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HONGKAT YIN The Quantified Argument
HANOCH BEN-YAMI Calculus with Two- and
Three-valued
Truth-valuational Semantics

Abstract.  We introduce a two-valued and a three-valued truth-valuational substitutional
semantics for the Quantified Argument Calculus (Quarc). We then prove that the 2-valid
arguments are identical to the 3-valid ones with strict-to-tolerant validity. Next, we intro-
duce a Lemmon-style Natural Deduction system and prove the completeness of Quarc on
both two- and three-valued versions, adapting Lindenbaum’s Lemma to truth-valuational
semantics. We proceed to investigate the relations of three-valued Quarc and the Predi-
cate Calculus (PC). Adding a logical predicate T to Quarc, true of all singular arguments,
allows us to represent PC quantification in Quarc and translate PC into Quarc, preserving
validity. Introducing a weak existential quantifier into PC allows us to translate Quarc
into PC, also preserving validity. However, unlike the translated systems, neither extended
system can have a sound and complete proof system with Cut, supporting the claim that
these are basically different calculi.

Keywords: Quantified argument calculus, Truth-valuational semantics, Substitutional
quantification, Lindenbaum’s lemma, Three-valued semantics, Strict-to-tolerant validity,

Completeness.

1. Introduction

The Quantified Argument Calculus (Quarc), introduced in [2], has since been
the subject of several publications, extending and applying it in a variety
of ways [3,4,15,21,23-25,30], and a number of researchers are currently
exploring it in additional directions. Still, a direct completeness proof for the
Lemmon-style Natural Deduction system used in the original paper hasn’t
been published in any journal. This is one aim of the present work. Our
proof, adapting Lindenbaum’s construction to a new formal system with
truth-valuational semantics, is of some interest in its own right. In addition,
as has been discussed elsewhere [4,15], it is natural to have a three-valued
version of Quarc. We shall develop such a three-valued system, proving that
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its consequence relation coincides with that of the two-valued system, but
unlike [15], we shall do it with a truth-valuational semantics and not a model-
theoretic one, and with a different conception of validity than the one used
in that paper. We shall then explore the relation of that three-valued Quarc
to the Predicate Calculus (PC).

Quarc was developed with the aim of being closer than PC to natural
language, primarily in the way it incorporates quantification but also in
other, related ways: inclusion of modes of predication, of reordered relation
terms, anaphora, and more. As the calculus has by now been motivated and
informally introduced in several publications, we shall do neither here, apart
from concisely presenting its approach to quantification.

Consider the sentences,

1. Alice is prudent
2. Every student is prudent.

While ‘Alice’ occupies the subject or argument position in (1), this position is
occupied by ‘every student’ in (2). Namely, the quantifier ‘every’ followed by
the unary predicate ‘student’ form the quantified argument of that sentence.
Quarc follows this analysis of quantification. With the argument written to
the left of the predicate, it formalises these two sentences as:

3. (a)P
4. (VS)P.

Let us next consider particular or specific quantification. The sentence,

5. Some students are prudent

will be formalised,
6. (3S)P

where 3 is read ‘some’, not ‘there is’ or ‘there exists’.

It has been argued in several works [1,2,4] that particular quantification
in natural language is not related to existence (see also [27]chap. 18), and this
claim has been used to address several philosophical puzzles [4]. Although
the use of an existential quantifier is legitimate if we are not interested
in being faithful to the logic and concepts of natural language, Quarc is
interested in the latter. We accordingly read particular quantification as
having no ontological commitment and as unrelated to existence or to a
formal existential quantifier. To emphasise this, we could follow a suggestion
found in some works mentioned above and formalise it by an inverted P, from
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Particular or the Latin Particularis, and not an inverted E, from FEzxistence
[26, 47]. But as this distinction is not essential for formal work in this paper,
and as we investigate below the formal relations between Quarc and PC, we
decided not to introduce it here.

We turn to the language of Quarc.!

2.  Quarc: Syntax

The syntax of Quarc is a little simplified compared to that of [2], making less
and somewhat different use of parentheses and commas. The formula rules
are also somewhat different, in order to achieve unique parsing (as will be
proved below), absent from the 2014 version. However, there is a straight-
forward bidirectional translation between the formulas of both versions (a
fact we shall not prove here).

2.1. Language
DEFINITION 2.1.1. (Language) A language of Quarc consists of:

e singular arguments: a non-empty, countable set of symbols, disjoint from
the set of all other symbols listed below and strings thereof.

e for each n > 0, n-ary predicates: Fj', P/, P}, ...

e numerals: 1, 2, 3, ...

e connectives: 7, A, V, —

e anaphors: xq, x1, T3, ...

e quantifiers: V, 3 (the universal and particular quantifiers)
e parentheses: (, )

e comma: ,

Note that anaphors will also be used as subscripts (see Definition 2.2.3),
while numerals and the comma are used only as superscripts (see Definition
2.2.2).

REMARK. We will use a, b, ¢, ... (possibly with subscripts) for arbitrary
singular arguments, x, ¥, z, ... for arbitrary anaphors, and P, R, S, ... for
arbitrary predicates. We will sometimes use @) for either of V and 3.

!For some of the formal work of this paper we consulted [7] and [34].
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2.2. Formulas

DEFINITION 2.2.1. (Quantified Arguments) Let P be a unary predicate.
Then VP and 3P will be called (universally and particularly) quantified
arguments.

DEFINITION 2.2.2. (Reordered predicates) Let P be an n-ary predicate (n >
1) and 7 = 71,...,7, a non-identity permutation of 1,... ,n. Then P7 is
called a reordered predicate or reordered form of P.

For example, if R is a binary predicate, then R?! is a reordered (binary)
predicate, and is the reordered form of R (as 2,1 is the only non-identity
permutation of 1,2); if S is a ternary predicate, then S%:31 is one of the
five reordered forms of S.

DEFINITION 2.2.3. (Labels and Sources) Let a be a singular argument, QP
a quantified argument and x an anaphor. Then a, and QP, are called z-
labelled (singular and quantified) arguments, where the z (written as a sub-
script) is considered not an anaphor but a label. In a string of symbols, the
source of an occurrence of an anaphor x is the closest occurrence of an x-
labelled argument to its left. If, in a string, « is the source of (an occurrence
of) x, we say that (the occurrence of) z is an anaphor of «. A label of a
singular or quantified argument is not part of the argument it is attached
to.

DEFINITION 2.2.4. (Formulas) Let L be a Quarc language. The formulas
of L (or L-formulas) are defined inductively as follows:

(a) Let aq,...,a, be unlabelled singular arguments and P a non-reordered
n-ary predicate. Then ay ... a, P is a formula, which is also called a basic
formula.

(b) Let ay...a,P (n > 1) be a basic formula and 7 = 7,...,7, a non-
identity permutation of 1,...,n. Then a, ...a,, P is a formula.

(c) Let ay ...a,P be a formula where none of aq,...,a, is labelled (but P

may be reordered). Then a; ...a,—P is also a formula.
(d) Let ¢ be a formula. Then so is —¢.
(e) Let ¢ and v be formulas. Then so are (¢ A ), (¢ V) and (¢ — ).

(f) Let ¢ be a formula containing distinct occurrences o1,...,0, (n > 1)
of a singular argument a, where o7 is the leftmost one among o; and
none of o; is labelled. (¢ may contain additional occurrences of a; and
01 need not be the leftmost occurrence of a in ¢.) Let = be an anaphor
not occurring in ¢. If to the left of o; there is no argument which is
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a quantified argument or a labelled singular argument, and ¢ has no
substring ¢ which is a formula containing o1, ..., 0, and all anaphors of
any argument occurring in it, then ¢la, /o1, 2 /02, ..., 2/0,] is a formula,
and it is said to be led by a,. (¢lar/01,2/09,...,2/0,] is got from ¢ by
substituting a, for o; and z for o; (1 <i < n).)

(g) Let ¢ be a formula containing an occurrence o of a singular argument,
and QP an unlabelled quantified argument. If to the left of o there is no
argument which is a quantified argument or a labelled singular argument,
and ¢ contains no substring v which is a formula containing o and all
anaphors of any argument occurring in it, then ¢[QP/o] is a formula,
and it is said to be governed by that occurrence of QP. (¢[QP/0] is got
from ¢ by substituting QP for o.)

(h) Nothing else is a formula.

REMARK. Formulas may contain only parentheses introduced in step (e),
and we shall often omit parentheses where no ambiguity arises.

For example, (aaR A abR) is a Quarc formula where no anaphor or quan-
tifier occurs, from which we can construct (aa, R A xbR), which is a formula
led by a,. From the latter we can in turn construct (aVP,R A zbR), which
is a formula governed by (that occurrence of) VP. We may also write this
formula without parentheses, aVP,R A xbR.

PROPOSITION 2.2.5. (Unique parsing) Let x be a formula of Quarc. Then
exactly one of the following is the case:

(a) x is a basic formula.

(b) x isay...a, P, where ay,...,a, are unlabelled singular arguments and
P7 is a reordered predicate.

(c) xisay...a,—P, whereay,...,a, are unlabelled and P may be reordered.
(d) x has the form —¢.

(e) x has exactly one of the forms (pA), (pV ), (¢ — ), and it is neither
led nor governed.

(f) x is immediately generated from a formula ¢ by [a,/o1,x/09,...,2/04],
as in 2.2.4(f), and is thus led by (that occurrence of) ay.

(9) x is immediately generated from a formula ¢ by [QP/o], as in 2.2.4(g),
and is thus governed by that occurrence of QP.

Moreover, in case (b), the basic formula from which x is generated is uniquely
determined; in case (c), aj...a,P is a uniquely determined formula; in
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case (d), ¢ is a uniquely determined formula; in case (e), both ¢ and
are uniquely determined formulas; in case (f), a, and ¢ are uniquely deter-
mined; and in case (g), QP and ¢ (except for the singular argument at o)
are uniquely determined.

PRrROOF. It follows from 2.2.4 that at least one of (a) — (g) is the case. So
what remains is the uniqueness claims. There are two sorts of uniqueness
claim here. One is ‘exactly one of (a) — (g) is the case’ for x, the other is
about the uniqueness of the ‘predecessor(s)’ of y in each of (a) — (g). We
omit the proofs of such claims as they are straightforward. [

With parsing being unique, we can proceed to define the complexity of
formulas, which will later facilitate inductive proofs.

DEFINITION 2.2.6. (Complexity) The complezity, comp, is a function from
formulas of Quarc to N. Let x be a formula of Quarc. Then

a) If x is a basic formula, then comp(x) = 0.

b) If x is a; ...a,P7, then comp(x) = comp(a; ...a, P)+ 1(=1).
(c) If xis a1 ...a,—P, then comp(x) = comp(ay ...a,P)+ 1.

)

)
d)
(e) If x has one of the forms (¢ A1), (¢ V1)), (¢ — 1), and it is neither led
nor governed, then comp(x) = max{comp(p), comp(1))} + 1.

(
(
(d) If x has the form —¢, then comp(x) = comp(¢) + 1.

(f) If x is immediately generated from a formula ¢ in the way of 2.2.4(f),
then comp(x) = comp(d) + 1.

(g) If x is immediately generated from a formula ¢ in the way of 2.2.4(g),
then comp(x) = comp(¢) + 1.

3. Quarc: Truth-valuational Semantics

In [2], a truth-valuational semantics (TVS) was used, as was done in [3]. We
shall use such semantics here too, and not the more familiar model-theoretic
one. Truth-valuational semantics is intuitive, powerful and elegant, and of
much philosophical interest. Significant formal work has been done on it,
especially around the seventies [11,14,17-19], and it deserves more attention
than it currently receives. It has met some philosophical criticisms, which we
hope to address elsewhere (but see (Ben-Yami manuscript)), and a formal
one [20], which was addressed in [3]. Although our purpose here is not to
defend this approach, its successful application below may serve this aim
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as well. — Our main results, however, can also be translated into model-
theoretic semantics.

As was mentioned above, we shall explore both a two-valued version of
Quarc and a three-valued one. The three-valued version follows Strawson’s
claim that, when the predicate in the quantified argument of a subject-
predicate statement has no instances, it is natural to take that statement
as lacking a truth value ([31] sec. V.c; [32], sec. 6.II1.7). One who asserts,
‘Some/all/most /seven students are present’, or even ‘No student is present’,
presupposes, on this analysis, that there are students. This presupposition
supports the classification of statements of the form, All/some S are P, as
lacking a truth value when S has no instances. And although the common
approach in contemporary logic is to make the formal version of the universal
‘Every S is P’ vacuously true when S is as above, it is doubtful that this
reflects truth in natural language: few would take the sentence,

7. All my children love their mother

to be true, when uttered by a childless person [15, 553]. Attempting to
remain closer to this analysis of the semantics of natural language, both
VSP and 3SP will be defined below as neither true nor false in case S has
no instances.

We shall generalise this gap approach to any formula of the form, a . .. ay,
P, in which any of the «; is a quantified argument. This, we emphasise, is
a regimentation of what is found in natural language (as Strawson himself
later claimed [33]). Some sentences of this form may ordinarily be taken
as false, while others as neither true nor false. However, some such regi-
mentation seems unavoidable when applying exact formal tools to ordinary
language; even if one doubts Strawson’s remark, that ‘ordinary language has
no exact logic’ [31, 344], it is enough that ordinary language has no logic
capturable by an extensional system comparable in its simplicity to Quarc.
All the same, the unavoidability of regimentation makes other alternatives
also worth exploring, as was done for example in [24].

We shall make Quarc two-valued by imposing an instantiation rule, forc-
ing each unary predicate to have instances, as was done in [2, 130]. The
three-valued system will be obtained by eliminating this rule. We shall in-
troduce a third value, ‘undefined’ or u, to capture the cases discussed above
and others dependent on them.

We proceed to the definitions.
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3.1. Two-valued TVS

DEFINITION 3.1.1. (2-valuation) For a Quarc language L, a 2-valuation is
a function, v, from the set of L-formulas to {0, 1} that satisfies the following
rules:

(a) Basic formula. For every basic formula ¢, either v(¢) =1 or v(¢) = 0.2

(b) Reorder. Let a; ...a, P (n > 1) be a basic formula and 7 = 71,...,7, a
non-identity permutation of 1,...,n. Then: v(ar, ...a,, P7) = v(a; ...
anP).

(c) Negative predication. Let a; ... a, P be a formula where none of ay, ...,
ay, is labelled (but P may be reordered). Then: v(a; ...a,—~P) = 1 if
v(ay...a,P)=0;v(ay...ap,~P)=0if v(a;...a,P) =1.

(d) Connectives. Let ¢ and ¢ be formulas. Then:
v(—¢) =1 if v(¢) = 0; otherwise v(—¢) = 0.

v(p ANp) =11if v(¢) =1 and v(¢p) = 1; otherwise v(¢p A ¢p) = 0.
v(p V) =1if v(¢p) =1 or v(¢) = 1; otherwise v(¢ V ¢») = 0.
v(¢p — ) =1if v(¢) =0 or v(¢p) = 1; otherwise v(¢p — ) = 0.

(e) Anaphora. Let ¢(a,) be a formula led by a,. Then v(¢(a,)) = v(¢(a)),

where ¢(a) is the formula from which ¢(a,) is immediately generated.

(f) Particular quantification. Let ¢(3P) be a formula governed by an oc-
currence of 3P. Then: v(¢(3P)) = 1 if v(cP) = 1 and v(¢(c)) = 1
for some singular argument ¢ in L; otherwise v(¢(3P)) = 0. (When we
write ¢(QP) for a formula governed by an occurrence of a quantified
argument QP, ¢(c) is the result of replacing the governing occurrence
of QP with a singular argument c.)

(g) Universal quantification. Let ¢(VP) be a formula governed by an oc-
currence of VP. Then: v(¢(VP)) = 1 if v(¢p(c)) = 1 for every ¢ in L for
which v(cP) = 1; otherwise v(¢(VP)) = 0.

(h) Instantiation. For every unary predicate P in L, there is a singular
argument a in L for which v(aP) = 1.

We sometimes write ‘true’ and ‘false’ instead of 1 and 0.

REMARK. It follows from this definition and unique parsing (Proposition
2.2.5) that a valuation for L is uniquely determined by its assignment to

2 Although this clause is formally redundant, we list it here to facilitate comparison
with the three-valued system, which will include it as well.
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basic formulas of L. Similarly for the three-valued semantics introduced
later.

Validity on the truth-valuational approach is defined while allowing the
addition and elimination of individual constants to and from a language;
namely, validity is independent of a specific individual constant list [2, 131],
[11, 183], [14,19]. Such a definition will be used below.

DEFINITION 3.1.2. (2-validity) Let L be a Quarc language. An argument
whose premises constitute the set I' of L-formulas and whose conclusion is
the L-formula ¢ is 2-valid, written I' E5 ¢, iff for any language which contains
all the singular arguments occurring in either I' or ¢, every 2-valuation that
assigns all formulas in I" ‘true’ assigns ¢ ‘true’ as well.

REMARK. If an argument in a Quarc language is valid, it is valid as an
argument in every Quarc language which contains all the singular arguments
involved. For this reason, we do not define validity as relative to specific
languages.

3.2. Three-valued TVS

As mentioned above, the three-valued version is obtained by eliminating
the Instantiation rule. As basic formulas remain either true or false and
as the truth conditions specified in the valuation rules Reorder, Negative
predication, and Anaphora are also not affected, we have to modify only the
rules Connectives, where we shall use Kleene’s strong tables, and Particular
and Universal quantification:

DEFINITION 3.2.1. (3-valuation) For a Quarc language L, a 3-valuation is a
function, v, from the set of L-formulas to {0, 1, u} that satisfies the following
rules (in addition to those same as in Definition 3.1.1):

(d) Connectives. Let ¢ and ¢ be formulas. Then:
v(=¢) = 1if v(¢p) = 0; v(—¢) = 0 if v(¢) = 1; otherwise v(—¢) = u.

pNY) =1ifv(p) =1 and v(¢) = 1; v(p A) = 0 if v(p) = 0 or
) = 0; otherwise v(¢ A ¢) = u.

Y
oVY)=1if v(¢) =1 orv) =1;v(p V) =0if v(p) = 0 and
1) = 0; otherwise v(¢ V ¢) = u.

) =1ifv(p) =0or v(Wh) =1; v(¢ — ) =0 if v(¢) = 1 and
) = 0; otherwise v(¢ — ¥) = u.

<

v

<

(Y
v

(
(
(
(
(¢
(Y

(f) Particular quantification. Let ¢(3P) be a formula governed by an oc-
currence of 3P. Then:
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v(¢(3P)) = 1 if v(cP) = 1 and v(¢(c)) = 1 for some singular argument
cin L;

v(¢(3P)) = 0if v(cP) = 1 for some ¢ in L but for every such ¢, v(¢(c)) =
0;

v(¢(3IP)) = u otherwise.

(g) Universal quantification. Let ¢(VP) be a formula governed by an occur-
rence of VP. Then:

v(¢(VP)) = 1if v(cP) = 1 for some cin L and for every such ¢, v(¢(c)) =
L;

v(p(VP)) =0 if v(cP) =1 and v(¢(c)) = 0 for some c in L;

v(¢(VP)) = u otherwise.

Notice that a gap, u, can be introduced only by the two quantification rules.
Rules (a), (b) and (c) never assign u to a formula and rules (d) and (e)
assign u to a formula ¢ only if one is already assigned to the formula or
formulas used to determine ¢’s truth value. Consequently, if every unary
predicate does have an instance, no gap will be introduced at any stage and
the rules will coincide with the 2-valuation rules. Hence,

PROPOSITION 3.2.2. Any 2-valuation is also a 3-valuation.

While the conception of validity for a two-valued system is clear, namely,
truth of the premises leads to truth of the conclusion, we face several formal
options when we move to a three-valued system. We may keep the conception
of truth leading to truth — strict-to-strict (SS) validity, as used in [15]; we
may also consider an argument valid just in case, if its premises are not false,
its conclusion isn’t false either — tolerant-to-tolerant (TT) validity [12,27];
or we may require that truth does not lead to falsity — strict-to-tolerant (ST)
validity; and other options are also possible.?

Each of these options has formal advantages and disadvantages. For in-
stance, while SS validity is transitive, in the sense that if ¢ F 1 and ¢ F x
then ¢ E x, the Deduction Theorem does not generally hold in it: if we use
Kleene’s strong tables, as above, then p, ¢ E ¢ but p ¥ ¢ — ¢. (All the claims
in this paragraph are easy to verify.) On TT validity with strong Kleene
tables, modus ponens is invalid; while ST validity is not transitive. Formal
considerations might weigh for or against a certain choice, but they cannot
decide between them.

3The terms used here are taken from [8,9].



The Quantified Argument Calculus... 291

In this paper we adopt strict-to-tolerant (ST) validity. While Quarc with
SS validity has already been researched [15], no publication has explored
Quarc with ST validity. Moreover, as we shall see starting with the next
subsection, Quarc with ST validity has several interesting formal properties.
We therefore define:

DEFINITION 3.2.3. (3-validity) Let L be a Quarc language. An argument
whose premises constitute the set I' of L-formulas and whose conclusion is
the L-formula ¢ is 3-valid, written I' F3 ¢, iff for any language which contains
all the singular arguments occurring in either I' or ¢, no 3-valuation assigns
‘true’ to all formulas in I' and ‘false’ to ¢.

From a conceptual point of view, ST validity allows one to represent pos-
sible failures of truth-preservation that do not lead to falsity as not being
features of invalid argumentation. In a system in which false presupposition
causes a truth value gap, as in the three-valued Quarc developed here, ST
validity allows us to distinguish between invalid arguments and presuppo-
sition failure. This might reflect to some extent intuitive classifications: the
argument,

8. All children love their mother; so, all Bob’s children love their
mother.

might seem ‘alright’, although on the approach developed above to presup-
position, in case Bob has no children the conclusion isn’t true even if the
premise is. However, not all cases in which an argument is ST-valid de-
spite presupposition failure are also intuitively ‘alright’. For instance, the
following two arguments, suggested by a reviewer,

9. Bob has no children; so, some of Bob’s children love their mother.

10. Bob has no children; so, either some of Bob’s children love their
mother, or grass is green.

seem both objectionable. Accordingly, whether such a systematisation of
the relations of validity to presupposition failure reflects anything intuitive,
or whether it is just a formal way of distinguishing them, requires further
consideration. But since the formal interest in ST-validity does not depend
on the verdict on this question, we shall not pursue it any further here.

3.3. Coincidence of the Consequence Relations

In this subsection we prove Coincidence: any Quarc argument is 2-valid
iff it is 3-valid. The basic idea behind this proof was already noted by [10],
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comparing classical consequence (our Fg) with strict-to-tolerant consequence
(our F3):

Obviously, a classical countermodel to the entailment from I" to A is an
st-countermodel. But conversely, any st-countermodel can be turned
into a classical countermodel, basically because reassignments of the
values 1 or 0 to subsentences with value % in the original model do not
alter the value 1 or 0 assigned to the sentences in which they appear.
[10, 21]

However, that there is a classical model, or in our case a 2-valuation, which
coincides with a given 3-valuation on the value it assigns to any formula
which isn’t assigned u on that 3-valuation, should be shown. We shall soon
do that for Quarc, but we shall later consider a calculus in which this is not
the case (§6). Namely, we shall later show that for some calculi, the classical
consequence relation does not coincide with the strict-to-tolerant one. Here
we proceed with the proof for Quarc.

PROPOSITION 3.3.1. For any set I' of L-formulas and L-formula ¢, if I E3
¢ then I' Fo ¢.

PROOF. We prove the contrapositive. Suppose I' #5 ¢. Then, for some lan-
guage L', there is a 2-valuation v on which all formulas in I" are true and ¢
is false. Since v is also a 3-valuation (Proposition 3.2.2), I 3 ¢. [ |

PROPOSITION 3.3.2. For every Quarc language L, for every 3-valuation w
for L, there is a language L' extending L (in the sense that every L-formula
is an L'-formula) and there is a 2-valuation v for L' such that for every
L-formula ¢: (i) if w(¢) = 1 then v(¢p) = 1; and (ii) if w(¢p) = 0 then
v(¢) =0.

PROOF. For each language L, let L' = LU{e}, where e is a singular argument

new to L. For each 3-valuation w for L, let v be a 2-valuation for L’ such
that:

(a) for every basic L-formula ¢, v(¢) = w();

(b) for every unary predicate P such that w(aP) = 0 for every a in L,
v(eP) =1;

(¢) for every other basic L'-formula ¢ (i.e. those not decided in (a) or (b)),
v(p) = 0.

Given the definition above, every unary predicate has instances, and
therefore v is indeed a 2-valuation. Then, the proposition is proved by in-
duction on the complexity of L-formulas.
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Base case: ¢ has complexity 0, in which case ¢ is a basic formula, then
by definition v(¢) = w(¢).

Induction step: ¢ has complexity n + 1, assuming that the proposition
holds for all formulas of complexity up to n. Then the case is divided into
subcases according to Proposition 2.2.5. Here we consider only two of them,
the proofs of the rest adding nothing of interest.

(1) ¢ has the form —). Suppose w(¢) = 1. Then w(v) = 0; hence, by the
induction hypothesis (by IH below), v(¢)) = 0; and hence v(¢) = 1.
Suppose w(¢) = 0. Then, similarly, v(¢) = 0.

(2) ¢ is governed by an occurrence of VP. Suppose w(¢) = 1. Then w(cP) =
1 for some ¢ in L and w(¢(c)) = 1 for every such ¢; hence, by TH,
v(cP) = 1 for some ¢ in L' and v(¢(c)) = 1 for every such c. In this
case v(eP) = 0, hence v(¢(e)) is irrelevant for v(¢), and hence v(¢) = 1.
Suppose w(¢) = 0. Then, similarly, v(¢) = 0.

ProprosiTION 3.3.3. For any set I' of L-formulas and L-formula ¢, if I Fo
¢ then I F3 ¢.

PROOF. We prove the contrapositive. Suppose I' 3 ¢. Then for some lan-
guage L’ there is a 3-valuation on which all formulas in I" are true and ¢ is
false; hence, by Proposition 3.3.2, for some language L” = L' U {e}, there
is a 2-valuation on which all formulas in I' are true and ¢ is false. Hence,
I' 7 ¢.

PROPOSITION 3.3.4. (Coincidence) For any set I' of formulas and formula
¢, I'Fa ¢ iff ' F3 ¢.
ProOOF. By Propositions 3.3.1 and 3.3.3. ]

4. A Proof System

4.1. Lemmon-style Natural Deduction

DEFINITION 4.1.1. (Proof) A proof is a sequence of lines of the form (L, (i), ¢),
where L is a possibly empty list of line numbers; (i) the line number in paren-
thesis; ¢ a formula of Quarc; and L and ¢ are written according to some
derivation rule of those listed below in Definition 4.1.2, which is the justifi-
cation for that line. ¢ is said to depend on the formulas in the lines listed in
L. The line numbers in L are written without repetitions and in ascending



294 H. Yin, H. Ben-Yami

order. The formula in the last line of the proof is its conclusion. If there is
a proof with the formula ¢ as conclusion, depending only on formulas from
the set I', then ¢ is provable from I', written I' - ¢.

REMARK. Since Quarc languages differ only in their singular arguments,
any proof is a proof in any Quarc language that contains all the singular
arguments occurring in it.

We shall usually write to the right of the formula the name of the deriva-
tion rule which justifies the line, possibly followed by line numbers, according
to the conventions specified below.

DEFINITION 4.1.2. (Derivation rules) Every Greek letter that occurs in
this definition, if not otherwise specified, stands for a formula. We write
Ly, Ly for the list of all numbers occurring in Ly or Ly, and L — 4 for the
result of removing i from L (if it occurs in it).

Premise

i (i) ¢ Premise

Negation Introduction (—I)

i (i) ¢  Premise
Ly () ¥
Ly (k) —v

(L1,Lo)—i (1) —¢ -li,j,k

Negation Elimination (—E)

L () 6 -Ei

LiLy (k) (6Ad) Alij
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Conjunction Elimination (AE)
L (@) (¢ny) Lo(0) (oY)

L (J") ) AE i L (j) ¥ AE i

Disjunction Introduction (VI)
L (@) ¢ L @) ¢

L () (éve) VIi L () (éve) VIi

Disjunction Elimination (VE)

Ly (1) (oV)

J (j) o Premise

Ly (k) x

l ) Premise

Ls (m) x

Lla(L2_j)’(L3_l) (n) X VE iajvkvlam

L—1 (k;) (p — ) —1i,j

Conditional Elimination (—E)

Ly, Ly (k) o —Eij
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Reorder Introduction (RI)

L (i) aj...a,P

L (j) ar...a,, P7 RIli

1 In this and the next rule, aj...a,P (n > 1) is a basic formula and
> T =Ty,...,Tn IS a non-identity permutation of 1,..., n.

3 Reorder Elimination (RE)

L (i) arp...a;,P7

L (j) ar...a,P RE ¢
5 Sentence negation to predicate negation (SP)

L (i) —aj...a,P

L (j) ai...ap,mP SPi
7 In this and the next rule, P may be reordered.

8 Predicate negation to sentence negation (PS)

L (i) ay...ap—P

L (j) —ay...a,P PSi

10 Anaphor Introduction (AI)
L (i) ¢(a)

L () oa,) Al

12 In this and the next rule, ¢(a,) is a formula led by a,; ¢(a) is the formula
from which ¢(a,) is immediately generated.

i
w

1 Anaphor Elimination (AE)
L (i) ¢laz)

15

L (j) #la) AEi
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16 Universal Elimination (VE)

Ly (i) o(VP)
L2 (]) CLP

17

LiLy () éla) VEij

18 In this and the next three rules, ¢(QP) is a formula governed by an
19 occurrence of QP, and ¢(a) is the formula got from ¢(QP) by replacing
20 that occurrence of QP with a.

21 Universal Introduction (VI)
i (i) aP Premise

L (7) o(a)

22
L—i (k) o¢(VP) VIi,j

23 In this rule, @ must not occur in ¢(VP) or any formula in lines L — i.

24 Particular Introduction (3I)

Ll (Z) aP
Lo () é(a)

25

Ly, Ly (k) ¢(3P) dli,j
2 Instantial Import (Imp)

Ly (i) o(QP)
J (j) aP Premise
k (k)  o(a) Premise
o Ly 0 v
Ll?(L2_j_k) (m) w Imp iajakvl
28 In this rule, @ must not occur in ¢(QP), 1, any formula in lines Ly, or

N

o any formula in lines Ly — j — k.

4.2.  Some Useful Examples

The following two examples will be used in the completeness proof in sec-
tion 5.
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ExXAMPLE 4.2.1. The following proof shows that - 3PP.

1 (1) aP  Premise
(2) VPP VI1,1

1 (3) 3rp 31,1
(4) 3PP TImp 2,1,1,3

We next show that —¢(VP) - 3P, P A =¢(z) (a more exact formulation
is provided below). Together with the proof of the other direction, which
we shall not provide here, and given the soundness of the system (see be-
low), this shows an equivalence both in the proof system and the semantics

between universal and particular quantification in Quarc, namely the equiv-
alence of the formulas ~¢(VP) and 3P, P A =¢(x).

EXAMPLE 4.2.2. Let ¢(VP) be a formula governed by an occurrence of VP.
Assuming that occurrence of VP is not labelled, let « be an anaphor that does
not occur in ¢(VP), and ¢(z) the string got from ¢(VP) by replacing that
occurrence of VP with x; let ¢ be a singular argument that does not occur in
»(VP), and ¢(c) the formula got from ¢(VP) by replacing that occurrence
of VP with ¢. The following proof shows that —¢(VP) - 3P, P A ~¢(x). *

1 (1) —¢(VP) Premise

2 (2) —(3P,PA-¢(x)) Premise

3 (3) cP Premise

4 (4) —¢(c) Premise
34 (5) cPA-d(c) NEY!
34 (6) cPA-o(x) Al 5
34 (7) 3IP,PA-¢(z) 31 3,6
23 (8) —-o(c) ~14,7,2
23 (9 o¢lc) -E 8

2 (10) ¢(VP) VI 3,9

1 (11) ~—=(3P,P A -¢(z)) —I2,10,1

1 (12) 3P,P A —¢(x) -E 11

5. Completeness of Quarc

The soundness of the closely related proof system of [2] was proved in that
paper, and the adaptation of that proof to the two-valued system of this

4The same proof is found in [22, p. 16] In case the governing occurrence of VP in ¢(VP)
is labelled, the definitions of ¢(z) and ¢(c) are slightly different, as is the proof. That case
won’t be considered here.
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paper is straightforward, so we do not provide it here. And since, by Coin-
cidence, if I' F5 ¢ then I' F3 ¢, the proof system is also sound with respect
to the 3-valued semantics.

An indirect proof of the completeness of Quarc with natural deduction is
found in [24,25], taken together: a Gentzen-style proof theory is developed
in these papers, in the former the authors show it to be equivalent to the
proof system of [2], and in the latter they prove its completeness. However, a
direct proof of the above hasn’t been published in any article. A Henkin-style
proof is found in [22] and in [6].5

In this section we provide a direct proof of the completeness of Quarc
with natural deduction. First, we prove the completeness theorem for the
two-valued Quarc: for any set I' of formulas and formula ¢, if I' F5 ¢ then
I' F ¢. The proof is an adaptation of Lindenbaum’s construction to Quarc
with truth-valuational semantics, and it is close to Leblanc’s proof of the
completeness of the first-order Predicate Calculus, where he also uses truth-
valuational semantics [18, §2.3]. Then, by Coincidence, we will have the
completeness of three-valued Quarc: if I' Eg ¢ then I' F ¢. All the semantic
concepts mentioned in this section, if not otherwise specified, are those of
the two-valued Quarc.

5.1. Satisfiability and Consistency

We start with a couple of definitions:

DEFINITION 5.1.1. (Satisfiability) A set T' of formulas is satisfiable iff, for
some language which contains all the singular arguments occurring in T,
there is a valuation on which all formulas in I" are true; we say of such a
valuation that it satisfies I'.

DEFINITION 5.1.2. (Consistency) A set I' of formulas is consistent iff, for
any formula ¢, at most one of ¢ and —¢ is provable from I'. A set of formulas
is inconsistent if it is not consistent.

In the rest of this section, we provide the proof of the proposition below,
from which the completeness theorem follows.

ProprosITION 5.1.3. If a set of formulas is consistent then it is satisfiable.

"Theorem 4 (p. 8) in the former work, which is essential for the completeness proof,
had a small lacuna, fixed in the latter work (p. 63).
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5.2. Maximal Consistent Set

DEFINITION 5.2.1. (Mazimal consistent set) A is a maximal consistent set
of L-formulas iff A is consistent and for every L-formula ¢ ¢ A, AU {¢} is
inconsistent.

The following five propositions are consequences of this definition, whose
proofs are straightforward and not provided here.

PROPOSITION 5.2.2. Let A be a mazimal consistent set of L-formulas. Then
for every L-formula ¢, if A+ ¢ then ¢ € A.

PROPOSITION 5.2.3. Let A be a maximal consistent set of L-formulas. Then
for any L-formulas ¢ and :

() $€ A iff~6 ¢ A,

(b)) oA EAffde A andrp € A.
(c) oV e Aiff o€ A ory € A.
(d) ¢ = e Aiffo & A oryp € A.

PROPOSITION 5.2.4. Let A be a maximal consistent set of L-formulas. Let

ai,...,a, (n > 1) be singular arguments in L, P a non-reordered n-ary
predicate in L, and T = T11,...,7T, a non-identity permutation of 1,...,n.
Then:

Qr ...a;, PT € Aiffay...a,P € A.

PROPOSITION 5.2.5. Let A be a maximal consistent set of L-formulas. Let
ai,-..,an be singular arguments in L, and P an n-ary predicate in L. Then:

ay...ap,—~P € Aiffay...a,P ¢ A.

PROPOSITION 5.2.6. Let A be a maximal consistent set of L-formulas, and
¢(az) an L-formula led by a,. Then:

d(az) € A iff ¢p(a) € A, where ¢(a) is the formula from which ¢(ay)
is immediately generated.

5.3. Instance and Witness

DEFINITION 5.3.1. A is an instance-complete set of L-formulas iff for each
unary predicate P in L, aP € A for some singular argument a in L.

DEFINITION 5.3.2. A is a witness-complete set of L-formulas iff for every
L-formula ¢(3P) € A, where ¢(3P) is governed by an occurrence of 3P,
there is a singular argument ¢ such that ¢cP € A and ¢(c) € A.
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PROPOSITION 5.3.3. Let A be a maximal consistent and witness-complete
set of L-formulas, and let ¢(3IP) and »(VP) be L-formulas governed by
occurrences of AP and VP respectively. Then:

(a) ¢(3P) € A iff for some ¢, cP € A and ¢(c) € A.
(b) Y(VP) € A iff for every c for which cP € A, ¥(c) € A.

PRrROOF. (a) Suppose ¢(3P) € A. Then, by Definition 5.3.2, cP € A and
¢(c) € A for some c. Suppose cP € A and ¢(c) € A for some c¢. Then
A F cP and A ¢(c), hence by 31 A ¢(3P), and hence ¢(3P) € A.

(b) Suppose ¥(VP) € A. Then by VE, for any singular argument ¢ in L, if
c¢P € A then 9(c) € A. For the other direction we prove the contrapositive.
Suppose ¥(VP) ¢ A. Then =) (VP) € A, hence by Example 4.2.2 (assuming
that the governing occurrence of VP is not labelled) 3P, P A —(x) € A,
hence by (a) cP € A and ¢, P A —(z) € A for some ¢, hence cP € A and
—1(c) € A for some ¢, and hence cP € A and ¢(c) ¢ A for some c. (The
case in which the occurrence of VP is labelled requires a simple adaptation
of Example 4.2.2.) |

5.4. Lindenbaum’s Lemma

PROPOSITION 5.4.1. (Lindenbaum’s Lemma) Every consistent set A of L-
formulas can be extended to a maximal consistent, instance- and witness-
complete set of L*-formulas, where L* is obtained by adding denumerably
many singular arguments to L.

PrOOF. Let L* = LU {d : k € N}, where no dj, is in L and d; # d;
whenever i # j; and let ¢g, @1, P2, ... be an enumeration of all the formulas
of L*.

Suppose A is a consistent set of L-formulas. We construct a sequence
Ao, A1, Ag, ... of sets of L*-formulas in the following scheme.

Let Ag = A; and for each n € N:

(1) in case A, U {¢,} is inconsistent, let A, 11 = A,;

(2) in case A, U{¢y } is consistent and ¢,, is not governed by any occurrence
of a particularly quantified argument, let A, 11 = A, U{¢,};

(3) in case A,, U{¢,} is consistent and ¢,, is governed by an occurrence of
a particularly quantified argument 3P, let A, 1 = A, U{¢,} U{dP}U
{#(d)}, where d is the first item in the sequence dy,ds, ... that does
not occur in A,, or ¢,,. ¢(d) is the formula which results from ¢,, by
replacing that occurrence of 3P with d.
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PROPOSITION 5.4.2. Each set A; in the sequence is consistent.

PRrROOF. By induction on ¢ in A;.
Base case: Since Ag = A and A is consistent, A is consistent.
Induction step: Assuming that A, is consistent, we show that A, is
also consistent whichever case it falls into:

(1) Aps1 =A,. Since A, is consistent, so is A, 11.

(2) Apy1 = Ay U {¢n}. In this case A, U {¢,} is consistent, so A, 41 is
consistent.

(3) Apt1 = A, U{¢,}U{dP}U{#(d)}, in which case A,,U{¢,} is consistent
and ¢,, is governed by an occurrence of 3P. We write ¢(3P) for ¢,,. Sup-
pose for reductio that A, 41 is inconsistent. Then: A,,, ¢(3P), dP, ¢(d) -
—¢(3P). Since d does not occur in A, and ¢(3P) (and hence does
not occur in —¢(3P) either), by the rule Instantial Import we have
A, ¢(3P) F —=¢(3P). Hence, A, U {¢,} is inconsistent, and we have a
contradiction. |

Now, let A* = [J A,. It is easy to see that
ieN

PROPOSITION 5.4.3. A* is a maximal consistent set of L*-formulas.

Also, the construction ensures A* is instance- and witness-complete, as
proved respectively below.

PROPOSITION 5.4.4. A* is an instance-complete set of L*-formulas.

PROOF. For every unary predicate P in L*, the formula 3PP is ¢,, for some
n. We already saw in Example 4.2.1 that - 3PP for any unary predicate P,
so A, U{3PP} is consistent if A,, is consistent; and since PP is governed
by that occurrence of 3P, A, 11 = A, U{3IPP} U {dP} for some d. Hence,
for every unary predicate P in L*, there is some d for which dP € A*. =

PROPOSITION 5.4.5. A* is a witness-complete set of L*-formulas.

PROOF. Suppose ¢(3P) is a formula governed by 3P and ¢(3P) € A*. Since
A* is consistent, A,, U {¢(3P)} is consistent for any n. Let ¢(IP) be ¢y,.
Then A,, U ¢(3P) is consistent, hence dP € A,,+1 and ¢(d) € A,,4; for
some d, and hence dP € A* and ¢(d) € A* for some d. n

Now that A* is maximal consistent, instance- and witness-complete, we
have proved Lindenbaum’s Lemma. [



The Quantified Argument Calculus... 303

5.5. Truth Lemma

PROPOSITION 5.5.1. Let L be a Quarc language and B an instance-complete
set of basic L-formulas. If a 3-valuation v is such that, for any basic L-
formula, v(¢) =1 iff ¢ € B, then v is a 2-valuation.

PROOF. Since B is instance-complete, v complies with the Instantiation rule
and is thus a 2-valuation. [

PROPOSITION 5.5.2. (Truth lemma) Let A be a maximal consistent, instance-
and witness-complete set of L-formulas. Let v* be the valuation for L such
that: for every basic formula ¢ of L, v*(¢) = 1 iff ¢ € A. Then, for every
L-formula ¢, v*(¢) = 1 iff ¢ € A. (Since A is instance-complete, by 5.5.1
v* is a 2-valuation.)
PRrROOF. By induction on the complexity of L-formulas.

Base case: ¢ has complexity 0, in which case it is a basic formula, then
by definition v*(¢) = 1 iff ¢ € A.

Induction step: ¢ has complexity n + 1, where we assume (IH) that the
proposition holds for every formula of complexity up to n. We consider the
following subcases, the proofs of the rest adding nothing of interest.

(1) ¢ is ar, ...ar, P7. Then:
v (p) =1 if v*(ay...a,P)=1
iff ay...a,P €A (IH)
iff g€ A (5.2.4)
(2) ¢isay...a,~P. Then:
v*(p)=1 iff v*(a;...a1P)=0
iff a1...a,P¢A (IH)
iff ¢eA (5.2.5)
(3) ¢ has the form —). Then:
(@) =1 iff () =0
iff & A (TH)
iff g€ A (5.2.3(a))
(4) ¢ has the form 1 A x and it is neither led nor governed. Then:
v*(p) =1 iff v*(¢p) =1and v*(x) =1
iff Yy eAand xeA (IH)
iff €A (5.2.3(b))
(5) ¢isled by a,. We write ¢(a) for the formula from which ¢ is immediately
generated, so ¢(a) is of complexity n. Then:
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vi(¢) =1 iff v*(¢(a)) =1
iff ¢a)eA  (IH)
iff ¢peA (5.2.6)

(6) ¢ is governed by an occurrence of 3P. We write ¢(c) for the formula got
from ¢ by replacing that occurrence with ¢, so ¢(c) has complexity n.
Then:

v*(p) =1 iff for some ¢, v*(cP) =1 and v*(¢(c)) =1
iff for some ¢, cP € A and ¢(c) € A (TH)
iff g€ A (5.3.3(a))

Thus, we have proved that for every L-formula ¢, v*(¢) = 1 iff ¢ € A.
This shows that every maximal consistent, instance- and witness-complete
set, of formulas is satisfiable. [

5.6. Summary

As we noted earlier, the completeness theorem follows from the proposition
that every consistent set is satisfiable, i.e. for any consistent set A of L-
formulas, there exists a valuation on which all formulas in A are true. (The
valuation in question can be a valuation for any Quarc language which
contains all the singular arguments occurring in A). We have shown by
Lindenbaum’s construction that every consistent set A of L-formulas can
be extended to a maximal consistent, instance- and witness-complete set
A* of L*-formulas (where L* is L plus a list of new singular arguments).
And, by the Truth Lemma, every such set A* is satisfied by a valuation for
L*. Since A is a subset of A*, the valuation also satisfies A. Thus, we have
proved the completeness of two-valued Quarc:

PROPOSITION 5.6.1. (Completeness) For any set T of formulas and formula
o, if T Eq ¢ then T'F ¢.

By the coincidence theorem we also have the completeness of three-valued
Quarc:

PROPOSITION 5.6.2. (Completeness) For any set I of formulas and formula
¢, if ' Eg ¢ then ' F ¢.

6. PC-to-Quarc Translation

The relations of Quarc and PC have been a topic of research since the first
publication of a Quarc’s precursor in [16], and several additional results have
been established since [15,25,29]. We are readdressing the question here
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because of the specific properties of the Quarc system of this paper. First, it
has a three-valued truth-valuational semantics, unlike any system considered
so far: all were two-valued, apart from the one of [15], which however used
model-theoretic semantics. Moreover, unlike the three-valued system of [15],
the system of this paper uses ST validity and, again unlike that system, it
is not extended with defining clauses, which played an essential role in the
PC-to-Quarc translation of that paper.

This section is dedicated to a general method for translating formulas of
PC into formulas of Quarc. It also investigates whether such a translation
preserves truth values and (in)validity.

6.1. PC: Syntax

In this subsection we introduce a version of the syntax of the Predicate
Calculus.

DEFINITION 6.1.1. (Language) A language of PC consists of:

e a non-empty countable set of constants.
e for every n > 0, n-ary predicates: P, P*, P3, ...
e variables: xg, x1, T2, ...
e connectives: =, A, V, —.
e quantifiers: V, 3.
e parenthesis: (, ).
REMARK. We will use a, b, ¢, ...(possibly with subscripts) for arbitrary

constants, x, y, z, ... for arbitrary variables, and P, R, .S, ... for arbitrary
predicates. We will sometimes use @ for either of V and 3.

DEFINITION 6.1.2. (Formulas) The formulas of PC are defined inductively
as follows:

(a) If P is an n-ary predicate and ay,...,a, are constants, then Pay ...a,
is a formula, which is also called a basic formula. (Basic formulas do not
contain variables.)

(b) If ¢ and % are formulas, then —¢, (¢ A1), (¢ V1)) and (¢ — 1)) are also

formulas.

(c) If ¢ is a formula containing one or more occurrences of a, and z is new
to ¢, then Jx¢[z/a] and Vzdlx/a] are formulas. (¢[x/a] is the result of
replacing every occurrence of a in ¢ with x.)

(d) Nothing else is a formula.
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Complexity of PC formulas can be defined along the same lines as that
of Quarc formulas (Definition 2.2.6).

6.2. Two-valued TVS for PC

Since we work with TVS for Quarc, it is simpler to work with TVS for PC
as well. The set of truth-valuationally valid PC arguments can be shown to
coincide with that of model-theoretically valid ones, along the lines of proofs
found in [18, §4.2]. Accordingly, the preservation of validity under translation
proved below applies also to PC with model-theoretic semantics.

DEFINITION 6.2.1. (2-valuation) For a PC language L, a 2-valuation is a
function v from L-formulas to {0, 1} such that:

(a) For each basic formula ¢, either v(¢) =1 or v(¢) = 0.
(b) Let ¢ and % be formulas of L. Then:

v(=¢) =1 if v(¢) = 0; otherwise v(—¢) = 0.

v(¢ Ap) = 1if v(¢) =1 and v(yh) = 1; otherwise v(¢ A 1p) = 0.
v(¢V1p) = 1Lif v(¢) =1 or v(yh) = 1; otherwise v(¢ V 1b) = 0.
(¢ — ) = 1if v(¢) = 0 or v(¥)) = 1; otherwise v(¢ — ) = 0.

(c) Let ¢ be a formula containing ¢ and = a variable new to ¢. Then:

v(Jzglz/c]) =1 if v(pld/c]) = 1 for some d in L; otherwise v(Jzp[z/c])
=0.
v(Veplz/c]) = 1if v(¢[d/c]) = 1 for every d in L; otherwise v(Vzg[x/c])
=0.
DEFINITION 6.2.2. (2-validity) Let L be a PC language. An argument whose
premises constitute the set I' of L-formulas and whose conclusion is the L-
formula ¢ is 2-valid, written I' Fo ¢, iff for any PC language which contains
all the constants occurring in either I' or ¢, every 2-valuation that assigns
all formulas in I" ‘true’ assigns ¢ ‘true’ as well.

6.3. The Translation Manual

As in some previous versions, the PC-to-Quarc translation involves the in-
troduction into Quarc of a special unary predicate, T' (for Thing), which is
used to reflect in Quarc the fact that quantification in PC is not restricted
by means of any predicate. Here we use T as a logical predicate, so it occurs
as a constant in both semantics and proof system.%

5The specificities of T’s incorporation differ between different works. In [15] it is not a
logical predicate; in [25], it is first introduced only as part of a quantified phrase, VT or
Jr.
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We add a valuation rule to Definitions 3.1.1 (2-valuation) and 3.2.1 (3-
valuation), which specifies the semantic behaviour of 7"

(1) Thing. For any singular argument a, v(aT") = 1.

We proceed to correlate the PC and Quarc languages, where all Quarc
languages we consider are enriched by the logical unary predicate T'.

DEFINITION 6.3.1. (Language correlation) With each PC language L, we

correlate the unique Quarc language L, that satisfies the following require-

ments:

(a) The singular arguments of L, are the constants of L,,.

(b) The non-logical predicates of L, are those of L,, and arities are pre-
served.

Clearly, in this way every Quarc language is correlated with a unique PC

language.

We define the PC-to-Quarc translation as a function that maps each and
every formula of L, to a formula of L,.

DEFINITION 6.3.2. (Translation function) The translation function f is de-
fined recursively as follows:
(1) Basic formulas:
f(Pay...ap)=ay...a,P
(2) Truth functional compounds:

f(=¢) = ~f(9)
fl@ 1)) = (f(¢) = f(v)), where * stands for one of A, V and —.

(3) Quantified formulas:

f(Vzg[z/a]) = (VILT N f(9)]x/a))
fzglz/a]) = QLT A f(9)]x/a))

The following proposition is easy to prove and will be used in later proofs.

PROPOSITION 6.3.3. Let ¢ be a PC formula and f(¢)[d/c| the Quarc for-
mula which results from replacing every occurrence of ¢ in f(¢) with d. Then:

f(@)ld/c] = f(¢ld/c]).
6.4. Truth Value Preservation

We move on to show that the PC-to-Quarc translation is adequate, in the
sense that there is a bijection between PC valuations and Quarc 3-valuations
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(where again, all Quarc languages we consider are enriched with 7), such
that the truth value of a formula is preserved by the translation under
this bijection. It will follow that the (in)validity of PC-arguments is also
preserved by the translation.

DEFINITION 6.4.1. (Valuation correlation) With each PC valuation v, for
a PC language L, we correlate a Quarc valuation v, for L,, the Quarc
language that we correlate with L, such that for every basic formula ¢ of

Ly, vg(f(9)) = vp(9).

The following proof shows that the PC-to-Quarc translation, together
with the valuation correlation, preserves truth values.

PROPOSITION 6.4.2. Let x be a formula of a PC language L, and f(x) its
translation in Ly, the Quarc language that we correlate with L,. Let v, be a
valuation for L, and v, the correlated valuation for Lq. Then: vy(f(x)) =1

iff vp(x) = 1; ve(f(x)) = 0 iff vp(x) = 0.

REMARK. We need to check both ‘true’ and ‘false’ cases, because Quarc
formulas can also have the third value.

ProoF. By induction on formulas of L.
Base case: Suppose x is a basic formula of L,. Then by the valuation
correlation vy (f(x)) = 1 iff v,(x) = 1; and vy (f(x)) = 0 iff v,(x) = 0.
Induction step: Assuming that the proposition holds for all formulas less
complex than y, we consider the following cases:

(1) x is ¢, so f(x) = ~f(¢). Suppose v,(x) = 1. Then v,(¢) = 0; hence,
by IH, v,(f(¢)) = 0; and hence vy(—f(¢)) = 1, namely v,(f(x)) = 1.
Suppose vg(f(x)) = 1. Then, similarly, v,(x) = 1. Thus, v,(f(x)) =
1 iff v,(x) = 1. Suppose v,(x) = 0. Then v,(¢) = 1; hence, by IH,
ve(f(¢)) = 1; and hence vy(—f(¢)) = 0, namely v,(f(x)) = 0. Suppose
vp(f(x)) = 0. Then, similarly, v,(x) = 0. Thus, v,(f(x)) =0iff v,(x) =
0.

(2) xis ¢ — 9,50 f(x) = f(¢) = f(¢). Suppose v,(x) = 1. Then v,(¢) = 0
or vy(¢) = 1; hence, by IH, v,(f(¢)) = 0 or vy(f(¢)) = 1; and hence

ve(f(¢) — f(¥)) = 1, namely vy(f(x)) = 1. Suppose vg(f(x)) = 1.
Then, similarly, v,(x) = 1. Thus, v,(f(x)) = 1 iff v,(x) = 1. Similarly,
vg(f(x)) = 0 iff vp(x) = 0. (The cases of other connectives are similar
to this one.)

(3) x is Jzplz/c] (¢ occurs in ¢ and x is new to ¢), so f(x) = IT,T A
f(#)[x/c]. Suppose vp(x) = 1. Then v,(¢p[d/c]) = 1 for some d in Ly;
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hence, by IH, v,(f(¢[d/c])) = 1 for some d in Ly; hence, by Proposition
6.3.3, vy(f(@)[d/c]) = 1 for some d in Ly; hence vy(dT) = 1 and v, (dT A
f(P)[d/c]) = 1 for some d in L,; and hence vy(f(x)) = 1. Suppose
ve(f(x)) = 1. Then vy(dT) = 1 and vy (dT A f(¢)[d/c]) = 1 for some d
in Lg; hence vy(f(¢)[d/c]) = 1 for some d in L,; hence by Proposition
6.3.3 vy(f(¢[d/c])) = 1 for some d in Lgy; hence by IH v,(¢[d/c]) =1
for some d in L,; and hence v,(Jzplx/c]) = 1. Thus, vy(f(x)) = 1 iff
vp(x) = 1. Similarly, vy(f(x)) = 0 iff v,(x) = 0.

(4) x is Yzplz/c] (c occurs in ¢ and z is new to ¢), so f(x) = VIL,T A
f(@)[z/c]. Suppose v,(x) = 1. Then v,(¢p[d/c]) = 1 for every d in Ly;
hence, by IH, v,(f(¢[d/c])) = 1 for every d in Ly; hence by Proposi-
tion 6.3.3 vy(f(¢)[d/c]) = 1 for every d in Lg; hence vy(dT) = 1 and
ve(dT A f(¢)[d/c]) = 1 for every d in Lg; and hence v,(f(x)) = 1.
Suppose vg4(f(x)) = 1. Then v, (dT A f(¢)[d/c]) =1 for every d in Lg;
hence v,(f(¢)[d/c]) = 1 for every d in Ly; hence by Proposition 6.3.3
vg(f(pld/c])) = 1 for every d in L,; hence by IH v,(¢[d/c]) = 1 for
every d in Lp; and hence v,(x) = 1. Thus, v,(f(x)) = 1 iff v,(x) = 1.
Similarly, vg(f(x)) = 0 iff v,(x) = 0.

|

6.5. Validity Preservation

PROPOSITION 6.5.1. Let I' be a set of formulas of a PC language L,. We
write f(I') for the set of the translations of all the members of I'. Let ¢ be
a formula of L, and f(¢) its translation. Then: T Fq ¢ iff f(T') Fs f(¢).

PrOOF. Let L, be the Quarc language correlated with L,. Then f(I') is a
set of L,-formulas and f(¢) is an Lg-formula.

Suppose f(I') #3 f(¢). Then, by the definition of validity, for some Quarc
language L;, there is a valuation v} on which all formulas in f(I") are true and
f(9) is false. Let L;, be the PC language with which L} is correlated, and v,
the PC valuation (for L) with which v, is correlated. Then, by Proposition
6.4.2, every formula in I' is true on v, and ¢ is false on U;/o- Hence, I' H5 ¢.

Suppose I' #5 ¢. Then, by the definition of validity, for some PC language
L’p there is a valuation vz’) on which all formulas in I' are true and ¢ is false.
Let Ly, be the Quarc language correlated with L;,, and vy the Quarc valuation
(for L7,) correlated with v,,. Then, by Proposition 6.4.2, every formula in f(I")
is true on vy, and f(¢) is false on v;. Hence, f(I') 73 f(¢). |
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6.6. Soundness and Completeness in Quarc with T’

We next consider the soundness and completeness of Quarc enriched with
T. As we shall see, there are important differences between the two- and
three-valued systems.

As for the proof system, we add to Definition 4.1.2 the derivation rule
Thl (Thing Introduction), as follows:

- (i) T Thl
where a is any singular argument.

The soundness preservation of Thl should be straightforward, since a7 is
true for any a on any valuation, on both the two- and three-valued systems.
Given the soundness of the two-valued Quarc without 7', it follows that the
two-valued Quarc with 7' is also sound.

However, the soundness of the three-valued Quarc followed from the co-
incidence theorem above. Yet that proof does not apply to Quarc with T
given a 3-valuation w for a language, to generate a 2-valuation v for an
enriched language such that if w(¢) = 1(0) then v(¢) = 1(0), it intro-
duced a singular argument e such that, for any nonempty unary predicate
P, v(eP) = 0. Since T is nonempty (i.e., for some a, w(aT’) = 1), this would
make v(eT') = 0, which would violate the semantic rule for Thing, namely,
that for any singular argument a, v(aT') = 1. As we shall soon see, the proof
system introduced above and enriched with Thl is unsound with respect to
the three-valued Quarc with T'.

The proof for the completeness of two-valued Quarc with T is essentially
the same as in Sect. 5, noticing that any maximal consistent set of a language
contains aT for any singular argument a in the language:

PROPOSITION 6.6.1. Let A be a maximal consistent set of L-formulas. Then
al € A for any a in L.

PROOF. Suppose a is a singular argument in L. Then, by Thl, A + aT’; and
hence, by Proposition 5.2.2, aT € A. [ |

And since aT is a basic formula, the valuation induced by a maximal consis-
tent set (the one employed in proving the Truth Lemma) complies with the
valuation rule ‘Thing’. Accordingly, the two-valued Quarc with 71" is sound
and complete.

Consider now the formula, 37°P. On the two-valued Quarc, due to Instan-
tiation, it is true on any valuation, so F5 3T P. Since two-valued Quarc with
T is complete, it follows that + 37" P, which is also simple to show directly.
By contrast, since on the three-valued Quarc with 7', while a7 is true for
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any a on any valuation, aP can be false for every a on a valuation, ¥3 3T P.
It follows, first, that Fs and F3 do not coincide on Quarc with 7', and sec-
ondly, that the proof system developed above is unsound for three-valued
Quarc with T

Whether a sound and complete proof system for three-valued Quarc with
T can be developed, we leave an open question. Notice, however, that Cut
will not be admissible in such a system: since P P cannot be false on a valu-
ation, F3 AP P; since if PP is true on a valuation, so is 3T P, 3PP F3 3T P;
but as explained above, #3 3T P. If a proof system for Quarc with T is sound
and complete, the following should therefore hold on it: - 3PP, 3PP+ 3T P,
¥ 3T P. This would necessitate modifying the derivation rules for connec-
tives introduced above. These issues arise in the translating system, the
three-valued Quarc with T', despite their inexistence in the translated sys-
tem, PC.

Ever since the first works of [8,9], the literature in this area has focused
on formal systems which preserve their set of valid arguments when their
two-valued semantics is replaced by a three-valued one and validity is de-
fined as strict-to-tolerant (ST'). This coincidence holds for the Propositional
Calculus, the Predicate Calculus, and as we proved in Sect. 3.3, for Quarc
(without T'). The exceptions found in the literature for which there is no
such coincidence are cases of paradox, specifically of the Predicate Calcu-
lus augmented with a truth predicate, or with a similarity predicate in the
presence of vague concepts. While the system cannot then have a consistent
2-valuation because of, for instance, paradoxes generated by liar sentences,
that is not the case with 3-valuations; in that case, Kripke’s fixed point con-
struction shows that there are 3-valued consistent models [13]. However, as
we have just seen, a different result obtains for Quarc with 7": the system
has consistent 2- and 3-valuations, neither is paradoxical, but their inference
relations do not coincide, for while £y 3TP, Egp 3T P.7

7. Quarc-to-PC’ Translation

While in the previous section, we translated PC into an extended version of
Quarc, Quarc plus 7', we shall here translate Quarc into an extended version
of PC. We need to introduce gaps into the valuations of the Predicate Cal-
culus, and for that purpose we add a quantifier symbol 3’ to Definition 6.1.1

"We are indebted to Pablo Cobreros for correspondence on this point.
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(Language), and, correspondingly, in Definition 6.1.2 we add the following
formation rule:

If ¢ is a formula containing one or more occurrences of a, and x is a
variable new to ¢, then Fz¢[z/a] is a formula.

We will call this extended system PC’. The version of Quarc considered
below is the three-valued one without T'.
7.1. Three-valued TVS for PC’

DEFINITION 7.1.1. (8-valuation) For a PC’ language L, a 3-valuation is a
function v from L-formulas to {0, 1, u} such that:

(a) For each basic formula ¢ of L, either v(¢) =1 or v(¢) = 0.
(b) Let ¢ and v be formulas of L. Then:
v(=¢) =1if v(p) = 0; v(—¢) = 0 if v(¢) = 1; otherwise v(¢) = u.

v(p A1) =1if v(¢) = 1 and v(y)) = 1,U(¢/\1/}):Oifv(¢):()or
v(y) = 0; otherwise v(¢p A 9Y) = u.
vipV) =1if v(¢) =1 orv(y) =1; v(p V) =0if v(p) = 0 and
v(y)) = 0; otherwise v(¢ V ) = u.

(

v(p =) =1ifv(p) =0o0r v(¢p) =1; v(p — ¥) = 0if v(¢) = 1 and
v(1)) = 0; otherwise v(¢p — 1) = u.

(c) Let ¢ be a formula containing ¢, and x a variable new to ¢. Then:
v(Vxglz/c]) = 1 if v(¢[d/c]) = 1 for every d in L; v(Vzp[z/c]) = 0 if
v(¢[d/c]) = 0 for some d in L; otherwise v(Vxo(x)) = u.
v(3xplz/c]) = 1 if v(¢[d/c]) = 1 for some d in L; v(Jzplx/c]) = 0 if
v(¢pld/c]) = 0 for every d in L; otherwise v(Jz¢lx/c]) = u.

(Fzplz/c]) = 1ifv(¢[d/c]) = 1 for some d in L; otherwise v(Fz¢[z/c])

= Uu.

<

DEFINITION 7.1.2. (3-validity) Let L be a PC’ language. An argument whose
premises constitute the set I' of L-formulas and whose conclusion is the L-
formula ¢ is 3-valid, written I' F3 ¢, iff for any PC’ language which contains
all the constants occurring in either I' or ¢, no 3-valuation assigns ‘true’ to
all formulas in I and ‘false’ to ¢.

7.2. The Translation Manual

DEFINITION 7.2.1. (Language correlation) With each Quarc language L,
we correlate the unique PC’ language L), that satisfies the following require-
ments:
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(a) The constants of L, are the singular arguments of L.

(b) The predicates of L, are those of L,, and arities are preserved.

DEFINITION 7.2.2. (Translation function) The translation function ¢ is de-
fined recursively as follows:

(1) Basic formulas:
t(ay...a,P) = Pay...ay
(2) Reorder:
t(ar, ...a;, P7) =t(ay...a,P)
(3) Negative predication:
t(ay...ap—P) =-t(ay...a,P)
(4) Truth functional compounds:
t(—p) = —t(¢)
t((p*1)) = (t(¢) xt(10)), where x is A, V, or —.

(5) Anaphora: Let ¢(a,) be a formula led by a labelled argument a,, and
¢ the formula from which ¢(a,) is immediately generated. Then

t(d(az)) = t(9)

(6) Quantification: Let ¢(QP) be a formula governed by an occurrence of
QP, and ¢ the result of replacing the governing occurrence by ¢, a
singular argument new to ¢(QP). Let = be a variable new to t(¢). Then

t(¢p(VP)) = Fa(Px) ANV (Px — t(¢)[x/c])
t(¢p(3P)) = Fx(Px) — Jx(Pz AN t(d)[x/c])

The following proposition is easy to prove and will be used in later proofs.

PROPOSITION 7.2.3. Let ¢ be a Quarc formula and t(¢)[d/c] the PC’ for-
mula which results from replacing every occurrence of ¢ in t(¢) with d. Then:

t(¢)ld/c] = t(old/c]).
7.3. Truth Value Preservation

We move on to show that the translation is adequate, in the sense that
there is a bijection between Quarc valuations and PC’ valuations, such that
the truth values of Quarc formulas are preserved by the translation under
this bijection. It will follow that the (in)validity of Quarc arguments is also
preserved by the translation.

DEFINITION 7.3.1. (Valuation correlation) With each Quarc valuation v,
for a Quarc language L, we correlate a PC’ valuation v, for L,, the PC’
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language that we correlate with L,, such that: for every basic formula ¢ of

Quarc, v, (t(@)) = vg(@).

The following proof shows that, with valuations correlated, the Quarc-
to-PC’ translation preserves truth values.

PROPOSITION 7.3.2. Let x be a formula of a Quarc language Ly, and t(x)
its translation in L,, the PC" language that we correlate with L,. Let v, be
a valuation for L, and v, the correlated valuation for L,. Then: v,(t(x)) =

Vg (X)-

Proor. By induction on the complexity of L,-formulas.

Base case: Suppose x is a basic formula of L,. Then by the valuation
correlation v, (t(x)) = vq(Xx)-

Induction step: Assuming that the claim holds for all formulas less com-
plex than y, we consider the following cases:

(1) x is a reordered form, a, ...a,, P7, of a basic formula a; ...a,P, so
t(x) = t(ai...a,P). Suppose v4(x) = 1. Then vy(a;...a,P) = 1,
hence by IH v,(t(a;...a,P)) = 1, and hence v,(t(x)) = 1. Suppose
vg(x) = 0. Then, similarly, v,(t(x)) = 0. As there is no undefined case
for reordered forms of basic formulas, we can conclude that v, (t(x)) =
vg(x). (The case of negative predication is similar to this one.)

(2) xis —¢, sot(x) = —t(¢). Suppose vg(x) = 1. Then vy(¢p) = 0; hence, by
IH, v,(t(¢)) = 0; and hence v, (—t(¢)) = 1, i.e. vy(t(x)) = 1. Suppose
vg(x) = 0. Then, similarly, v,(t(x)) = 0. Suppose v4(x) = u. Then
vy(¢) = w; hence, by IH, v,(t(¢)) = u; and hence v,(—-t(¢)) = u, i.e.
vp(t(x)) = w. Hence, v, (t(x)) = vq(x)-

(3) X1 6 — v, 50 t(x) = H() — £(¢)). Suppose uy(x) = 1. Then v(9) =0
or vy(1¢)) = 1; hence, by IH, v,(t(¢)) = 0 or v,(t(¢))) = 1; and hence
vp(t(p) — t(y)) = 1, ie. vy(t(x)) = 1. Suppose vy(x) = 0. Then
similarly v, (t(x)) = 0. Suppose v4(x) = u. Then similarly v,(¢(x)) =
u. Hence, v, (t(x)) = vq(x). (The cases of other connectives are similar
to this one.)

(4) x is led by a labelled singular argument. We write ¢ for the for-
mula from which y is immediately generated, so t(x) = ¢(¢). Sup-
pose vg(x) = 1. Then v,(¢) = 1; hence, by IH, v,(t(¢)) = 1; and hence
vp(t(x)) = 1. Suppose v4(x) = 0. Then similarly v, (t(x)) = 0. Suppose
vg(x) = u. Then similarly v, (¢(x)) = w. Hence, v,(t(x)) = vqe(X)-
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(5) x is governed by an occurrence of 3P. We write ¢ for the result of
replacing the governing occurrence by ¢, a singular argument new to
X, so t(x) = FzPx — Jx(Px AN t(p)[x/c]), where z is new to t(¢).

(5a) Suppose vg(x) = 1. Then vy(dP) =1 and v,(¢[d/c]) = 1 for some d in
L; hence, by IH and Proposition 7.2.3, v,(Pd) = 1 and v,(t(¢)[d/c]) =
1 for some d in Ly; hence v,(F'zPz) = 1 and v,(3z(PzAt(¢p)[z/c])) =
1; and hence v, (t(x)) = 1.

(5b) Suppose v,(x) = 0. Then similarly v,(t(x)) = 0.

(5¢) Suppose v4(x) = u. Then we have the following two subcases:

(i) Suppose vg4(aP) = 0 for any singular argument a in L,. Then v,(Pa) =
for any constant a in Ly, hence v,(FxPz) = u and v, (Jx(PzAt(¢)[x/c]))
0, and hence v,(t(x)) = u. (ii) Suppose vy(dP) = 1 for some singular ar-
gument d in L, vg(¢[d/c]) = u for some such d, and that v,(¢[d/c]) # 1
for every such d. Then, by IH and Proposition 7.2.3, v,(Pd) = 1 for some
din Ly, v,(t(¢)[d/c]) = u for some such d, and v, (t(¢)[d/c]) # 1 for every
such d; hence v,(F'zPx) = 1 and v,(3z(Px A t(¢)[x/c])) = w; and hence
vp(t(x)) = w. Hence, v,(t(x)) = v4(x). (The case of formulas governed by a
universally quantified argument is similar to this one.) [

0

7.4. Validity Preservation

PROPOSITION 7.4.1. Let I be a set of formulas of a Quarc language L, and
we write t(I") for the set of the translations of all the members of I'. Let ¢
be a formula of L, and t(¢) its translation. Then: ' Ez ¢ iff t(I') F3 t(¢).

PRrROOF. Let L, be the PC’ language correlated with L,. Then #(I') is a set
of L,-formulas and ¢(¢) is an L,-formula.

Suppose t(I') #3 t(¢). Then, by the definition of validity, for some PC’
language L;, there is a valuation v}, on which every member of #(T') is true
and t(¢) is false. Let L; be the Quarc language with which L, is correlated,
and vy the Quarc valuation (for L;) with which v}, is correlated. Then, by
Proposition 7.3.2, every member of I' is true on v;, and ¢ is false on v
Hence, I' #3 ¢.

Suppose I' 3 ¢. Then, by the definition of validity, for some Quarc
language L; there is a valuation v, on which every member of I' is true
and ¢ is false. Let Lj be the PC’ language correlated with L;, and v, the
PC’ valuation (for Lj,) correlated with vy. Then, by Proposition 7.3.2, every
member of ¢(I") is true on v, and t(¢) is false on v,. Hence, (') ¥3 t(¢). m

!
q
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7.5. Provability in PC’

Similar issues to those of provability in the three-valued Quarc with 1" arise
also for PC’. Let ¢ be a PC’ formula containing a, and x a variable new
to ¢. Then, since in no case can F'z¢[z/a] be false, a PC’ argument whose
conclusion is F'z¢[zr/a] is guaranteed to be valid. Hence:

—Jxg[x/a) Es Fxdlx/al

And since whenever F'z¢[x/a] is true, xg[x/a] is true as well, we also have:

Fxp[x/a) Ez Jxd[z/ad]

Now, suppose that PC’ has a proof system which is sound and complete.
Then:

—3Jz(¢[z/a]) F Fx(¢[z/a]) and Fx(¢[z/a]) F Fx(¢[z/a])

However, —3z(¢[x/a]) 3 Jz(dlr/a]). Accordingly, Cut is not admissible
in this proof system, otherwise we would have —3x(¢[z/a]) b Jz(d[z/a]).
This despite the fact that no such issue exists for the translated system,
three-valued Quarc.

8. Conclusion

In this paper, we developed both a two-valued and three-valued truth-
valuational semantics for the Quantified Argument Calculus (Quarc). The
two-valued version followed closely that in [2], which included an Instan-
tiation rule, forcing unary predicates to have instances. The three-valued
semantics eliminated this rule, taking formulas governed by either VP or
JP to presuppose that P has instances and making them truth-value-less
otherwise. The elimination of the Instantiation rule in this way creates a
richer and in a sense a semantically more natural system, which is therefore
of much interest. This approach was also followed in [15], but unlike that
paper, this one adopted strict-to-tolerant and not strict-to-strict validity.
We then proved a coincidence result: I' o ¢ iff I' F3 ¢. This result does not
hold on the SS validity approach. For example, since 3PP is never false,
Es APP and Fgr APP, but ¥gg IPP.

We then provided a Natural Deduction proof system and proved com-
pleteness for the two-valued Quarc. That of the three-valued version fol-
lowed from the coincidence theorem. Although our proof, using Linden-
baum’s Lemma, is close in method to the one used in [18, §2.3], it was
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hopefully of some additional interest, as the adaptation of such proofs to
truth-valuational semantics is not found in later literature. We believe these
results contribute to the interest in the three-valued Quarc with ST validity.

Lastly, we investigated the relations between the three-valued Quarc and
PC. (The relation of Quarc as a two-valued system to PC has been addressed
in several works [16,25,29].) The unrestricted nature of PC quantification
was imitated in Quarc by adding to it a logical predicate T', which applies
to all singular arguments of all languages. The gappy nature of three-valued
Quarc quantifiers was imitated in PC by adding to it a weak existential
quantifier, 3, for which F'z¢(x) is truth-value-less in case it has no instances.
We managed in this way to incorporate a semantic image of each calculus in
the extension of the other, in the sense that an argument in the one is valid
just in case so is its translation into the other. It should be emphasised that
neither extension is justified by internal considerations on its system (unlike
the elimination of Instantiation), but was done only in order to imitate
features of the other system. In fact, as we saw, either extension creates
difficulties for a proof system for its calculus, forcing it not to admit Cut if
sound and complete, difficulties inexistent either in the unextended version
or in the translated calculus. Although we have not proved that a different,
less problematic extension of either system which allows for an incorporation
as above is impossible, other options we have tried had similar drawbacks
and so far none has been suggested in the literature. To this extent, our
results support a claim already made in several works, that although related,
Quarc and PC are essentially different calculi.
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