨ ¬(¬(¬A ∨ B) →d ⊥p))
(D020), (D06), (D020), (D017), (D�

0 7) , (D06), (D�
0 7) and (Tr−)

6. ¬(((¬⊥p ∧d B) ∨ (¬¬A →d ⊥p)) ∨ ¬(¬(¬A ∨ B) →d ⊥p)) →d

→d 
p ∧d ¬((¬(B ∨ ¬A) →d ⊥p) ∨ ¬(¬(¬A ∨ B) →d ⊥p)) (D018)
7 ¬((¬(B ∨ ¬A) →d ⊥p) ∨ ¬(¬(¬A ∨ B) →d ⊥p))

→d 
p ∧d ¬((¬(¬A ∨ B) →d ⊥p) ∨ ¬(¬(¬A ∨ B) →d ⊥p)) (D07)
8. ¬((¬(¬A ∨ B) →d ⊥p) ∨ ¬(¬(¬A ∨ B) →d ⊥p)) →d ⊥p (D013)
9. ¬(¬(¬(¬A ∨ B) →d ⊥p) ∨ (¬(B →d ⊥p) ∨ (A →d ⊥p))) →d ⊥p

1–8 and (Tr−)

Ad (D�
0 18)—easily follows from (D�

0 17) by (D014), (D06), (D020) and (Tr−).
Ad (D�

0 19).

1. C →d 
p ∧d (B ∨ C) (D05)
2. (B ∨ C) →d 
p ∧d (A →d (B ∨ C)) (D01)
3. C →d 
p ∧d (A →d (B ∨ C)) 1. 2 and (Tr−)
4. B →d 
p ∧d (B ∨ C) (D04)
5. (A →d B) →d 
p ∧d (A →d (B ∨ C)) 4 and (Trax2 )
6. ((A →d B) ∨ C) →d 
p ∧d (A →d (B ∨ C)) 3, 5 and (Syl∨)

Ad (D�
0 20).

1. (¬(A ∨ ⊥p) →d C ) →d 
p ∧d ((¬A →d (
p ∧d ⊥p)) ∨ C ) (D019)
2. ⊥p →d ⊥p (D�

0 1)
3. (¬A →d (
p ∧d ⊥p)) →d 
p ∧d (¬A →d ⊥p) 2 and (Trax3 )
4. (¬A →d ⊥p) →d 
p ∧d ((¬A →d ⊥p) ∨ C ) (D04)
5. (¬A →d (
p ∧d ⊥p)) →d 
p ∧d ((¬A →d ⊥p) ∨ C ) 3, 4 and (Tr−)
6. C →d 
p ∧d ((¬A →d ⊥p) ∨ C ) (D05)
7. (¬A →d (
p ∧d ⊥p)) ∨ C →d 
p ∧d ((¬A →d ⊥p) ∨ C ) 5, 6 and (Syl∨)
8. (¬(A ∨ ⊥p) →d C ) →d 
p ∧d ((¬A →d ⊥p) ∨ C ) 1, 7 and (Tr−)

Ad (D�
0 21).

1. ¬(A ∨ ⊥p) →d 
p ∧d ¬(A ∨ ⊥p) (D012)
2. (¬(A ∨ ⊥p) →d (
p ∧d ¬(A ∨ ⊥p))) →d

→d 
p ∧d ((¬A →d ⊥p) ∨ (
p ∧d ¬(A ∨ ⊥p))) (D�
0 20)

3. ((¬A →d ⊥p) ∨ (
p ∧d ¬(A ∨ ⊥p))) →d

→d 
p ∧d (¬A →d (⊥p ∨ (
p ∧d ¬(A ∨ ⊥p)))) (D�
0 19)

4. ¬A →d (⊥p ∨ (
p ∧d ¬(A ∨ ⊥p))) 2–3, (Tr−), 1, (MP→d) and (∧d
−
rg)

5. ¬A →d 
p ∧d ¬(A ∨ ⊥p)) 4 and (⊥−
p )
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Ad (D�
0 22). Similarly we prove (D�

0 23).

1. ¬(¬A →d ⊥p) →d (
p ∧d ¬((¬A →d ⊥p) ∨ ⊥p)) (D�
0 21)

2. ¬((¬A →d ⊥p) ∨ ⊥p) →d 
p ∧d (¬(⊥p ∨ ⊥p) ∧d ¬A) (D021)
3. (¬(⊥p ∨ ⊥p) ∧d ¬A) →d 
p ∧d (
p ∧d ¬A) (D03)
4. ¬(¬A →d ⊥p) →d 
p ∧d (
p ∧d ¬A) 1–3 and (Tr−)

Ad (D�
0 24).

1. A →d 
p ∧d A (D012)
2. ⊥p →d 
p ∧d A (D�

0 1)
3. A ∨ ⊥p →d 
p ∧d A 1, 2 and (Syl∨)

Ad (D�
0 25).

1. ¬(A ∨ ⊥B) →d (
p ∧d ¬(A ∨ ⊥B)) (D012)
2. (¬(A ∨ ⊥B) →d (
p ∧d ¬(A ∨ ⊥B))) →d

→d 
p ∧d ((¬A →d (
p ∧d ⊥B)) ∨ (
p ∧d ¬(A ∨ ⊥B))) (D019)
3. ⊥B →d ⊥p (D�

0 1)
4. (¬A →d 
p ∧d ⊥B) →d 
p ∧d (¬A →d ⊥p) 3 and (Trax3 )
5. (¬A →d ⊥p) →d 
p ∧d ((¬A →d ⊥p) ∨ (
p ∧d ¬(A ∨ ⊥B))) (D04)
6. (¬A →d 
p ∧d ⊥B) →d 
p ∧d ((¬A →d ⊥p) ∨ (
p ∧d ¬(A ∨ ⊥B)))

4, 5 and (Tr−)
7. (
p ∧d ¬(A ∨ ⊥B)) →d 
p ∧d ((¬A →d ⊥p) ∨ (
p ∧d ¬(A ∨ ⊥B)))

(D05)
8. (¬A →d 
p ∧d ⊥B) ∨ (
p ∧d ¬(A ∨ ⊥B)) →d

→d 
p ∧d ((¬A →d ⊥p) ∨ (
p ∧d ¬(A ∨ ⊥B))) 6, 7 and (Syl∨)
9. (¬(A ∨ ⊥B) →d (
p ∧d ¬(A ∨ ⊥B))) →d

→d 
p ∧d ((¬A →d ⊥p) ∨ (
p ∧d ¬(A ∨ ⊥B))) 2, 8 and (Tr−)
10. 
p ∧d ((¬A →d ⊥p) ∨ (
p ∧d ¬(A ∨ ⊥B))) 1, 9 and (MP→d)
11. (¬A →d ⊥p) ∨ (
p ∧d ¬(A ∨ ⊥B)) 10 and (∧d

−
r )

Ad (D�
0 26).

1. (¬B →d ⊥p) ∨ (
p ∧d ¬(B ∨ ⊥A)) (D�
0 25)

2. ⊥p →d 
p ∧d (
p ∧d (⊥p ∨ ¬(B ∨ ⊥A))) (D�
0 1)

3. (¬B →d ⊥p) →d 
p ∧d (¬B →d (
p ∧d (⊥p ∨ ¬(B ∨ ⊥A))))
2 and(Trax2 )

4. ¬(B ∨ ⊥A) →d (
p ∧d (⊥p ∨ ¬(B ∨ ⊥A))) (D05)
5. ¬(B ∨ ⊥A) →d (¬B →d (
p ∧d (⊥p ∨ ¬(B ∨ ⊥A)))) 4 and (Weak→d)
6. 
p ∧d ¬(B ∨ ⊥A) →d 
p ∧d (¬B →d (
p ∧d (⊥p ∨ ¬(B ∨ ⊥A))))

5 and (Mon)
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7. (¬B →d ⊥p) ∨ 
p ∧d ¬(B ∨ ⊥A) →d

→d 
p ∧d (¬B →d (
p ∧d (⊥p ∨ ¬(B ∨ ⊥A)))) 3, 6 and (Syl∨)
8. 
p ∧d (¬B →d (
p ∧d (⊥p ∨ ¬(B ∨ ⊥A)))) 1, 7 and (MP→d)
9. ¬B →d (
p ∧d (⊥p ∨ ¬(B ∨ ⊥A))) 8 and (∧d

−
r )

10. ¬(B ∨ ⊥A) →d 
p ∧d ¬(¬(¬A ∨ A) ∨ B) (D06)
11. ⊥p →d 
p ∧d ¬(¬(¬A ∨ A) ∨ B) (D�

0 1)
12. ⊥p ∨ ¬(B ∨ ⊥A) →d 
p ∧d ¬(¬(¬A ∨ A) ∨ B) 11, 10 and (Syl∨)
13. ¬B →d 
p ∧d ¬(¬(¬A ∨ A) ∨ B) 9, 12 and (Tr−)

Ad (D�
0 27).

1. ¬B →d 
p ∧d ¬(¬(¬A ∨ A) ∨ B) (D�
0 26)

2. ¬(¬(¬A ∨ A) ∨ B) →d 
p ∧d (¬(¬¬A ∨ B) ∨ ¬(¬A ∨ B)) (D022)
3. ¬(¬A ∨ B) →d 
p ∧d (¬A ∨ ¬(¬A ∨ B)) (D05)
4. ¬(¬¬A ∨ B) →d 
p ∧d ¬¬¬A (D�

0 6)
5. ¬¬¬A →d 
p ∧d ¬A (D�

0 3)
6. ¬A →d 
p ∧d (¬A ∨ ¬(¬A ∨ B)) (D04)
7. ¬(¬¬A ∨ B) →d 
p ∧d (¬A ∨ ¬(¬A ∨ B)) 4–6 and (Tr−)
8. ¬(¬¬A ∨ B) ∨ ¬(¬A ∨ B) →d 
p ∧d (¬A ∨ ¬(¬A ∨ B)) 7, 3 and (Syl∨)
9. ¬B →d 
p ∧d (¬A ∨ ¬(¬A ∨ B)) 1, 2, 8 and (Tr−)

Ad (D�
0 28).

1. ¬(¬¬(A ∨ ¬B) ∨ B) →d 
p ∧d ¬((A ∨ ¬B) ∨ B) (D014)
2. ¬((A ∨ ¬B) ∨ B) →d 
p ∧d ¬(A ∨ (¬B ∨ B)) (D020)
3. ¬(A ∨ (¬B ∨ B)) →d 
p ∧d ¬(¬B ∨ B) (D�

0 4)
4. ¬(¬B ∨ B) →d ⊥p (D�

0 1)
5. ¬(¬¬(A ∨ ¬B) ∨ B) →d ⊥p 1–4 and (Tr−)
6. ¬(A ∨ ¬B) ∧d C →d 
p ∧d (B ∧d C) 5 and (Trax4 )

The below lemma will indicate provability of rules that correspond to
rules of ♦-D in the axiomatization provided for Lemma 3. In particular,
inferability of rules (�nectr), (�mptr), (�mptr

−) and (postr⇐) will be used in
the proof of the final Theorem 13.

Lemma 9. The following rules are inferable on the basis of �:

¬A →d ⊥p

¬(¬A →d ⊥p) →d ⊥p
(�nectr)

¬A →d ⊥p; ¬(¬A ∨ B) →d ⊥p

¬B →d ⊥p
(�mptr)
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A; ¬(¬A ∨ B) →d ⊥p

B
(�mptr

−)

¬(A →d ⊥p)
A

(postr⇐)

Proof. Ad (�nectr).

1. ¬A →d ⊥p Asm.
2. ¬(¬A →d ⊥p) →d 
p ∧d (
p ∧d ¬A) (D�

0 22)
3. (
p ∧d ¬A) →d ⊥p 1 and (Weak⊥)
4. ¬(¬A →d ⊥p) →d ⊥p 2, 3 and (Tr−)

Ad (�mptr).

1. ¬A →d ⊥p Asm.
2. ¬(¬A ∨ B) →d ⊥p Asm.
3. ¬A ∨ ¬(¬A ∨ B) →d ⊥p 1, 2 and (Syl∨)
4. ¬B →d 
p ∧d (¬A ∨ ¬(¬A ∨ B)) (D�

0 27)
5. ¬B →d ⊥p 4, 3 and (Tr−)

Ad (�mptr
−).

1. A Asm.
2. ¬(¬A ∨ B) →d ⊥p Asm.
3. (¬(¬A ∨ B) →d ⊥p) →d 
p ∧d (¬¬A →d 
p ∧d B) (D�

0 2)
4. 
p ∧d (¬¬A →d 
p ∧d B) 2, 3 and (MP→d)
5. (¬¬A →d 
p ∧d B) 4 and (∧d

−
r )

6. A →d 
p ∧d ¬¬A (D011)
7. A →d 
p ∧d B 6, 5 and (Tr−)
8. 
p ∧d B 1, 7 and (MP→d)
9. B 8 and (∧d

−
r )

Ad (postr⇐).

1. ¬(A →d ⊥p) Asm.
2. ¬(A →d ⊥p) →d 
p ∧d (
p ∧d A) (D�

0 23)
3. 
p ∧d (
p ∧d A) 1, 2 and (MP→d)
4. 
p ∧d A 3 and (∧d

−
rg)

5. A 4 and (∧d
−
rg)

The translation i2: Form −→ Ford given below is used in [4], another
translation also denoted by i2 was considered in [11]. We refer to the axiom-
atization that arose from [4], thus, we also follow the respective translation.
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1 i2(a) = a, for any propositional letter a,

2 for any ϕ,ψ ∈ Form:

(a) i2(¬ϕ) = ¬i2(ϕ),
(b) i2(�ϕ) = ¬i2(ϕ) →d ⊥p,
(c) i2(♦ϕ) = ¬(i2(ϕ) →d ⊥p),
(d) i2(ϕ ∨ ψ) = i2(ϕ) ∨ i2(ψ),
(e) i2(ϕ ∧ ψ) = ¬(¬i2(ϕ) ∨ ¬i2(ψ)),
(f) i2(ϕ → ψ) = ¬i2(ϕ) ∨ i2(ψ),
(g) i2(ϕ ↔ ψ) = ¬(¬(¬i2(ϕ) ∨ i2(ψ)) ∨ ¬(¬i2(ψ) ∨ i2(ϕ))).

We will need the following lemma that will be used in the proof of Lemma
11:

Lemma 10. For every A,A′, B,B′ ∈ Ford, if

¬(¬A ∨ A′) →d ⊥p ∈ D�
0 (8)

¬(¬B ∨ B′) →d ⊥p ∈ D�
0 (9)

¬(¬A′ ∨ A) →d ⊥p ∈ D�
0 (10)

¬(¬B′ ∨ B) →d ⊥p ∈ D�
0 (11)

then

¬(¬¬(¬A ∨ ¬¬(B →d ⊥p)) ∨ (A′ ∧d B′)) →d ⊥p ∈ D�
0 (12)

¬(¬(A′ ∧d B′) ∨ ¬(¬A ∨ ¬¬(B →d ⊥p))) →d ⊥p ∈ D�
0 (13)

¬(¬(¬¬(A →d ⊥p) ∨ B) ∨ (A′ →d B′)) →d ⊥p ∈ D�
0 (14)

¬(¬(A′ →d B′) ∨ (¬¬(A →d ⊥p) ∨ B)) →d ⊥p ∈ D�
0 (15)

¬(¬(A ∨ B) ∨ (A′ ∨ B′)) →d ⊥p ∈ D�
0 (16)

Proof. Consider the following proof, where (8) and (9) are used as assump-
tions.
1. ¬(¬¬(¬A ∨ ¬¬(B →d ⊥p)) ∨ (A′ ∧d B′)) →d

→d �p ∧d ¬((¬A ∨ ¬¬(B →d ⊥p)) ∨ (A′ ∧d B′)) (D014)
2. ¬((¬A ∨ ¬¬(B →d ⊥p)) ∨ (A′ ∧d B′)) →d

→d �p ∧d (¬((¬A ∨ ¬¬(B →d ⊥p)) ∨ A′) ∨
∨ ¬((¬A ∨ ¬¬(B →d ⊥p)) ∨ ¬(B′ →d ⊥p))) (D027)

3. ¬((¬A ∨ ¬¬(B →d ⊥p)) ∨ A′) →d

→d �p ∧d ¬(A′ ∨ (¬A ∨ ¬¬(B →d ⊥p))) (D06)
4. ¬(A′ ∨ (¬A ∨ ¬¬(B →d ⊥p))) →d

→d �p ∧d ¬((A′ ∨ ¬A) ∨ ¬¬(B →d ⊥p)) (D�
0 7)

5. ¬((A′ ∨ ¬A) ∨ ¬¬(B →d ⊥p)) →d �p ∧d ¬(A′ ∨ ¬A) (D�
0 6)

6. ¬(A′ ∨ ¬A) →d ⊥p (D06), (8) and (Tr−)
7. ¬((¬A ∨ ¬¬(B →d ⊥p)) ∨ A′) →d ⊥p 3–6 and (Tr−)
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8. ¬((¬A ∨ ¬¬(B →d ⊥p)) ∨ ¬(B′ →d ⊥p)) →d

→d �p ∧d ¬(¬A ∨ (¬¬(B →d ⊥p) ∨ ¬(B′ →d ⊥p))) (D020)
9. ¬(¬A ∨ (¬¬(B →d ⊥p) ∨ ¬(B′ →d ⊥p))) →d

→d �p ∧d ¬(¬¬(B →d ⊥p) ∨ ¬(B′ →d ⊥p)) (D�
0 4)

10. ¬(¬(¬(¬B ∨ B′) →d ⊥p) ∨ (¬¬(B →d ⊥p) ∨ ¬(B′ →d ⊥p))) →d ⊥p (D�
0 18)

11. (¬¬(B →d ⊥p) ∨ ¬(B′ →d ⊥p)) (9) and (�mptr
−)

12. (¬(¬¬(B →d ⊥p) ∨ ¬(B′ →d ⊥p)) →d

�p ∧d ¬(¬(¬¬(B →d ⊥p) ∨ ¬(B′ →d ⊥p)) ∨
¬¬(¬¬(B →d ⊥p) ∨ ¬(B′ →d ⊥p))) 11 and (Add∧c)

13. ¬(¬(¬¬(B →d ⊥p) ∨ ¬(B′ →d ⊥p)) ∨
¬¬(¬¬(B →d ⊥p) ∨ ¬(B′ →d ⊥p))) →d ⊥p (D013)

14. ¬((¬A ∨ ¬¬(B →d ⊥p)) ∨ ¬(B′ →d ⊥p)) →d ⊥p 8–9, 12–13 and (Tr−)
15. (¬((¬A ∨ ¬¬(B →d ⊥p)) ∨ A′) ∨

∨ ¬((¬A ∨ ¬¬(B →d ⊥p)) ∨ ¬(B′ →d ⊥p))) →d ⊥p 7, 14 and (Syl∨)
16. ¬(¬¬(¬A ∨ ¬¬(B →d ⊥p)) ∨ (A′ ∧d B′)) →d ⊥p 1, 2, 15 and (Tr−)

For the case of (13) consider the following sequence.
1. ¬(¬(A′ ∧d B′) ∨ ¬(¬A ∨ ¬¬(B →d ⊥p))) →d

¬(¬(¬A ∨ ¬¬(B →d ⊥p)) ∨ ¬(A′ ∧d B′)) (D06)
2. ¬(¬(¬A ∨ ¬¬(B →d ⊥p)) ∨ ¬(A′ ∧d B′)) →d

→d �p ∧d (¬(¬¬A ∨ ¬(A′ ∧d B′)) ∨ ¬(¬¬¬(B →d ⊥p) ∨ ¬(A′ ∧d B′)))
(D022)

3. ¬(¬¬A ∨ ¬(A′ ∧d B′)) →d �p ∧d ¬(A ∨ ¬(A′ ∧d B′)) (D014)
4. ¬(A ∨ ¬(A′ ∧d B′)) →d �p ∧d ¬(¬(A′ ∧d B′) ∨ A) (D06)
5. ¬(¬(A′ ∧d B ′) ∨ A) →d �p ∧d (¬(¬A′ ∨ A) ∧d B ′) (D024)
6. (¬(¬A′ ∨ A) ∧d B ′) →d �p ∧d ¬(¬A′ ∨ A) (D02)
7. ¬(¬A′ ∨ A) →d ⊥p (10)
8. ¬(¬¬A ∨ ¬(A′ ∧d B′)) →d ⊥p 3–7 and (Tr−)
9. ¬(¬¬¬(B →d ⊥p) ∨ ¬(A′ ∧d B′)) →d

→d �p ∧d ¬(¬(B →d ⊥p) ∨ ¬(A′ ∧d B′)) (D014)
10. ¬(¬(B →d ⊥p) ∨ ¬(A′ ∧d B′)) →d �p ∧d ¬(¬(A′ ∧d B′) ∨ ¬(B →d ⊥p))

(D06)
11. ¬(¬(A′ ∧d B ′) ∨ ¬(B →d ⊥p)) →d �p ∧d (¬(¬A′ ∨ ¬(B →d ⊥p)) ∧d B ′)

(D024)

12. ¬(¬A′ ∨ ¬(B →d ⊥p)) ∧d B ′ →d �p ∧d ((B →d ⊥p) ∧d B ′) (D�
0 28)

13. ¬(¬(¬(¬B′ ∨ B) →d ⊥p) ∨ (¬(B →d ⊥p) ∨ (B′ →d ⊥p))) →d ⊥p (D�
0 17)

14. ¬(¬B′ ∨ B) →d ⊥p (11)
15. ¬(¬(¬B′ ∨ B) →d ⊥p) →d ⊥p 14 and (�nectr)
16. ¬(¬(B →d ⊥p) ∨ (B′ →d ⊥p)) →d ⊥p 15, 13 and (�mptr)
17. (B →d ⊥p) ∧d B′ →d �p ∧d ((B′ →d ⊥p) ∧d B′) 16 and (Trax4 )
18. (B′ →d ⊥p) ∧d B′ →d (�p ∧d ⊥p) (D09)

19. ⊥p →d ⊥p (D�
0 1)

20. ¬(¬¬¬(B →d ⊥p) ∨ ¬(A′ ∧d B′)) →d ⊥p 9–12, 17–19 and (Tr−)
21. (¬(¬¬A ∨ ¬(A′ ∧d B′)) ∨ ¬(¬¬¬(B →d ⊥p) ∨ ¬(A′ ∧d B′))) →d ⊥p

8, 20 (Syl∨)
22. ¬(¬(A′ ∧d B′) ∨ ¬(¬A ∨ ¬¬(B →d ⊥p))) →d ⊥p 1, 2, 21 and (Tr−)

For the case of (14) consider the following sequence.
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1. ¬(¬(¬¬(A →d ⊥p) ∨ B) ∨ (A′ →d B′)) →d

→d 
p ∧d (¬(¬¬¬(A →d ⊥p) ∨ (A′ →d B′)) ∨ ¬(¬B ∨ (A′ →d B′)))
(D022)

2. ¬(¬¬¬(A →d ⊥p) ∨ (A′ →d B′)) →d

→d 
p ∧d ¬(¬(A →d ⊥p) ∨ (A′ →d B′)) (D014)
3. ¬(¬(A →d ⊥p) ∨ (A′ →d B′)) →d

→d 
p ∧d ¬((A′ →d B′) ∨ ¬(A →d ⊥p)) (D06)
4. ¬((A′ →d B′) ∨ ¬(A →d ⊥p)) →d 
p ∧d (¬(B′ ∨ ¬(A →d ⊥p)) ∧d A′)

(D021)
5. ¬(B′ ∨ ¬(A →d ⊥p)) ∧d A′ →d 
p ∧d ((A →d ⊥p) ∧d A′) (D�

0 28)
6. ¬(¬(¬(¬A′ ∨ A) →d ⊥p) ∨ (¬(A →d ⊥p) ∨ (A′ →d ⊥p))) →d ⊥p (D�

0 17)
7. ¬(¬A′ ∨ A) →d ⊥p (10)
8. ¬(¬(¬A′ ∨ A) →d ⊥p) →d ⊥p 7 and (�nectr)
9. ¬(¬(A →d ⊥p) ∨ (A′ →d ⊥p)) →d ⊥p 8, 6 and (�mptr)
10. ((A →d ⊥p) ∧d A′) →d 
p ∧d ((A′ →d ⊥p) ∧d A′) 9 and (Trax4 )
11. (A′ →d ⊥p) ∧d A′ →d (
p ∧d ⊥p) (D09)
12. ⊥p →d ⊥p (D�

0 1)
13. ¬(¬¬¬(A →d ⊥p) ∨ (A′ →d B′)) →d ⊥p 2–5, 10–12 and (Tr−)
14. ¬(¬B ∨ (A′ →d B′)) →d 
p ∧d ¬((A′ →d B′) ∨ ¬B) (D06)
15. ¬((A′ →d B′) ∨ ¬B) →d 
p ∧d (¬(B′ ∨ ¬B) ∧d A′) (D021)
16. (¬(B′ ∨ ¬B) ∧d A′) →d 
p ∧d ¬(B′ ∨ ¬B) (D02)
17. ¬(B′ ∨ ¬B) →d ⊥p (11)
18. ¬(¬B ∨ (A′ →d B′)) →d ⊥p 14–17 and (Tr−)
19. (¬(¬¬¬(A →d ⊥p) ∨ (A′ →d B′)) ∨ ¬(¬B ∨ (A′ →d B′))) →d ⊥p

13, 18 and (Syl∨)
20. ¬(¬(¬¬(A →d ⊥p) ∨ B) ∨ (A′ →d B′)) →d ⊥p 1, 19 and (Tr−)

For the case of (15) consider the following sequence.
1. ¬(¬(A′ →d B′) ∨ (¬¬(A →d ⊥p) ∨ B)) →d

→d (�p ∧d ¬((¬B′ ∧d A′) ∨ (¬¬(A →d ⊥p) ∨ B))) (D023)
2. ¬((¬B′ ∧d A′) ∨ (¬¬(A →d ⊥p) ∨ B)) →d

→d �p ∧d ¬((¬¬(A →d ⊥p) ∨ B) ∨ (¬B′ ∧d A′)) (D06)
3. ¬((¬¬(A →d ⊥p) ∨ B) ∨ (¬B′ ∧d A′)) →d

→d �p ∧d (¬((¬¬(A →d ⊥p) ∨ B) ∨ ¬B′) ∨
∨ ¬((¬¬(A →d ⊥p) ∨ B) ∨ ¬(A′ →d ⊥p))) (D027)

4. ¬((¬¬(A →d ⊥p) ∨ B) ∨ ¬B′) →d

→d �p ∧d ¬(¬¬(A →d ⊥p) ∨ (B ∨ ¬B′)) (D020)
5. ¬(¬¬(A →d ⊥p) ∨ (B ∨ ¬B′)) →d

→d �p ∧d ¬(B ∨ ¬B′) (D�
0 4)

6. ¬(B ∨ ¬B′) →d �p ∧d ¬(¬B′ ∨ B) (D06)
7. ¬(¬B′ ∨ B) →d ⊥p (11)
8. ¬((¬¬(A →d ⊥p) ∨ B) ∨ ¬B′) →d ⊥p 4–7 and (Tr−)
9. ¬((¬¬(A →d ⊥p) ∨ B) ∨ ¬(A′ →d ⊥p)) →d
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→d �p ∧d ¬(¬¬(A →d ⊥p) ∨ (B ∨ ¬(A′ →d ⊥p))) (D020)
10. ¬(¬¬(A →d ⊥p) ∨ (B ∨ ¬(A′ →d ⊥p))) →d

→d �p ∧d ¬((A →d ⊥p) ∨ (B ∨ ¬(A′ →d ⊥p))) (D014)
11. ¬((A →d ⊥p) ∨ (B ∨ ¬(A′ →d ⊥p))) →d

→d �p ∧d ¬((B ∨ ¬(A′ →d ⊥p)) ∨ (A →d ⊥p)) (D06)
12. ¬((B ∨ ¬(A′ →d ⊥p)) ∨ (A →d ⊥p)) →d

→d �p ∧d ¬(B ∨ (¬(A′ →d ⊥p) ∨ (A →d ⊥p))) (D020)
13. ¬(B ∨ (¬(A′ →d ⊥p) ∨ (A →d ⊥p))) →d

→d �p ∧d ¬(¬(A′ →d ⊥p) ∨ (A →d ⊥p)) (D�
0 4)

14. ¬(¬(¬(¬A ∨ A′) →d ⊥p) ∨ (¬(A′ →d ⊥p) ∨ (A →d ⊥p))) →d ⊥p (D�
0 17)

15. ¬(¬A ∨ A′) →d ⊥p (8)
16. ¬(¬(¬A ∨ A′) →d ⊥p) →d ⊥p 15 and (�nectr)
17. ¬(¬(A′ →d ⊥p) ∨ (A →d ⊥p)) →d ⊥p 16, 14 and (�mptr)
18. ¬((¬¬(A →d ⊥p) ∨ B) ∨ ¬(A′ →d ⊥p)) →d ⊥p 9–17 and (Tr−)
19. (¬((¬¬(A →d ⊥p) ∨ B) ∨ ¬B′) ∨

∨ ¬((¬¬(A →d ⊥p) ∨ B) ∨ ¬(A′ →d ⊥p))) →d ⊥p 8, 18 and (Syl∨)
20. ¬(¬(A′ →d B′) ∨ (¬¬(A →d ⊥p) ∨ B)) →d ⊥p 1–3, 19 and (Tr−)

And finally for the case of (16) we have:
1. ¬(¬(A ∨ B) ∨ (A′ ∨ B′)) →d

→d �p ∧d (¬(¬A ∨ (A′ ∨ B′)) ∨ ¬(¬B ∨ (A′ ∨ B′))) (D022)

2. ¬(¬A ∨ (A′ ∨ B′)) →d �p ∧d ¬((¬A ∨ A′) ∨ B′) (D�
0 7)

3. ¬((¬A ∨ A′) ∨ B′) →d �p ∧d ¬(¬A ∨ A′) (D�
0 6)

4. ¬(¬A ∨ A′) →d ⊥p (8)
5. ¬(¬A ∨ (A′ ∨ B′)) →d ⊥p 2–4 and (Tr−)
6. ¬(¬B ∨ (A′ ∨ B′)) →d �p ∧d ¬((A′ ∨ B′) ∨ ¬B) (D06)
7. ¬((A′ ∨ B′) ∨ ¬B) →d �p ∧d ¬(A′ ∨ (B′ ∨ ¬B)) (D020)

8. ¬(A′ ∨ (B′ ∨ ¬B)) →d �p ∧d ¬(B′ ∨ ¬B) (D�
0 4)

9. ¬(B′ ∨ ¬B) →d �p ∧d ¬(¬B ∨ B′) (D06)
10. ¬(¬B ∨ B′) →d ⊥p (9)
11. ¬(¬B ∨ (A′ ∨ B′)) →d ⊥p 6–10 and (Tr−)
12. (¬(¬A ∨ (A′ ∨ B′)) ∨ ¬(¬B ∨ (A′ ∨ B′))) →d ⊥p 5, 11 and (Syl∨)
13. ¬(¬(A ∨ B) ∨ (A′ ∨ B′)) →d ⊥p 1, 12 and (Tr−)

The next Lemma will be used in the proof of Theorem 13.

Lemma 11. For every A ∈ Ford the following formulas are theses of D�
0 :

¬(¬i2(i1(A)) ∨ A) →d ⊥p (17)

¬(¬A ∨ i2(i1(A))) →d ⊥p (18)

Proof. The proof goes by induction on the complexity of a formula.
The case of variables: by the definitions of i1 and i2, i2(i1(a)) = a,

hence due to Lemma 8 stating that (D�
0 5): ¬(¬a ∨ a) →d ⊥p is a thesis of

D�
0 .
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The case of negation: by the definitions of i1 and i2,

i2(i1(¬A)) = ¬i2(i1(A)) (19)

By the inductive hypothesis, we have both ¬(¬i2(i1(A)) ∨ A) →d ⊥p ∈ D�
0

and ¬(¬A ∨ i2(i1(A))) →d ⊥p ∈ D�
0 . First, by (19) we have ¬(¬i2(i1(¬A))

∨ ¬A) = ¬(¬¬i2(i1(A)) ∨ ¬A). Hence, by (D014) ¬(¬i2(i1(¬A)) ∨ ¬A) →d


p ∧d ¬(i2(i1(A)) ∨ ¬A) belongs to D�
0 . So, ¬(¬i2(i1(¬A)) ∨ ¬A) →d ⊥p

follows by (D06), the inductive hypothesis and (Tr−). Similarly using the
other inductive hypothesis we infer ¬(¬¬A ∨ i2(i1(¬A))) →d ⊥p.

The case of conjunction. By the definitions of i1 and i2,

i2(i1(A ∧d B)) = ¬(¬i2(i1(A)) ∨ ¬¬(i2(i1(B)) →d ⊥p)) (20)

By the inductive hypothesis we also have ¬(¬i2(i1(B)) ∨ B) →d ⊥p ∈ D�
0

and ¬(¬B ∨ i2(i1(B))) →d ⊥p ∈ D�
0 . Hence the required conditions hold

by (12) and (13) given in Lemma 10.
The case of implication. By the definitions of i2 and i1 we obtain:

i2(i1(A →d B)) = ¬¬(i2(i1(A)) →d ⊥p) ∨ i2(i1(B)) (21)

Hence the required conditions hold by (14) and (15).
The case of disjunction. By the definitions of i2 and i1 we have:

i2(i1(A ∨ B)) = i2(i1(A)) ∨ i2(i1(B)) (22)

Thus, the required fact follows by Lemma 10(16).

Theorem 12. (Soundness) For every thesis A of D�
0 , it belongs to D0, i.e.

D�
0 ⊆ D0.

Proof. First we will prove that each of the axioms belongs to D0. So, for
a given axiom A we show that A ∈ D0. By the condition (4) on page 6 it is
enough to show that i1(A) ∈ D.

To make notations shorter, i.e. to avoid the usage of values of the function
i1, we will consider specific formulas, but not formula schemas.

i1(D01) = ♦q → (¬p ∨ p) ∧ ♦(♦r → q), this formula belongs to K.
i1(D02) = ♦(q ∧ ♦r) → (¬p ∨ p) ∧ ♦q ∈ K.
i1(D03) = ♦(q ∧ ♦r) → (¬p ∨ p) ∧ ♦((¬p ∨ p) ∧ ♦r) ∈ K.
i1(D04) = ♦q → (¬p ∨ p) ∧ ♦(q ∨ r) ∈ K.
i1(D05) = ♦r → (¬p ∨ p) ∧ ♦(q ∨ r) ∈ K.
i1(D06) = ♦¬(q ∨ r) → (¬p ∨ p) ∧ ♦¬(r ∨ q) ∈ K.
i1(D07) = ♦¬((♦¬(q ∨ r) → s) ∨ t) → (¬p ∨ p) ∧ ♦¬((♦¬(r ∨ q) →

s) ∨ t). On the basis of K it is equivalent to �((♦¬(r ∨ q) → s) ∨ t) →
�((♦¬(q ∨ r) → s) ∨ t) which belongs to K.
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i1(D08) = ♦¬(q ∨ r) → (((¬p ∨ p) ∧ ♦¬q) ∧ ♦¬r) ∈ K.
i1(D09) = ♦((♦A → B) ∧ ♦A) → ((¬p ∨ p) ∧ ♦B) ∈ K.
i1(D010) = ♦¬(¬(♦q → s)∨¬(♦r → s)) → (¬p ∨ p) ∧ ♦(♦(q ∨ r) → s).

It is equivalent on the basis of K to ♦((♦q → s) ∧ (♦r → s)) → ♦(♦(q ∨
r) → s), so belongs to K.

i1(D011) = ♦q → (¬p ∨ p) ∧ ♦¬¬q ∈ K.
i1(D012) = ♦q → (¬p ∨ p) ∧ ♦q ∈ K.
i1(D013) = ♦¬(q ∨ ¬q) → r ∈ K.
i1(D014) = ♦¬(¬¬q ∨ r) → ((¬p ∨ p) ∧ ♦¬(q ∨ r)) ∈ K.
i1(D015) = ♦¬(¬(♦¬¬q → r)∨s) → (¬p ∨ p) ∧ ♦¬(¬(♦q → r)∨s) ∈ K.
i1(D016) = ♦¬(¬(♦q → r)∨s) → (¬p ∨ p) ∧ ♦¬(¬(♦¬¬q → r)∨s) ∈ K.
i1(D017) = ♦¬((♦q → r) ∨ s) → (¬p ∨ p) ∧ ♦¬((♦¬¬q → r) ∨ s) ∈ K.
i1(D018) = ♦¬(((¬¬(¬p ∨ p) ∧ ♦q) ∨ (♦¬r → s)) ∨ t) → (¬p ∨ p) ∧

♦¬((♦¬(q ∨ r) → s) ∨ t). On the basis of K it is equivalent to �((¬s →
�(¬q → r)) ∨ t) → �((¬s → (�¬q → �r)) ∨ t), so belongs to K.

i1(D019) = ♦(♦¬(q ∨ r) → s) → (¬p ∨ p) ∧ ♦((♦¬q → ((¬p ∨ p) ∧
♦r)) ∨ s). It is equivalent on the basis of K to ♦(♦¬(q ∨ r) → s) →
♦((♦¬q ∧ �¬r) → s), so also belongs to K.

i1(D020) = ♦¬((q ∨ r) ∨ s) → (¬p ∨ p) ∧ ♦¬(q ∨ (r ∨ s)) ∈ K.
i1(D021) = ♦¬((♦q → r) ∨ s) → (¬p ∨ p) ∧ ♦(¬(r ∨ s) ∧ ♦q). On the

basis of K it is equivalent to ♦((♦q ∧ ¬r) ∧ ¬s) → ♦(¬(r ∨ s) ∧ ♦q), so
belongs to K.

i1(D022) = ♦¬(¬(q ∨ r) ∨ s) → (¬p ∨ p) ∧ ♦(¬(¬q ∨ s) ∨ ¬(¬r ∨
s)) ∈ K.

i1(D023) = ♦¬(¬(♦q → r) ∨ s) → ((¬p ∨ p) ∧ ♦¬((¬r ∧ ♦q) ∨ s)). It is
equivalent on the basis of K to ♦((♦q → r) ∧ ¬s) → ♦(¬(♦q ∧ ¬r) ∧ ¬s),
which belongs to K.

i1(D024) = ♦¬(¬(q ∧ ♦r) ∨ s) → (¬p ∨ p) ∧ ♦(¬(¬q ∨ s) ∧ ♦r). By K
it is equivalent to ♦¬(¬(q ∧ ♦r) ∨ s) → ♦(¬(¬q ∨ s) ∧ ♦r), so belongs to
K.

i1(D025) = ♦(♦(q ∨ ¬q) → ¬(¬p ∨ p)) → ¬(¬p ∨ p) which is equivalent
on the basis of K to �♦(q ∨ ¬q), hence it belongs to D.

i1(D026) = ♦(♦q → (r ∨ s)) → (¬p ∨ p) ∧ ♦(r ∨ (♦q → s)) and it
belongs to K.

i1(D027) = ♦¬(q ∨ (r ∧ ♦s)) → (¬p ∨ p) ∧ ♦(¬(q ∨ r) ∨ ¬(q ∨
¬(♦s → ¬(¬p ∨ p)))). On the basis of K it is equivalent to ♦¬(q ∨ (r ∧
♦s)) → ♦¬((q ∨ r) ∧ (q ∨ ♦s)), hence it belongs to K.

Second, now we observe that each of the primitive rules leads from theses
to theses of D0.
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For (∧d
−
r ) assume that 
p ∧d B ∈ D0, by the condition (defD0) and Fact

2 it means that i1(
p ∧d B) ∈ D0, hence ♦i1(B) ∈ D0, so B ∈ D0.
The case of (MP→d) was considered in Fact 1. In what follows we skip

the references to Fact 2.
The case of (Trax1 ). Assume that A →d B ∧d C ∈ D0, i.e. i1(A →d

B ∧d C) ∈ D. Hence ♦i1(A) → i1(B) ∧ ♦i1(C) ∈ D and in particular, by
monotonicity �♦i1(A) → �♦i1(C) ∈ D, but by classical logic, this means
that also (�♦i1(C) → ♦i1(D)) → (¬p ∨ p) ∧ (�♦i1(A) → ♦i1(D)) ∈ D,
so (C →d D) →d 
p ∧d (A →d D) ∈ D0.

The case of (Trax2 ). Assume that B →d 
p ∧d C ∈ D0, i.e. i1(B →d


p ∧d C) ∈ D and ♦i1(B) → i1(
p) ∧ ♦i1(C) ∈ D. Hence (�♦i1(A) →
♦i1(B)) → (¬p ∨ p) ∧ (�♦i1(A) → ♦i1(C)) ∈ D. Therefore, (A →d

B) →d 
p ∧d (A →d C) ∈ D0.
The case of (Trax3 ). Assume that B →d C ∈ D0, i.e. i1(B →d C) ∈ D

and ♦i1(B) → i1(C) ∈ D. So, (�♦i1(A) → ♦♦i1(B)) → (�♦i1(A) →
♦i1(C)) ∈ D. But from this follows ♦(♦i1(A) → (¬p ∨ p) ∧ ♦i1(B)) →
(¬p ∨ p) ∧ ♦(♦i1(A) → i1(C)) ∈ D, i.e. (A →d 
p ∧d B) →d 
p ∧d

(A →d C) ∈ D0.
For the case of (Trax4 ) assume ¬(¬A ∨ B) →d ⊥p ∈ D0, i.e. i1(¬(¬A ∨

B) →d ⊥p) ∈ D. By the definition of i1 (♦¬(¬i1(A) ∨ i1(B)) → ¬(¬p ∨
p)) ∈ D. So �(i1(A) → i1(B)) ∈ D. By using positive logic we have
(i1(A) → i1(B)) → (i1(A) ∧ ♦i1(C) → i1(B) ∧ ♦i1(C)), hence by
necessitation, axioms (K) and (K♦) we obtain that ♦(i1(A) ∧ ♦i1(C)) →
♦(i1(B) ∧ ♦i1(C)) ∈ D, so ♦(i1(A) ∧ ♦i1(C)) → (¬p ∨ p) ∧ ♦(i1(B) ∧
♦i1(C)) ∈ D. That is by the definition of i1, we have i1(A ∧d C →d 
p ∧d

(B ∧d C)) ∈ D, i.e. A ∧d C →d 
p ∧d (B ∧d C) ∈ D0.
The case of (Syl∨). We assume that A →d B ∈ D0 and C →d B ∈ D0,

i.e. i1(A →d B) ∈ D and i1(C →d B) ∈ D. By the definition of i1, we have
that ♦i1(A) → i1(B) ∈ D and ♦i1(C ) → i1(B) ∈ D. Therefore, by positive
logic ♦(i1(A) ∨ i1(C)) → i1(B) ∈ D, in other words i1(A ∨ C →d B) ∈ D,
i.e. A ∨ C →d B ∈ D0.

The case of (Add∧c). Assume A ∈ D0, i.e. i1(A) ∈ D and by necessitation
�i1(A) ∈ D. Hence by positive logic ♦i1(B) → �i1(A) ∧ ♦i1(B) ∈ D.
Thus, ♦i1(B) → ♦(i1(A) ∧ i1(B)) ∈ D. Therefore, ♦i1(B) → ((¬p ∨ p) ∧
♦¬(¬i1(A) ∨ ¬i1(B))) ∈ D. Hence, i1(B →d (
p ∧d ¬(¬A ∨ ¬B))) ∈ D,
so B →d (
p ∧d ¬(¬A ∨ ¬B) ∈ D0.

The case of (Mon). Assume A →d B ∈ D0, i.e. i1(A →d B) ∈ D. Hence
♦i1(A) → i1(B) ∈ D and also (¬p ∨ p) ∧ ♦i1(A) → i1(B) ∈ D, while by
monotonicity ♦((¬p ∨ p) ∧ ♦i1(A)) → ♦i1(B) ∈ D, so also ♦((¬p ∨ p) ∧
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♦i1(A)) → (¬p∨p)∧♦i1(B) ∈ D and i1(
p ∧d A →d 
p ∧d B) ∈ D. Thus

p ∧d A →d 
p ∧d B ∈ D0.

Taking into account that D0 can be defined semantically, we could transfer
the following theorem into a completeness or adequacy theorem for D0. To
be more strict, applying the condition defining D0 on page 5, using standard
Kripke-style semantics for the normal modal logic D and straightforward
semantical reading of conditions defining the translation i1, one could treat
definition (defD0) in semantic manners.

Theorem 13. For every thesis A ∈ D0 there is a proof on the basis of �,
i.e. D0 ⊆ D�

0 .

Proof. Let us consider a formula A ∈ D0. By definition (defD0), ♦i1(A) ∈
D and by Lemma 2, it is equivalent to the fact that i1(A) ∈ D. By Lemma
3 there is a proof of the formula i1(A) ∈ D on the basis of the system D�.
Consider a respective proof ϕ1, . . . , ϕk = i1(A) ∈ D. Now, let us consider
the sequence of values of the function i2 of elements of the initial sequence:
(i2(ϕi))1�i�k.

Observe that i2(�Ai) = (Aitr) for 1 � i � 12, but by Lemma 8, for every
1 � i � 12, (Aitr) is a thesis of D�

0 . Next one can see that i2(�df♦) =
(D�

0 15), i2(�D) = (D�
0 14), i2(�K) = (D�

0 16). Moreover, the translation of
every rule among (�nec), (�mp), (�mp−) and (pos⇐) gives respectively
(�nectr), (�mptr), (�mptr

−) and (postr⇐), but by Lemma 9, these rules are
inferable for the considered system D�

0 . So, by induction on the length of
the proof we see that each element in the sequence (i2(ϕi))1�i�k is a thesis
of D�

0 . In particular, for i = k, we have (i2(i1(A))) ∈ D�
0 , but by Lemma

11, we have ¬(¬i2(i1(A)) ∨ A) →d ⊥p ∈ D�
0 , so by (�mptr

−), we conclude
that A ∈ D�

0 .

5. Towards the Embedding Procedure

The reason to base the system on the rules directly relying on discussive
connectives is to be close to the formulation of D2 with modus ponens for
discussive as the only rule of inference. Below we will indicate other syntactic
analogies, in particular between axioms from the axiomatizations of D0 and
D2.

Although only one axiom schema (D13) from D2-axiomatization, given in
[21] is D0-valid (D013): ¬(A ∨ ¬A) →d B, other analogies are evident there.
To explicate these analogies, let us denote a discussive formula of the form
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p ∧d A as (A)♦d . Using this shortcut we can rewrite the following axioms
of the considered axiomatization of D0:

(D01) A →d (B →d A)♦d (D1)

(D02) A ∧d B →d A♦d (D4)

(D03) A ∧d B →d (B♦d)♦d (D5)

(D04) A →d (A ∨ B)♦d (D7)

(D05) B →d (A ∨ B)♦d (D8)

(D06) ¬(A ∨ B) →d (¬(B ∨ A))♦d (D13)

(D08) ¬(A ∨ B) →d ((¬A)♦d ∧d ¬B) (D14)

(D011) A →d (¬¬A)♦d (D10)

(D014) ¬(¬¬A ∨ B) →d (¬(A ∨ B))♦d (D15)

(D019) (¬(A ∨ B) →d C ) →d ((¬A →d B♦d) ∨ C )♦d (D16)

(D020) ¬((A ∨ B) ∨ C ) →d (¬(A ∨ (B ∨ C )))♦d (D17)

(D022) ¬(¬(A ∨ B) ∨ C ) →d (¬(¬A ∨ C ) ∨ ¬(¬B ∨ C ))♦d (D20)

(D024) ¬(¬(A ∧d B) ∨ C ) →d (¬(¬A ∨ C ) ∧d B)♦d (D22)

The axiom:

(D07) ¬((¬(A ∨ B) →d C) ∨ D) →d (¬((¬(B ∨ A) →d C) ∨ D))♦d

serves as an additional variant of the axiom (D06) and also corresponds to
(D13) assuring it in the needed contexts.

In the context of (D10), (D11) and (D15), a similar role is played by:

(D015) ¬(¬(¬¬A →d B) ∨ C) →d (¬(¬(A →d B) ∨ C))♦d

(D016) ¬(¬(A →d B) ∨ C) →d (¬(¬(¬¬A →d B) ∨ C))♦d

(D017) ¬((A →d B) ∨ C) →d (¬((¬¬A →d B) ∨ C))♦d

which together with (D011) and (D014) allow to handling double negations.
The axiom:

(D021) ¬((A →d B) ∨ C ) →d (¬(B ∨ C ) ∧d A)♦d

naturally uses the idea of (D18), however, for D2 the order of conjuncts can
be changed.

Besides,
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(D018) ¬(((¬⊥p ∧d A) ∨ (¬B →d C)) ∨ D) →d (¬((¬(A ∨ B) →d C) ∨
D))♦d

corresponds in some way to (D16) in the contexts of ¬ and ∨ with some
additional needed transformations. In particular, due to (D13) and positive
logic, one can use as the consequent of (D16) also ((¬B →d A) ∨ C ) (=
E). On the other hand, the negated formula in the antecedent of (D018)
corresponds to the formula A ∨ (¬B →d C)) (= F ), while one can see that
on the basis of the axiomatic system of D2, formulas E and F are equivalent
in the sense that (¬E ∨ F ) →d ⊥p is inferable on the basis of D2.6

The case of

(D023) ¬(¬(A →d B) ∨ C ) →d (¬((¬B ∧d A) ∨ C ))♦d

is more complicated. In D2 it corresponds to the formula (A →d B) →d

¬(¬B ∧d A) in the context of ∨ and ¬. The proof of the sole formula is
quite long, it requires the thesis (¬(¬A ∨ B) →d ⊥p) →d (A →d B) (on the
basis of the axiomatization of D2 one can prove it using (D16), (D12), (D13),
(D10) and positive logic), while the postulated schema can be inferred using
the formula ¬(¬(A →d B)∨¬(¬B ∧d A)) →d ⊥p (its proof can be obtained
with the help of (D13), (D22), (D15), (D21) and positive logic).

Similarly, on the basis of D2, the counterpart of our axiom

(D027) ¬(A ∨ (B ∧d C)) →d (¬(A ∨ B) ∨ ¬(A ∨ ¬(C →d ⊥p)))♦d

could be proved by using, among others, (D20), (D18), (D19), however due
to limitations of D0, this proof cannot be conducted.7

There are axioms whose content in D2 is covered by positive logic, in
particular the form of (D010) and is connected with ‘the cost’ of modalities
involved in discussive functors, so in its antecedent the classical formulation
of conjunction has been used.

The axiom:

(D010) ¬(¬(A →d C) ∨ ¬(B →d C)) →d (A ∨ B →d C)♦d

6Of course, what we are presenting here is not a formal proof of the formula (D018) on
the basis of D2 but only some intuitions that show a kind of correspondence between the
considered axioms. The full version of the proof of ¬(((¬⊥p ∧d A) ∨ (¬B →d C))∨D) →d

(¬((¬(A ∨ B) →d C) ∨ D)) on the basis of D2 requires quite few applications of axiom
(D16).

7Notice that due to Theorem 12 and definition of D0, as well as the fact that none of
values of the function i1 at (D20), (D18), (D19) is a thesis of D, none of these formulas is
a thesis of D0.
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corresponds to the axiom (D9). Strictly speaking, it corresponds to ¬(¬(A →d

C ) ∨ ¬(B →d C )) →d (A ∨ B →d C )). One can easily see that by positive
logic valid in D2 it is enough on the side of D2 to refer next to (D9), addition-
ally to the scheme ¬(¬A ∨ ¬B) →d (A ∧d B), which can be easily obtained
on the basis of the axiomatization of D2 by (D14), (D4)–(D16), (D11) and
positive logic.

And there are also other schemas, which correspond to positive logic:

(D09) (A →d B) ∧d A →d B♦d

(D012) A →d A♦d

(D026) (A →d (B ∨ C)) →d (B ∨ (A →d C))♦d

As regards the rules, their role is either to directly obtain positive in-
ferences or—as in the case of (Trax4 )—to simulate the use of positive logic.
Interestingly, the rule (Add∧c) is not valid for D2 in general, but in the used
context, needed cases are also legitimate for D2.

Hence, despite the weakness of discussive implication in D0 observed on
page 6,8 there are →d-theorems of D2 that are provable on the basis of the
given axiomatization of D0, or saying more, since D0 is contained in D2, and
due to the above-mentioned analogies, at least some proofs conducted on
the basis of this axiomatization can be transferred into an inference on the
basis of the axiomatization of D0—as an example, one can mention the proof
of (D�

0 3).
On the basis of D2 the formula:

(D025) (A ∨ ¬A →d ⊥p) →d ⊥p

follows from the above-mentioned formula (¬(¬A ∨ B) →d ⊥p) →d (A →d

B), (D14), (D11), positive logic and the thesis A ∨ ¬A. Again the proof
cannot be repeated due to the weak part of positive logic that is valid for
D0.

As we mentioned, one of the reasons and the aim was also to identify
the smallest part which is in the same language as D2 formalized in the lan-
guage with right discussive conjunction, since such a language is nowadays
treated as the intended one by Jaśkowski after an amendment presented
by him in 1949. The aim of the current paper seemed to us to give an ax-
iomatization that would correspond (in some way) to the axiomatization of
D2 that is given by the correction in [21] of the proposal in [3]. Although,
this ‘correspondence’ has not been defined, the presented in this section

8Let us recall the non-validity of (Syl) on the basis of D0 observed there.
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syntactic similarities between the given axiomatisation of D0 and axioma-
tisation of D2 is proposed by us as a small justification for postulating a
kind of a correlation between both systems, including the role of rules of
D�

0 needed to express in a way the behaviour of the positive part of classi-
cal logic. Notice, for example, that although p →d p is not a thesis of D0,
p →d (p ∨ ¬p) ∧d p = p →d (p)♦d is.

Since D0 is a proper subsystem of D2, a natural question concerning the
relationships between these two systems arises. Specifically, can we manage
to embed D2 into D0 or is this impossible in principle? Having at hand
axiomatizations of the above-mentioned systems we can try to address the
problem.

First of all, in spite of the mentioned similarities between the two axiom-
atizations appearing in logical forms of axiom schemas, we cannot directly
reuse any of D2-schemas in axiomatizations of D0. To see why this happens
we shall extensively use modal counterparts of the systems. For instance,
A →d (B →d A) is not a D0-thesis, because its translation into the modal
language, ♦i1(A) → (♦i1(B) → i1(A)), is not a thesis of the modal sys-
tem ♦-D, since the scheme ♦A → (♦B → A) is not a valid schema on the
basis of D.9 Fortunately, ♦-D = D, so it is convenient to use the existing
proof-theoretical tools for D to check D0 related facts.

It appears that if we add the constant 
p to the consequent of the above
schema, which results in A →d 
p ∧d (B →d A), we obtain an expression
which is still not too far away from the original form but fits better for
the purposes of the axiomatization of D0, since its translation, ♦A → 
p ∧
♦(♦B → A), is a thesis of D. We can rewrite it in an equivalent form
♦A → ♦(♦B → A) to see that the point here is the “compensation” of the
presence of a diamond in the antecedent in front of A.

But the situation can be slightly more complicated. Consider the schema
A ∧d B →d B from the list of axioms of D2. Its D0-analogue is A ∧d

B →d 
p ∧d (
p ∧d B). Why do we have a duplication of 
p now? Be-
cause i1(A ∧d B →d B) = ♦(A ∧ ♦B) → B. As one can see, now the
subformula B has a deeper “nested diamonds depth” in the antecedent, so
we need ♦(A ∧ ♦B) → ♦♦B to convert the translation into a thesis of D.
However, we can observe that using the discussive translation of the modal
scheme A ∧d B →d B into the modal language, together with the applica-
tion of simplifications valid for S5, we obtain (♦A ∧ ♦B) → ♦B. And this

9For this reason we do not need to bother about the concrete result of i1(A), i1(B)
and so on. So, when there no potential confusion appears, we shall skip recursive calling
of i1 when reasoning about translations of schemes.
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formula is also a thesis of D. We can see that the usage of the mentioned
simplifications of modal formulas can be repeated in the general way which
leads to a transformation of a given discussive formula into a modal version
without iterated modalities. Moreover, having modal formulas without iter-
ated modalities we could use the results on relations between sets of theses
without iterated modalities of subsystems of S5 [22]. That’s a guiding idea.

Following e.g., [22] we say that a modal formula involves iterated modal-
ities iff some instance of ‘�’ or ‘♦’ occurs within the scope of some other
instance of ‘�’ or ‘♦’. We say A ∈ Form is at most of the first-degree10 iff it
either does not contain any modal operator or contains a modal operator,
but does not involve iterated modalities. Let 1Form be the set of all at most
the first-degree formulas.

A formula in Form is said to be in Modal Conjunctive Normal Form
iff it is a conjunction (possibly degenerated), each conjunct of which is a
disjunction (possibly degenerated) of classical formulas or formulas of the
form �αi, for some natural number i or a formula ♦α, where αi and α are
classical formulas (see, e.g., [6]). Let MCNF be the set of all such formulas.

It is a well known fact that for any ϕ ∈ Form there is ϕ′ ∈ 1Form such
that ϕ ↔ ϕ′ ∈ S5 (see [6, p. 98]). One can easily see the same result holds
for KD45. Although the above-mentioned ϕ′ is not determined uniquely,
taking into account that all these formulas are equivalent on the basis of
KD45, we can assume that under some order on the set Form, we can take
the earliest respective formula under the given order. So, for any ϕ, let the
above-described formula in 1Form be denoted as m(ϕ).

As it is known, to define D2, one can use any modal logic which has
the same theses beginning with ‘♦’ as S5. Let S5� be the set of all modal
logics such that L ∈ S5� iff ∀A∈(�♦A� ∈ L ⇐⇒ �♦A� ∈ S5). It is known
[2,15,16,24] that the logic S5M—the smallest normal logic defining D2 and
simultaneously the smallest normal logic in S5�, is the smallest normal logic
containing

�♦♦p → ♦p

�♦p → ♦p

Moreover, since for any modal logic L: if S5M ⊆ L ⊆ S5, then L ∈ S5�, so
♦S5 = ♦KD45 (see for example [16]). On the other hand, 1KD45 = 1D (see
[22,23])11

10In [22] the term “first-degree” is used instead.
11Although in [22] the language with � as the only modal operator is concerned, one

can easily see that the respective result holds for the language with � and ♦.
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To be able to apply a result from [13], we recall a translation i3: Form −→
Ford12:

1. i3(a) = a, for any a ∈ At,

2. for any ϕ,ψ ∈ Form:

(a) i3(¬ϕ) = ¬i3(ϕ),
(b) i3(�ϕ) = ¬((¬p ∨ p) ∧d ¬i3(ϕ)),
(c) i3(♦ϕ) = (¬p ∨ p) ∧d i3(ϕ),
(d) i3(ϕ ∨ ψ) = i3(ϕ) ∨ i3(ψ),
(e) i3(ϕ ∧ ψ) = ¬(¬i3(ϕ) ∨ ¬i3(ψ)),
(f) i3(ϕ → ψ) = ¬i3(ϕ) ∨ i3(ψ),
(g) i3(ϕ ↔ ψ) = ¬(¬(¬i3(ϕ) ∨ i3(ψ)) ∨ ¬(¬i3(ψ) ∨ i3(ϕ))).

We have:

Lemma 14. ([13]) For any ϕ ∈ Form, i1(i3(ϕ)) ↔ ϕ ∈ D.

Hence we see that the following sequence holds: A ∈ D2 iff ♦i1(A) ∈ S5
iff ♦i1(A) ∈ KD45 iff m(♦i1(A)) ∈ KD45 iff m(♦i1(A)) ∈ D iff i1(i3(m(♦i1
(A)))) ∈ D iff i3(m(♦i1(A))) ∈ D0.

So, we have proven that:

Theorem 15. There is a function that translates all theses of D2 into theses
of D0 and only them.

6. Conclusion

These considerations can be treated as an initial step in the investigations on
other variants of discussive logics obtained by other cases of relations that
connect participants of a discussion. Following the given considerations, as
a work for the future, the problem of axiomatizing a non-trivial minimal
paracomplete discussive logic contained in the system Dp

2 considered in [14]
can be formulated.
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Sobociński Studia Logica 36:151–175, 1977.

[3] Ciuciura, J., Frontiers of the discursive logic, Bulletin of the Section of Logic

37(2):81–92, 2008.

[4] Costa, N. C. A. da, and L. Dubikajtis, On Jaskowski discussive logic, in A. I.

Arruda, N. C. A. da Costa, and R. Chuaqui, (eds.), Non-Classical Logics, Model

Theory and Computability, North-Holland, 1977, pp. 37–56.

[5] Furmanowski, T., Remarks on discussive propositional calculus, Studia Logica

34(1):39–43, 1975. https://doi.org/10.1007/BF02314422.

[6] Hughes, G. E., and M. J. Cresswell, A New Introduction to Modal Logic, Routledge,

Oxfordshire 1996.
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