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1. Introduction

J. M. Dunn has described the structure of finite Sugihara monoids by show-
ing in [2] that subdirectly irreducible Sugihara monoids are linearly ordered
and by describing the structure of finite Sugihara chains in [15]. We gener-
alize Dunn’s results by dropping the idempotence and the finiteness axioms.

In line with the tradition of representing classes of residuated lattices
by simpler and better known structures such as groups or Boolean alge-
bras, Mundici’s celebrated categorical equivalence theorem represents MV-
algebras – a variety which corresponds to �Lukasiewicz logic L [12] – by
�-groups with strong units using a truncation construction [43]. By drop-
ping the divisibility axiom of MV-algebras one obtains the variety of IMTL-
algebras which correspond to the logic IMTL [5,9,10,13,14,16,17,24,37,44,
45]. The non-integral analogue of the class of IMTL-algebras shall be rep-
resented by o-groups in this paper. By replacing the integrality axiom of
IMTL-algebras by one of its two natural non-integral analogues one obtains
the class of odd and the class of even involutive semilinear FLe-algebras, the
former of which is also known as the class of IULfp-algebras corresponding
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to the Involutive Uninorm Logics with fixed point (IULfp) introduced by G.
Metcalfe in [38], see also [39]. We shall represent all subdirectly irreducible
members of these two classes by means of abelian o-groups. Subdirectly ir-
reducible even or odd involutive FLe-algebras are linearly ordered. Little
is known about the structure of IMTL-algebras and an effective structural
description for this class seems to be out of reach at present, arguably, such
a structural description is impossible. However, as shown in this paper, the
non-integral counterpart of the class of IMTL-algebras possesses a repre-
sentation by groups, similar to MV-algebras or to cancellative commutative
residuated lattices [41].

Whether Involutive Uninorm Logic (IUL) is standard complete or not is
a problem posed by G. Metcalfe and F. Montagna [39] and has become a
long-standing open problem which has invoked considerable effort to solve
it with no avail1. The representation theorem in this paper may serve as
a step toward settling the problem of standard completeness of IUL in an
algebraic manner.

Group theory is the science of symmetries whereas the theory of inverse
semigroups is the science of partial symmetries [35]. Our main result is
reminiscent to the representation theorem of a subclass of inverse semi-
groups, called Clifford semigroups. Every Clifford semigroup is isomorphic
to a strong semilattice of groups [35, Theorem 12 in Section 5.2] (see also
[51]), and the starting point of the strong semilattice construction is a direct
system of groups indexed by a semilattice. In our case the starting point is
a direct system of abelian o-groups indexed by a chain and equipped with
some extra structure. The definition of the product in the strong semilattice
construction is of the same P�lonka sum fashion (see [48]) as in our construc-
tion in (4.8). However, in our case we need to modify the abelian o-groups
prior to applying (4.8), and we also need to handle the ordering, the residual
operation, the isotonicity of the product with respect to the ordering etc.
In particular, we introduce in this paper an ordering on P�lonka sums, called
the directed lexicographic order.

P�lonka sums have found applications not only in computer science, in
particular in the theory of program semantics [49], but recently its corre-
sponding regular varieties have been unexpectedly connected to logic. They

1Recently it is claimed to be proved in [52] by using proof-theoretic methods. However,
the scientific community has doubts about the correctness of the proof, see the remark of
the author himself in [52, second section in page 43].
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provide algebraic semantics to logics obtained by imposing a deductive fil-
ter to other logics; for instance, Paraconsistent Weak Kleene logic coincides
with the regularization of the variety of Boolean algebras [7,8].

Integral residuated lattices have been widely studied in the literature
[1,4,6,12,22,25,34]. However, as noted by N. Galatos and J. G. Raftery
in [20], non-integral residuated structures and consequently, substructural
logics without the weakening rule are less understood than their integral
counterparts. To overcome this, they established category equivalences to
carry over the algebraic knowledge on integral structures to non-integral
ones [20,21]. These kind of categorical approaches use some algebraic back-
ground knowledge which is available if idempotency is postulated. Our paper
makes a step in the direction of providing an algebraic insight into the non-
idempotent, non-integral, non-divisible setting.

Prominent examples of odd involutive FLe-algebras are abelian �-groups
[3] and odd Sugihara monoids. These two classes of algebras represent two
extremities: there is a single idempotent element in any lattice-ordered
abelian group, whereas all elements are idempotent in any odd Sugihara
monoid. The former class constitutes an algebraic semantics of Abelian Logic
[11,40,47] while the latter constitutes an algebraic semantics of IUML

∗,
which is a logic at the intersection of relevance logic and many-valued logic
[20]. Our representation theorem puts these two rather distant logics (and
more) under the same methodological umbrella.

Despite the extensive literature devoted to classes of residuated lattices,
there are still few effective structural descriptions. All these results in [1,12,
22,23,25,33,34,36,42,46,50] (and also others where the focus is not a struc-
tural description in the first place such as in [20,21] for example) postulate
semilinearity which renders the subdirectly irreducible members linearly or-
dered, and either integrality together with the naturally ordered condition2

or idempotency. Our study contributes to the structural description of resid-
uated lattices which are semilinear but neither integral nor naturally ordered
nor idempotent; a first such effective structural description to the best of
our knowledge besides [31,32].

A representation theorem has been presented in [31,32] for those odd
involutive FLe-chains where the number of idempotent elements of the alge-
bra is finite by means of partial sublex products of abelian o-groups, which
are well understood mathematical objects that are much more regular than
what had been expected to need for describing these particular FLe-chains.
In the present paper we prove a representation theorem for both even and

2Or its dual notion, called divisibility.
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odd involutive FLe-chains without assuming any constrains on the set of
their idempotent elements. The conic case is also settled. While the con-
struction in the representation of [31,32] is done by starting with an abelian
o-group and iteratively enlarging it by other abelian o-groups until the ob-
tained structure becomes isomorphic to the given algebra, here we present
a structural description using direct systems, without referring to iteration.
To this end, a core auxiliary result concerns a one-to-one correspondence
between two lattice ordered classes: odd involutive FLe-algebras and even
involutive FLe-algebras with an idempotent falsum constant. Here we make
use of and further develop ideas of E. Casari [11], see Section 6.

Since �-groups are very specific mathematical objects compared to resid-
uated lattices, having a representation of a class of residuated lattices by
subclasses of �-groups is a rarity. It is reasonable to expect that the in-
herent larger complexity of the more general classes of residuated lattices
renders such a representation, if exists, quite involved in its constructional
part. This phenomenon can be observed in [31,32], for example, where the
notions of two different partial sublex product constructions together with
the technique of iteration have been used to describe the class of residuated
lattices which is in our focus in the present paper with the additional as-
sumption that the number of idempotent elements of the algebra is finite.
In the present paper the complexity of the residuated structure is coded in
the system of homomorphisms and in the delicate way of constructing the
algebra from the direct system. Applications of the main result of this paper
to amalgamation and densification problems are foreshadowed in [30].

2. Preliminaries

An FLe-algebra is a structure (X, ∧,∨, ·,→, t, f) such that (X, ∧,∨) is a
lattice, (X, ≤, ·, t) is a commutative, residuated monoid (the unit element
t is also referred to as the truth constant), and f is an arbitrary constant,
called the falsum constant. Being residuated means that there exists a binary
operation →, called the residual operation of ·, such that xy ≤ z if and only if
x→z ≥ y. This equivalence is called adjointness condition, (·,→) is called an
adjoint pair. Equivalently, for any x, z, the set {v | xv ≤ z} has its greatest
element, and x → z, the residuum of x and z, is defined as this element:
x → z := max{v | xv ≤ z}; this is called the residuation condition. Being
residuated implies that · is increasing. One defines the residual complement
operation by x′ = x→f and calls an FLe-algebra involutive if (x′)′ = x holds.
An involutive FLe-algebra is called odd if the residual complement operation
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leaves the unit element fixed, that is, t′ = t, and even if the following (two)
quasi-identities hold: x < t ⇔ x ≤ f . The former condition is equivalent
to f = t, while the latter quasi-identities are equivalent to assuming that
f is the lower cover of t (and t is the upper cover of f) if chains (or more
generally conic algebras) are considered. An FLe-algebra is called integral
if the unit element of the multiplication is the top element of its universe.
Commutative residuated lattices are the f -free reducts of FLe-algebras. The
geometric meaning of t′ = f , which is valid in all involutive FLe-algebras, is
that the two constants are positioned symmetrically inside the underlying
set. Therefore, one extremal setting is the integral case, when t and f are
the top and bottom elements of X, respectively, and the other extremal one
is the even or odd case when the two constants are both “in the middle
of X”. A bottom-top setup is not possible: if a residuated lattice has a
bottom element then that element is annihilating, hence cannot be the unit
of the multiplication3. Both odd or even involutive FLe-chains and IMTL-
chains are involutive residuated chains with a single additional postulate:
the integrality condition of IMTL-chains postulates the unit element to be
in one of its possible extremal positions (top), whereas the odd or even
condition postulates the unit element to be in its other extremal position
(in the middle).

Section 3 contains results on the local unit element function of involutive
FLe-algebras, a key concept for our representation theorem. Even involutive
FLe-algebras with non-idempotent and idempotent falsum constants will
be characterized with respect to odd involutive FLe-algebras in Sections 5
and 6, respectively. In Section 4 even and odd involutive FLe-chains will be
partitioned into their so-called layer algebras, which are also even or odd
involutive FLe-chains but more specific ones than the original algebra in the
sense that they are either cancellative or are close to being such: in the latter
case there exists a canonical homomorphism which maps the layer algebra
into a cancellative one from which the layer algebra can be uniquely recov-
ered. This specificity allows for establishing a connection between them and
abelian o-groups in Section 7, by using the characterizations of Sections 5
and 6. These lead to the main result of the paper in Section 8: a one-to-one
correspondence in a constructive manner between the class of all even or
odd involutive commutative residuated chains and the class of bunches of
layer groups. Layer groups are direct systems of abelian o-groups equipped
with further structure.

3Unless the algebra is trivial.
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3. The Local Unit Element Function

Let (X, ≤) be a poset. For x, y ∈ X we say that y is a cover of x if y > x and
there exists no z ∈ X such that y > z > x. For x ∈ X let x↑ be the unique
cover of x if such exists, and let x↑ = x otherwise. Define x↓ dually. Call ↓
and ↑ the neighbour operations of (X, ≤). A partially ordered algebra with
a poset reduct is called discretely ordered if for any element x, x↓ < x < x↑
holds. If ′ is an order-reversing involution of X then it holds true that

x′↑ = (x↓)′ and x′↓ = (x↑)′. (3.1)

Algebras will be denoted by bold capital letters, their underlying sets by
the same regular letter unless otherwise stated. Sometimes the lattice oper-
ators of an FLe-algebra will be replaced by their induced ordering ≤ in the
signature, in particular, if an FLe-chain is considered, that is, if the ordering
is total. Call the elements x ≥ t of an FLe-algebra X = (X, ∧,∨, ·,→, t, f)
positive. Call X conic if all elements of X are comparable with t. Assume X
is involutive. For x ∈ X let

τ(x) = x → x,

or equivalently, define τ(x) to be the greatest element of Stabx = {z ∈
X | zx = x}. A key step toward our representation theorem is to understand
the role of the τ function. In investigating more specific odd involutive FLe-
algebras τ(x) was recognized to play the role of the ‘absolute value of x’ and
was denoted by |x|, see [50]. The definition of layers in (3.2) and Lemma 3.1
reveal the true nature of τ in the present, more general setting: τ can be
view as a ‘local unit element’ function. For any positive idempotent element
u define

Xu = {x ∈ X : τ(x) = u} (3.2)

and call it the u-layer of X. The Xu’s form a partition of X by claim (vii)
below, and if x ∈ Xu then τ(x) is the unit element for the subset Xu of X
by claim (v)4. Corresponding to the rotation-annihilation construction the
idea of decomposing a class of FLe-algebras with the help of a closely related

4For a first glance it might occur to the reader that the definition of Xu is equivalent
to the well-known way of localizing in semigroup theory, namely, for an idempotent u, to
the universe Mu = {x ∈ X : xu = x} of the greatest unitary subsemigroup of X with unit
u. It is not the case if u > t. Rather, Xu can be regarded as the “outer edge” of Mu in the
following sense: it holds true that Mu =

⋃
v≤u Xv and Xu = Mu \ ⋃

v<u Xv (u and v are

positive idempotents).
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notion, the skeleton function of the algebra5 has been presented already in
[27]. The name local unit function and the corresponding idea of using it to
localize elements of the algebra has been introduced in [31], and the way of
localizing as done in (3.2) is being introduced in the present paper, see also
[29]. Some of the statements of the following lemma can be found in [31]
or in [19], too. We include their proofs to keep the paper self-contained. As
usual, when multiplication is denoted by ·, we write xy instead of x·y.

Lemma 3.1. Let X = (X, ∧,∨, ·,→, t, f) be an involutive FLe-algebra. The
following statements hold true.

(i) t′ = f ,

(ii) x → y = (xy′)′,

(iii) if t ≥ f then xy ≤ (x′y′)′,

(iv) if the algebra is conic and either even or t ≤ f then y1 > y implies
(x′y′)′ ≤ xy1,

(v) τ(x)x = x and τ(x) ≥ t,

(vi) u ≥ t is idempotent if and only if τ(u) = u,

(vii) {τ(x) : x ∈ X} is equal to the set of positive idempotent elements of
X,

(viii) x1y > xy holds whenever x1 > x and y is invertible,

(xi) τ(x) = τ(x′),

(x) if · is cancellative then for x ∈ X, xx′ = f ,

(xi) if X is odd then the (X, ∧,∨, ·, t)-reduct of X is a lattice-ordered abelian
group if and only if · is cancellative, 6

(xii) for x ≥ t, τ(x) ≤ x holds,

(xiii) if X is an odd chain then Xt contains all the invertible elements of X,
and it is a universe of an abelian o-group, its inverse operation is the
residual complement operation.

(xvi) if X is an odd or even, cancellative, discretely ordered chain then zt↓ =
z↓,

5The skeleton function was defined there as the residual complement of what we coined
local-unit function.

6When we (loosely) speak about a subgroup of odd involutive FLe-algebra X in the
sequel, we shall mean a cancellative subalgebra of X.
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(xv) if X is an odd or even chain then xy < x1y1 holds whenever x < x1

and y < y1,

(xvi) if X is an odd or even chain and A is an X-term which contains only
the operations ·, → and ′ then for any evaluation e of the variables of
A into X, τ(e(A)) equals the maximum of the τ -values of the variables
and constants of A under e,

Proof.

(i) Obvious by residuation.

(ii) Using that ′ is an involution one obtains (xy′)′ = (xy′) → f = x →
(y′ → f) = x → y (folklore).

(iii) Next, (xy)(x′y′) = [x(x → f)][y(y → f)] ≤ ff ≤ tf = f , hence xy ≤
(x′y′) → f follows by adjointness.

(iv) Since the algebra is conic and involutive, every element is comparable
with f , too. Indeed, if for any a ∈ X, a were not comparable with f
then, since ′ is an order reversing involution, a′ were not comparable
with f ′, and f ′ = t since the algebra is involutive, a contradiction.
Therefore, by residuation, y1 > (y′)′ = y′→f implies y1y

′ 	≤ f , that is,
y1y

′ > f . If t ≤ f then y1y
′ ≥ t follows. Likewise, if the algebra is even

then y1y
′ 	≤ f implies y1y

′ 	< t, that is, y1y
′ ≥ t, since the algebra is

conic. Therefore, (xy1)′ = (xy1)′t ≤ (xy1)′y1y′ (ii)
= (y1(y1 → x′))y′ ≤

x′y′ follows.

(v) Since t is the unit element, Stabx is nonempty. Therefore, by residua-
tion τ(x) = x → x is its largest element, hence τ(x)x = x holds. Since
tx = x, τ(x) ≥ t follows by residuation.

(vi) If u ≥ t is idempotent then from uu = u, u → u ≥ u follows by
adjointness. But for any z > u, uz ≥ tz = z > u, hence τ(u) = u
follows. On the other hand, by claim (v), τ(u) = u implies u ≥ t, and
also the idempotency of u follows since uu = uτ(u) = u.

(vii) If u > t is idempotent then claim (vi) shows that u is in the range
of τ . If u is in the range of τ , that is τ(x) = u for some x ∈ X
then if τ(τ(x)) = τ(x) then it implies τ(u) = u, hence u is a positive
idempotent element by claim (vi), and we are done. Hence it suffices to
prove τ(τ(x)) = τ(x) for all x. By claim (ii), x→x = τ(x) is equivalent

to xx′ = τ(x)′. Hence, τ(x)τ(x)′ = τ(x)(xx′) = (τ(x)x)x′ (v)
= xx′ =

τ(x)′ follows, which is equivalent to τ(τ(x)) = τ(x) → τ(x) = τ(x).
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(viii) x1y ≥ xy holds by monotonicity, and if x1y = xy then x1 = x1yy−1 =
xyy−1 = x, a contradiction.

(ix) By claim (ii) and the involutivity of ′, τ(x) = x → x = (xx′)′ =
(x′x′′)′ = x′ → x′ = τ(x′).

(x) Since · is cancellative, the strictly increasing nature of · clearly follows:
if u < v then uw < vw. Therefore, xa > xt = x for any a > t, and
hence x → x = t. An application of claim (ii) ends the proof.

(xi) Necessity is straightforward, sufficiency follows from claim (x) since
f = t.

(xii) For x ≥ t, x
(v)
= xτ(x) ≥ tτ(x) = τ(x).

(xiii) If x ∈ Xt then τ(x) = x → x = t and hence xx′ (ii)
= t′

(i)
= f = t

holds since the algebra is odd. This shows that all elements of Xt are
invertible in X and the inverse operation is ′. On the other hand, if
x ∈ X is invertible, that is, xy = t for some y ∈ X then τ(x) = t:
for every z > t it holds true that xz > x since the opposite, that is,
xz = x would imply z = tz = (yx)z = y(xz) = yx = t, a contradiction.
Invertible element are clearly closed under · and ′. Since the order
is total, the meet and the join of two invertible elements are also
invertible.

(xiv) Since · is cancellative, · is strictly increasing; we shall use it without
further mention. Now, zt↓ < zt = z holds since t↓ < t follows from the
algebra being discretely ordered. Contrary to the statement, assume
that there exists a such that zt↓ < a < z. Multiplying with z′, ft↓ <
az′ < f follows by claim (x). In the odd case it yields t↓ < az′ < t, a
contradiction to the definition of ↓. In the even case it yields t↓t↓ <
az′ < t↓. Since t↓ = tt↓ < t↑t↓ < t↑t = t↑, we obtain t↑t↓ = t, and
hence multiplication by t↑ implies t↓ < t↑az′ < t, a contradiction to
the definition of ↓.

(xv) By claim (iii), (x′y′)′ ≥ xy holds, hence it suffices to prove x1y1 >
(x′y′)′. Assume the opposite, which is x1y1 ≤ (x′y′)′ since (X, ≤) is a
chain. By adjointness we obtain (x′x1)(y′y1) = (x1y1)(x′y′) ≤ f , and
from x1 > x = (x′)′, x′x1 > f follows by residuation since (X, ≤) is a
chain.

In the odd case these reduce to (x′x1)(y′y1) ≤ t and x′x1 > t. Analo-
gously we obtain y′y1 > t. Therefore (x′x1)(y′y1) ≥ (x′x1)t = x′x1 > t
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follows, a contradiction.

In the even case these reduce to (x′x1)(y′y1) < t and x′x1 ≥ t. Anal-
ogously we obtain y′y1 ≥ t. Therefore (x′x1)(y′y1) ≥ tt = t follows, a
contradiction.

(xvi) We have already seen τ(x) = τ(x′) in claim (ix).
Next, we claim τ(xy) = max(τ(x), τ(y))(= τ(x)τ(y)7). Indeed, τ(xy) ≥
τ(x) holds by residuation since xy → xy ≥ x → x is equivalent to
yx(x → x) ≤ xy. Assume z := τ(xy) > max(τ(x), τ(y)). Since τ as-
signs to x the greatest element of the stabilizer set of x, therefore
z > max(τ(x), τ(y)) implies that z does not stabilize x neither y,
hence x < zx and y < zy holds by the monotonicity of ·. On the

other hand, (zx)(zy) = ((xy)z)z
(v)
= xy follows, a contradiction to

claim (xv). This settles the claim.

By claim (ii), any term which contains only the connectives ·, → and
′ can be represented by an equivalent term using the same variables
and constants but containing only · and ′. An easy induction on the
recursive structure of this equivalent term using the two claims above
concludes the proof.

The next lemma states that for an odd involutive FLe-algebra, it is ex-
actly cancellativity which is needed to make it a lattice ordered group.

Lemma 3.2.

(1) For a cancellative odd involutive FLe-algebra

X = (X, ∧,∨, ·,→, t, t)

with residual complement ′, λ(X) = (X, ∧,∨, ·, −1, t) is a lattice-ordered
abelian group, called the lattice-ordered abelian group induced by X,
where

x−1 = x′ = x → t, (3.3)

(2) For a lattice-ordered abelian group

G = (G,≤, ·, −1, t),

7For positive idempotents u ≤ v it holds true that uv = max(u, v) since v = tv ≤ uv ≤
vv = v.
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ι(G) = (G,∧,∨, ·,→, t, t) is a cancellative odd involutive FLe-algebra,
called the cancellative odd involutive FLe-algebra induced by G, where

x → y = x−1y, (3.4)

x′ = x−1, (3.5)

(3) With the above assumptions it holds true that ι(λ(X)) = X and λ(ι(G))
= G.

Proof. Claim (xi) in Lemma 3.1 confirms the first statement, the rest is
folklore or obvious.

The following lemma will simplify the proof of Theorem 6.3 and
Lemma 4.2. Let M = (M,≤, ·) be a structure such that (M, ≤) is a poset
and (M, ·) is a commutative semigroup. Call c ∈ M a dualizing element8 of
M, if (i) for x ∈ M there exists, x→ c9 and (ii) for x ∈ M , (x → c)→ c = x.

Lemma 3.3. If there exists a dualizing element c of M then · is residuated
and its residual operation is given by x → y = (x(y → c)) → c.

Proof. zx ≤ y is equivalent to zx ≤ (y → c)→c. By adjointness it is equiva-
lent to (zx)(y → c) ≤ c. By associativity it is equivalent to z(x(y → c)) ≤ c,
which is equivalent to z ≤ (x(y → c)) → c by adjointness. By residuation
x → y = (x(y → c)) → c follows.

4. Odd and Even Involutive FLe-chains vs. Bunches of Layer
Algebras

We shall prove the main theorem of the paper for three different kinds
of involutive FLe-chains: for odd involutive FLe-chains, for even involutive
FLe-chains with an idempotent falsum, and for even involutive FLe-chains
with a non-idempotent falsum.

Definition 4.1. Let (κ,≤κ) be a totally ordered set with least element t,
and let an ordered triple 〈κ̄I , κ̄J , {t}〉 be a partition of κ, where κ̄I and κ̄J

can also be empty. Define κo, κJ , and κI by one of the rows of Table 1. 10

8Dualizing elements have been defined only in residuated structures in the literature,
see e.g. [19, Section 3.4.17.].

9That is, the exists the greatest element of the set {z ∈ M | xz ≤ c}.
10Explanation: if the first, the second, or the third row is used then the algebra corre-

sponding to the bunch will be odd, even with a non-idempotent falsum constant, or even
with an idempotent falsum constant, respectively.
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Table 1. Three cases—three classes

κo κJ κI

{t} κ̄J κ̄I

∅ κ̄J ∪ {t} κ̄I

∅ κ̄J κ̄I ∪ {t}

Let Xu = (Xu,≤u, , ·u,→u, u, u′u ) be a family of involutive FLe-chains in-
dexed by elements of κ (let ′u denote the residual complement operation, ↓u

and ↑u
the neighbour operations of Xu), such that Xu is

⎧
⎨

⎩

cancellative and odd ifu ∈ κo

discretely ordered, cancellative and even ifu ∈ κJ

even with an idempotent falsum satisfyingx ·u x′u = u′u ifu ∈ κI

,(4.1)

11 and such that for u, v ∈ κ, u ≤κ v, there exist a

homomorphism ρu→v (4.2)

from the residuated lattice reduct of Xu to the residuated lattice reduct of
Xv satisfying

(A1) ρu→u = idXu
and ρv→w ◦ ρu→v = ρu→w (direct system property),

(A2) for u <κ v, ρu→v(u) = ρu→v(u′u ) 12 (constants’ collision condition).

Call A = 〈Xu, ρu→v〉〈κo,κJ ,κI ,≤κ〉 a bunch of layer algebras. Call the Xu’s
the layer algebras, call 〈κ,≤κ〉 the skeleton, call 〈κo, κJ , κI〉 the partition of
the skeleton, and call 〈Xu, ρu→v〉κ the direct system of layer algebras over
κ. Note that κ can be recovered from its partition, (and ultimately, from A)
via κ = κo ∪ κJ ∪ κI .

We prove that every odd or even involutive FLe-chain can be represented
by a unique bunch of layer algebras. Later, in Section 7 we prove that every
bunch of layer algebras can be represented by a unique bunch of layer groups.

Lemma 4.2. The following statements hold true.

(1) Given an odd or an even involutive FLe-chain X = (X, ≤, ·,→, t, f)
with residual complement operation ′,

AX = 〈Xu, ρu→v〉κ

11Hence with a non-idempotent falsum.

12If u ∈ κo then ρu→v(u) = ρu→v(u′u ) trivially holds since t′t = t.
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is a bunch of layer algebras, called the bunch of layer algebras of X,
where τ(x) = x → x, κ = {τ(x) : x ∈ X}, ≤κ = ≤ ∩ (κ × κ), κ̄I = {u ∈
κ \ {t} : u′ is idempotent}, κ̄J = {u ∈ κ \ {t} : u′ is not idempotent},
κo, κJ , κI are defined by Table 2,

κ = 〈κo, κJ , κI ,≤κ〉, for u ∈ κ,

Xu = (Xu,≤u, ·u,→u, u, u′) , (4.3)

where

Xu = {x ∈ X : τ(x) = u},

≤u, ·u, and →u are restrictions of ≤, ·, and → to Xu, for x ∈ Xu,
x′u = x → u′, and for u, v ∈ κ, u ≤κ v, ρu→v : Xu → Xv is given by

ρu→v(x) = vx. (4.4)

(2) Given a bunch of layer algebras A = 〈Xu, ρu→v〉κ with κ = 〈κo, κJ , κI ,

≤κ〉, Xu = (Xu,≤u, ·u,→u, u, u′u ), and x′u = x →u u′u ,

XA = (X, ≤, ·,→, t, t′)

is an involutive FLe-chain, called the involutive FLe-chain derived from
A, where

X =
⋃̇

u∈κ
Xu, (4.5)

for v ∈ κ, ρv : X → X is defined by

ρv(x) =
{

ρu→v(x) if u <κ v and x ∈ Xu

x ifu ≥κ v and x ∈ Xu
, (4.6)

for short, for x ∈ Xu and y ∈ Xv,13

x < y iff ρuv(x) <uv ρuv(y) or ρuv(x) = ρuv(y) andu <κ v (4.7)

xy = ρuv(x) ·uv ρuv(y), (4.8)

x′ = x′u , (4.9)

x → y = (xy′)′, (4.10)

13Note that for u, v ∈ κ, uv = maxκ(u, v) since u, v are positive idempotents.
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Table 2. Three cases—three classes

κo κJ κI

{t} κ̄J κ̄I if X is odd

∅ κ̄J ∪ {t} κ̄I if X is even and f is not idempotent

∅ κ̄J κ̄I ∪ {t} if X is even and f is idempotent

14 and t is the least element of κ. XA is odd if t ∈ κo, even with a
non-idempotent falsum if t ∈ κJ , and even with an idempotent falsum
if t ∈ κI .

(3) For a bunch of layer algebras A, A(XA) = A, and for an odd or even
involutive FLe-chain X, XAX

= X.

Proof. (1): κ is the set of positive idempotent elements of X by claim (vii)
in Lemma 3.1. Therefore, the least element of κ is t, and κ, being a subset
of X, is totally ordered. The ordered triple 〈κ̄I , κ̄J , {t}〉 is clearly a partition
of κ, where κ̄I and κ̄J can also be empty.
Let u ∈ κ. Xu is nonempty since u ∈ Xu holds by claim (vi) in Lemma 3.1,
and, being a subset of X, Xu is totally ordered by ≤u. Xu is closed under
·u, →u, and ′ by claim (xvi) in Lemma 3.1, and thus u′u = u → u′ ∈ Xu.

Since τ(x) = u holds for x ∈ Xu, therefore xu = xτ(x)
L3.1.(v)

= x shows that
u is the unit element of Xu. For x ∈ Xu,

x′u = x′ (4.11)

holds since x′u = x→u′ = x→ (u → f) · is residuated= (xu)→ f = x→ f = x′.
Therefore, u′u = u′, and hence x′u = x → u′u . Summing up,

Xu = (Xu,≤u, ·u,→u, u, u′) is an involutive FLe-chain. (4.12)

Next we prove that the Xu’s satisfy (4.1).

If u ∈ κo then X is odd by Table 2. By claim (xiii) in Lemma 3.1 and by
Lemma 3.2, Xu is a cancellative odd involutive FLe-chain.

If u ∈ κJ then by Table 2, u = t or u ∈ κ̄J . In both cases u′ is not idempotent.

We prove that Xu is discretely ordered by showing

xu′ = x↓u
< x (4.13)

14Alternatively, we may write x ≤ y iff ρuv(x) ≤uv ρuv(y) except if u >κ v and
ρuv(x) = ρuv(y).
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for x ∈ Xu, where ↓u
denotes the neighbour operation on Xu. It holds true

that

u′ < t. (4.14)

Indeed, if u ∈ κ̄J then u > t and the involutivity of ′ on X implies u′ <

t′
L3.1(i)

= f
X is odd or even≤ t, whereas if u = t then u′ = t′ < t since the second

row of Table 2 shows that X is even. Therefore, by denoting y = u′u′,

y < u′ (4.15)

holds since y = u′u′ (4.14)
≤ u′t = u′ and equality cannot not hold since

u′ is not idempotent. Now xu′ (4.14)
≤ xt = x follows. Assume, by con-

tradiction xu′ = x. It would imply xy = x(u′u′) = (xu′)u′ = x, hence
by claim (iii) in Lemma 3.1, (x′y′)′ ≥ xy = x, and in turn x′y′ ≤ x′

would follow on the one hand. On the other hand, from y′ (4.15)
> u ≥ t,

by monotonicity x′y′ ≥ x′t = x′ follows, thus we obtain x′y′ = x′, and

hence y′ ≤ τ(x′)
L3.1(ix)

= u, a contradiction to (4.15). We have just seen that
xu′ < x. Next, assume that there exists z ∈ Xu such that xu′ < z < x holds.
Since z < x, xu′ ≥ (z′u)′ = z′′ = z follows by claim (iv) in Lemma 3.1, a
contradiction, so (4.13) is confirmed.

Next we show that Xu is even: u′u (4.11)
= u′ = uu′ (4.13)

= u↓u
< u.

Finally, we show that Xu is cancellative, by showing that every element of
Xu has inverse, that is, for x ∈ Xu, x ·u x′u

↑u
= u. On the one hand, refer-

ring to (4.12), x ·u x′u
↑u

>u u′u holds by residuation since X is a chain. It is
equivalent to x ·u x′u

↑u
≥u u since Xu is even, yielding x ·u x′u

↑u
≥ u. On the

other hand, x ·u x′u
↑u

= xx′u
↑u

(4.11)
= xx′↑u

(3.1)
= x(x↓u

)′ (4.13)
= x(xu′)′ L3.1(ii)

=

x(x → u)
· is residuated≤ u.

Summing up, Xu is a discretely ordered cancellative even involutive FLe-
chain.

If u ∈ κI then by Table 2, u = t or u ∈ κ̄I . In both cases u′ is idempotent. We
show that Xu is even: first, u′u < u holds since if u ∈ κ̄I then u > t and hence

u′u (4.11)
= u′ < t′

L3.1(i)
= f

X is odd or even≤ t < u, whereas if u = t then X is
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even by the third row of Table 2 and u′u (4.11)
= u′ = t′

L3.1(i)
= f

X is even
< t = u,

and second, by claims (xii) and (xvi) in Lemma 3.1, no element x ∈ X such
that u′ < x < u can be in Xu (if u′ < x < u then u′ < x′ < u, so we
may safely assume x ≥ t, and then x ∈ Xu implies u = τ(x) ≤ x < u,
a contradiction); thus u′u = u↓u

. Summing up, Xu is an even involutive
FLe-chain with an idempotent falsum. It remains to prove x ·u x′u = u′u for

x ∈ Xu, which follows from u′u (4.11)
= u′ = τ(x)′ = (x → x)′ L3.1(ii)

= xx′ (4.11)
=

xx′u = x ·u x′u .

Next we prove that ρu→v is a homomorphism from the residuated lattice
reduct of Xu to the residuated lattice reduct of Xv. Let u, v ∈ X be pos-
itive idempotent elements of X such that u < v. ρu→v maps Xu to Xv by
claim (xvi) in Lemma 3.1. ρu→v preserves the ordering since · is monotone.
ρu→v preserves products since · is associative and v is idempotent.

To show that ρu→v preserves the residual operation we proceed as follows.

Let x, y ∈ Xu. It holds true that v(xy′)′x(vy)′ L3.1(ii)
= x(x → y)(y → v′)v ≤ f

since · is residuated, hence by adjointness, v(xy′)′ ≤ (x(vy)′)′ follows. On

the other hand, v(xy′)′ L3.1(iii)
≥ v(x′y) = x′(vy). Now x = tx ≤ vx, and

since v > u = τ(x) and hence v does not stabilize x, x < vx follows. There-

fore, x′(vy)
L3.1(iv)

≥ ((vx)(vy)′)′ = (x(v(vy)′))′ (vy)′∈Xv= (x(vy)′)′. Summing

up, v(xy′)′ = (x(vy)′)′. Therefore, ρu→v(x →u y)
L3.1(ii)

= v(x ·u y′u )
′u (4.11)

=

v(xy′)′ = (x(vy)′)′ (vy)′∈Xv= (x(v(vy)′))′ = ((vx)(vy)′)′ (4.11)
= ((vx) ·v (vy)′v )

′v

L3.1(ii)
= (vx) →v (vy) = ρu→v(x) →v ρu→v(y) an we are done.

Finally, ρu→v preserves the unit element:

ρu→v(u) = vu = v (4.16)

holds since v = vv ≥ vu ≥ vt = v. Summing up, ρu→v is a homomorphism
from the residuated lattice reduct of Xu to the residuated lattice reduct of
Xv.

To conclude the proof of claim (1) it only remains to prove

(A1) For u, v, w ∈ X positive idempotent elements such that u ≤ v ≤ w,

and for x ∈ Xu, ρu→u(x) = ux
L3.1(v)

= x and (ρv→w ◦ ρu→v)(x)
(4.4)
=

w(vx) = (wv)x
(4.16).

= wx = ρu→w(x).
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(A2) Let u, v ∈ X positive idempotent elements such that u < v. By
claim (iv) in Lemma 3.1, v = vt ≥ vu′ ≥ (v′v)′ = τ(v) = v, yielding

ρu→v(u′)
(4.4)
= vu′ = v

(4.16)
= vu

(4.4)
= ρu→v(u).

(2): We conclude by a series of claims.

≤ is a total ordering on X.

• Irreflexivity of < is immediate form the irreflexivity of <κ.

• Connectedness of < is obvious, too: either ρuv(x) <uv ρuv(y) or ρuv(y)
<uv ρuv(x) or ρuv(x) = ρuv(y) holds, since ≤uv is total. The first two

cases yield x
(4.7)
< y and y

(4.7)
< x, respectively. If ρuv(x) = ρuv(y) then

either u <κ v or v <κ u or u =κ v holds since ≤κ is total. Here u =κ v

yields x
(A1)
= ρuu(x) = ρvv(y)

(A1)
= y, whereas u <κ v and v <κ u yields

x
(4.7)
< y and y

(4.7)
< x, respectively.

• < is transitive: Let x ∈ Xu, y ∈ Xv, z ∈ Xw, and assume x < y < z.
From x < y it follows that ρuv(x) ≤uv ρuv(y), hence by preservation
of the ordering, ρuvw(x) ≤uvw ρuvw(y) holds. Analogously we obtain
ρuvw(y) ≤uvw ρuvw(z), hence ρuvw(x) ≤uvw ρuvw(z) follows by the
transitivity of ≤uvw. Therefore either ρuvw(x) <uvw ρuvw(z) and we
conclude x < z, or ρuvw(x) = ρuvw(z). The latter implies ρuvw(x) =
ρuvw(y) = ρuvw(z), and also u <κ v and v <κ w. Therefore, by the
transitivity of <κ, u <κ w follows and thus x < z.

(X, ·, t) is a commutative monoid.

• Commutativity of · is straightforward.

• Let x ∈ Xu, y ∈ Xv, z ∈ Xw. Then (xy)z = (ρuv(x) ·uv ρuv(y))z, and
the latest is equal to ρuvw (ρuv(x) ·uv ρuv(y))·uvwρuvw(z) since ρuv(x)·uv

ρuv(y) ∈ Xuv. Since the ρ’s preserve products and · is idempotent,
the latest is equal to (ρuvw(x) ·uvw ρuvw(y)) ·uvw ρuvw(z). Analogously
follows that x(yz) is equal to ρuvw(x) ·uvw (ρuvw(y) ·uvw ρuvw(z)), and
hence the associativity of ·uvw implies the associativity of ·.

• For x ∈ Xu, tx
(4.8)
= ρu(t) ·u ρu(x)

(4.6)
= ρu(t) ·u x

(4.2)
= u ·u x = x holds

using that u is the unit element of Xu.

′ is an order reversing bijection on X.

We start with two claims.
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– (C1) If u <κ v then for x ∈ Xu, ρv(x′u ) is the inverse of ρv(x) in Xv.

Indeed, ρv(x) ·v ρv(x′u )
(4.6)
= ρu→v(x) ·v ρu→v(x′u )

(4.2)
= ρu→v(x ·u x′u ).

Note that x ·u x′u = u′u holds not only if u ∈ κI (see (4.1)), but also
if u ∈ κo ∪ κJ , since due to the cancellativity of Xu, x ·u x′u = x ·u
(x →u u′u )

(3.4)
= x ·u (x−1u ·u u′u ) = (x ·u x−1u) ·u u′u = u ·u u′u = u′u .

Therefore, ρu→v(x ·u x′u ) = ρu→v(u′u ), which is equal to ρu→v(u)
(4.2)
= v if

u ∈ κo (since then u′u = u), and is equal to
(A2)
= ρu→v(u)

(4.2)
= v if u /∈ κo.

– (C2) If u <κ v then for x ∈ Xu, ρv(x)′v = ρv(x′u )↓v
< ρv(x′u ). First

we prove ρv(x)′v ·v ρv(x) = v↓v
: if v ∈ κJ then due to the cancellativity

of Xv (see (4.1)), ρv(x)′v ·v ρv(x) = ρv(x) ·v (ρv(x) →v v′v )
(3.4)
= ρv(x) ·v

(ρv(x)−1 ·v v′v ) = (ρv(x) ·v ρv(x)−1)·vv′v = v·vv′v = v′v Xv is even, see (4.1)
=

v↓v
, whereas if v ∈ κI then ρv(x)′v ·v ρv(x) = v′v = v↓v

holds by (4.1),
and we are done. Now, multiplying both sides by ρv(x′u ) yields ρv(x)′v =
v↓v

·vρv(x′u ) using (C1). If v ∈ κJ then by (4.1) we can apply claim (xiv) in
Lemma 3.1 resulting in ρv(x′u )↓v

= v↓v
·v ρv(x′u ) < v ·v ρv(x′u ) = ρv(x′u ),

so we are done. If v ∈ κI then by (4.1), Xv is an even involutive FLe-chain
with an idempotent falsum. Therefore, Xv = Sp(A,H) by Theorem 6.3,
and since ρv(x′u ) is invertible by (C1), ρv(x′u ) is an element of H by
claim (c) in Theorem 6.3. On the other hand, v↓v

is clearly in H•. There-

fore, v↓v
·v ρv(x′u )

(6.8)
= (v ·v ρv(x′u ))↓v

= ρv(x′u )↓v

ρv(x
′u )∈H
< ρv(x′u ) holds.

• Since for u ∈ κ, ′u is of order 2, so is ′ over X by (4.9), hence ′ is a
bijection. It remains to prove that ′ is order reversing. Let Xu � x ≤
y ∈ Xv. If u = v then x ≤u y holds by (4.7), hence y′u ≤u x′u follows
since Xu is involutive, thus y′ ≤ x′ holds by (4.7) and (A1). If u <κ v

then x ≤ y implies ρv(x) ≤uv y by (4.7), hence y′v ≤v ρv(x)′v follows

since Xv is involutive. Therefore, y′v ≤v ρv(x)′v (C2)
<v ρv(x′u ), and thus

y′v <v ρv(x′u ) implies y′v ≤ x′u by (4.7), yielding y′ ≤ x′ by (4.9). If
u >κ v then x ≤ y implies x <u ρu(y) by (4.7), which is equivalent to
ρu(y)′u

<u x′u since Xu is involutive. By (C2), ρu(y′v ) ≤u x′u follows,
which yields y′v ≤ x′u by (4.7), and hence y′ ≤ x′ follows by (4.9).

t′ is a dualizing element of (X, ≤, ).
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• It suffices to prove that for x ∈ X, there exists x → t′ and

x → t′ = x′, (4.17)

since the involutivity of ′ then ensures (x → t′) → t′ = x. Equivalently,
that for x, y ∈ X, xy ≤ t′ if and only if x ≤ y′. Let x ∈ Xu, y ∈ Xv.
Since · is commutative and since ′ is an order reversing bijection, we

may safely assume u ≤κ v. Since t′
(4.9)
= t′

t ∈ Xt and t ≤κ v, by (4.8)
xy ≤ t′

t

is equivalent to ρv(x) ·v ρv(y) ≤ t′
t

. Since ρv(x) ·v ρv(y) ∈ Xv,
ρv(x) ·v ρv(y) ≤ t′

t

is equivalent to ρv(x) ·v ρv(y) ≤v v′v : indeed, if t = v

then ρv(x) ·v ρv(y) ≤ t′
t

is equivalent to ρv(x) ·v ρv(y)
(4.7)
≤v t′

t

= v′v ,
whereas if t <κ v then v /∈ κo and ρv(x) ·v ρv(y) ≤ t′

t

is equivalent

to ρv(x) ·v ρv(y)
(4.7)
<v ρv(t′

t

)
(4.6)
= ρt→v(t′

t

)
(A2)
= ρt→v(t)

(4.2)
= v, that is,

equivalent to ρv(x) ·v ρv(y)
v/∈κo, (4.1)

≤v v↓v

(4.1)
= v′v . Since Xv is residuated,

ρv(x) ·v ρv(y) ≤v v′v is equivalent to ρv(x) ≤v y →v v′v = y′v , and by

(4.7) it is equivalent to x ≤ y′v (4.9)
= y′.

Summing up, we have shown that (X, ≤) is a chain and (X, ·, t) is a
commutative monoid. Since t′ is a dualizing element of (X, ≤, ), Lemma 3.3
shows that (X, ≤, ) is residuated and x → y = (xy′)′. Since ′ (given in (4.9))
coincides with the residual complement of X (given by x→t′, see (4.17)), and
since ′ is an order reserving involution on X, it follows that X is involutive.
Finally, by (4.1), Xt and hence also X is odd if t ∈ κo, X is even with a
non-idempotent falsum if t ∈ κJ , and X is even with an idempotent falsum
if t ∈ κI .

(3): Let A = 〈Xu, ρu→v〉κ be a bunch of layer algebras, and adapt the
notations in Definition 4.1 and the definitions in claim (2). To see that
the universe of the uth layer algebra of A(XA) is equal to Xu which is the
universe of the uth layer algebra Xu of A, we need to prove that for x ∈ X
(where X is given in (4.5)), x → x = u if and only if x is in Xu, the
universe of the uth-layer algebra: x ∈ X implies that x ∈ Xv for some

v ∈ κ. Now u = x → x
(4.10)

= (xx′)′ (4.9) (4.8)
= (x ·v x′v )′ (4.9)

= (x ·v x′v )
′v
,

where the last equality holds since Xv is closed under ′v and ·v and thus
x ·v x′v is in Xv. Therefore, u ∈ Xv follows. Hence u = v must hold since
u ∈ Xu and X is the disjoint union of the Xu’s by (4.5). The definition of
the ordering relation in claim (1) and (4.7) show that the ordering of the
uth layer algebra of A(XA) is the same as the ordering ≤u of the uth layer
algebra Xu of A. Likewise show (4.8) and the definition of the monoidal
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operation in claim (1) that the monoidal operation of the uth layer algebra
of A(XA) is the same as the monoidal operation ·u of the uth layer algebra
Xu of A. Since both the uth layer algebra of A(XA) and the uth layer algebra
Xu of A are involutive FLe-chains over the same universe, equipped with
the same ordering relation and the same product operation, their residual
operations – which are uniquely determined by these – must coincide, too.
The unit element of Xu is u, therefore u acts as the unit element of the uth

layer algebra of A(XA) (which is over the same set Xu and is equipped with
the same monoidal operation, as we have seen above). Finally, the falsum
constant of Xu is u′u . On the other hand, the falsum constant of the uth

layer algebra of A(XA) is u→u′ (4.9)
= u→u′u = u→u u′u = u′u , where the last

equality holds by residuation since u is the unit element over Xu. Summing
up, A(XA) = A.

Let X = (X, ≤, ·,→, t, f) be an odd or even involutive FLe-chain, and
adapt the definitions in claim (1). We have seen in the proof of claim (1) that
the Xu’s are nonempty. It is straightforward that they are disjoint, too, and
their union, which is the universe of XAX

, see (4.5), is equal to X. To prove
that the ordering of X and of XAX

coincide, first we prove the following
statement. If v < u and x ∈ Xv then

ρu(x) = min{z ∈ Xu : z ≥ x} > x. (4.18)

Indeed, ux ∈ Xu by claim (xvi) in Lemma 3.1, and ux ≥ x holds since
ux ≥ tx = x. By contradiction, assume that there exists z ∈ Xu such
that x < z < ux. Since ≤ is total, by adjointness z′′ < ux is equiva-

lent to f < z′(ux) = (z′u)x z′∈Xu= z′x. Finally, since ≤ is total, by ad-
jointness f < z′x is equivalent to x > z′′ = z, a contradiction. Referring
to (4.18) a moment’s reflection shows that the ordering ≤ of X coincides
with the ordering of XAX

given by (4.7). Since for x ∈ Xu and y ∈ Xv,

xy
L3.1(v)

= (uux)(vvy) = ((uv)x)((uv)y) = ρuv(x)ρuv(y) = ρuv(x) ·uv ρuv(y),
the monoidal operation · (of X) coincides with · given in (4.8). Since both X
and XAX

are involutive FLe-chains over the same universe, equipped with
the same ordering relation and the same product operation, their residual
operations – which are uniquely determined by these – must coincide, too.
By (4.3), the unit element of Xt is t, and hence the unit element of XAX

is
also t. Finally, the falsum constant of X is f , hence the falsum constant of

Xt is t′
t

= t → t′
L3.1(i)

= t → f
L3.1(i)

= f . Therefore, the falsum constant of
XAX

is also t′ = f . Summing up, XAX
= X.



Group Representation for Even and Odd Involutive... 901

Remark 4.3. Two elements of the construction of XA in Lemma 4.2/(2)
are reminiscent to the P�lonka sum construction [48]. In the P�lonka sum
construction the universe of the algebra is the disjoint union of the universes
of the algebras in the direct system.So is in our construction, c.f. (4.5). In
the P�lonka sum construction every binary operator ◦ ∈ {·,→,∧,∨} would
be given in terms of the direct system as follows: for x ∈ Xu, y ∈ Xv,

x ◦ y = ρu→uv(x) ◦uv ρu→uv(y) (4.19)

In our construction it is the case only for ◦ ∈ {·}, c.f. (4.8). As for ◦ ∈ {→},
if → were given by (4.19) then for any positive idempotent elements u < v,

it would hold true that v → u = u → v since v → u
(4.19)

= v →
v

v
(4.19)

=
u → v. But in an involutive FLe-chain it would be equivalent to vu′ =
uv′ by Lemma 3.1/(ii), a contradiction, since vu′ = v and uv′ = v′ (as

shown by v
L3.1(vi)

= τ(v)
L3.1(ii)

= (vv′)′ L3.1(iv)
≤ vu′ ≤ vt = v and v′ = tv′ ≤

uv′ ≤ vv′ L3.1(ii)
= τ(v)′ L3.1(vi)

= v′, respectively). Finally, notice that P�lonka’s
definition doesn’t work for ◦ ∈ {∧,∨} since (4.19) would render different
elements of the universe equal. Indeed, if u < v are positive idempotent
elements, x ∈ Xu and ρu→v(x) = y ∈ Xv then according to (4.19), x ∧ y =
ρu→v(x) ∧v y = y = ρu→v(x) ∨v y = x ∨ y yielding x = y, a contradiction
since x and y are in different layers. Even though our definition is applied
in our specific (residuated lattice) setting only, we have introduced in (4.7)
a general way of ordering P�lonka sums, call it the directed lexicographic
order. Making use of the (slight) similarity between our construction and
that of P�lonka’s would have made the related proof only a few lines shorter.
Therefore, we have included those few lines, too, to make the treatment
self-contained.

Bunches of layer algebras will, in turn, be represented by bunches of
layer groups in Section 7.1. To that end, in the following two sections the
necessary auxiliary results (along with some which are more general than
what we actually need in this paper) will be developed.

5. Even Involutive FLe-Chains with Non-idempotent Falsum
Constants – Changing the Falsum Constant

An abelian o-group is called discrete, if there exists the smallest positive
element greater than the unit element. It is equivalent to saying that the
abelian o-group is discretely ordered, or that its induced cancellative odd
involutive FLe-algebra is discretely ordered. In the following definition the
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residuated chain reduct of the FLe-chain is left unchanged, and only the
falsum constant, and thus also the residual complement are changed slightly.

Definition 5.1. For a discretely ordered, cancellative, odd, involutive FLe-
chain X = (X, ≤, ·,→, t, t), let

X↓↓ = (X, ≤,→, t, t↓).

For a discretely ordered, cancellative, even, involutive FLe-chain Y = (Y,≤
, ·,→, t, t↓), let

Y↑↑ = (Y,≤, ·,→, t, t).

Lemma 5.2. Let X and Y be discretely ordered, cancellative, involutive
FLe-chains, X is odd, Y is even. Then

(1) X↓↓ is a discretely ordered, cancellative, even, involutive FLe-chain,

(2) Y↑↑ is a discretely ordered, cancellative, odd, involutive FLe-chain,

(3) X↓↑↓↑ = X and Y↑↓↑↓ = Y.

Proof. The rest being obvious we prove the involutivity of X↓↓ and Y↑↑ .
(1): To see that X↓↓ is involutive, denote the residual complement operation

of X by ′, and the inverse operation of λ(X) by −1. Then x → t↓
(3.4)
=

x−1t↓
(3.3)
= x′t↓

L3.1(xiv)
= (x′)↓, and hence (3.1) confirms involutivity. (2): To

see that Y↑↑ is involutive, denote the residual complement operation of Y

by ′• . Then y → t
L3.1(ii)

= (yt′
•
)
′• L3.1(i)

= (yf)′• Y is even= (yt↓)
′• L3.1(xiv)

= y↓′•

holds, and hence (3.1) confirms involutivity.

6. Even Involutive FLe-Algebras with Idempotent Falsum
Constants – Subgroup Splits of Odd Involutive FLe-Algebras

As an investigation into the structure of residuated lattices which are not
necessarily totally ordered, a one-to-one correspondence between pairs of
an odd involutive FLe-algebra and a cancellative subalgebra of it, and even
involutive FLe-algebras where the residual complement of the unit element
is idempotent will be proved in this section. In groups the unit element has
two different roles to play. It serves as the unit element of the multiplication,
and also the product of any element by its inverse is equal to it. We shall
replace the unit element of any odd involutive FLe-algebra by two elements,
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each will inherit a single role. This way both the unit element itself and its
two roles will be “split” into two. Some anticipatory examples: the unit-split
algebra of the one-element group will be the two-element Boolean algebra,
and the unit-split algebra of the Sugihara lattice SZ will be the Sugihara
lattice SZ� , (both named by Meyer, see [2][p. 414]). Moreover, not only the
unit element, but in fact any subgroup of an odd involutive FLe-algebra can
be “split”, that is, each element of the subgroup of an odd involutive FLe-
algebra will be replaced by two elements. We prove that by splitting (and
thus “doubling”) a subgroup of any odd involutive FLe-algebra we obtain an
even involutive FLe-algebra with an idempotent falsum constant, and each
even involutive FLe-algebra with an idempotent falsum constant arises this
way in a unique manner (Theorem 6.3).

Such a splitting method has roots in the literature. In [11] an analogous
idea has been applied to abelian pregroups. Our method here is both more
general and more specific: the algebras that we split are more general than
that of [11], however, in our approach the (second) algebra we use in the
splitting procedure is the two element Boolean algebra (each element is split
into two elements only) whereas in [11] it is taken from the more general class
of zero-pregroups. The notion of the melting structure (of a pregroup) in [11]
is analogous to the image (of the even involutive FLe-algebra with idempo-
tent falsum constant) under what we call its canonical homomorphism. The
splitting procedure in [11] is precursor also for the partial lex-product con-
struction of [31], which when further generalized to partial sublex-products
has been capable to describe the structure of all odd, involutive FLe-chains
which have only finitely many idempotent elements [31,32].

Definition 6.1. Let Y = (Y,∧,∨, �,→�, t, f) be an even FLe-algebra with
an idempotent falsum constant. Denote its residual complement by ′� . Let

π1(Y) = X = (X, ∧̇, ∨̇, ·,→, t, t) andπ2(Y) = H = (H, ∧̇, ∨̇, ·,→, t, t)

be given by

H = {x ∈ Y : x � f < x}, H• = {x � f : x ∈ H}, X = Y \ H•, (6.1)

for y ∈ Y ,

hY(x) =
{

x if x ∈ X
x↑ if x ∈ H• , (6.2)
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and for x, y ∈ X,

x∧̇y = hY(x ∧ y),

x∨̇y = hY(x ∨ y),

xy = hY(x � y), (6.3)

x → y = hY(x →� y). (6.4)

Definition 6.2. Let X = (X, ∧,∨, ·,→, t, t) be an odd involutive FLe-
algebra with residual complement ′. Let H ≤ X (over H ⊆ X), H can-
cellative15. Let Sp(X,H), the H-split of X be

Y = (Y,∧Y ,∨Y , �,→�, t, t
•) ,

where H• = {h• : h ∈ H} is a copy of H disjoint from X,

Y = X ∪ H•, (6.5)

the lattice ordering ≤ of X is extended to Y by letting

a• <Y b• andx <Y a• <Y y for a, b ∈ H, a < b, x, y ∈ X,x < a ≤ y, (6.6)

h : Y → X,

h(x) =
{

x if x ∈ X
x↑ if x ∈ H• , (6.7)

where ↑ and ↓ denote the neighbour operations of Y,

x � y =
{

h(x)h(y) ifh(x)h(y) /∈ H orx, y ∈ H
(h(x)h(y))↓ if¬(x, y ∈ H) andh(x)h(y) ∈ H

, (6.8)

′� : Y → Y ,

x′� =

⎧
⎨

⎩

x′ if x ∈ X \ H
(x′)↓ if x ∈ H
(x↑)′ if x ∈ H•

,

x →� y = (x � y′� )
′�
. (6.9)

Theorem 6.3. The following statements hold true.

(1) Let X be an odd involutive FLe-algebra, H be a cancellative subalgebra
of it, and Y be Sp(X,H), the H-split of X. Then

(a) Y is an even FLe-algebra with an idempotent falsum constant.
(b) If X is cancellative then for x ∈ Y , x � x′� = t• holds.

15Equivalently, λ(H) is a lattice ordered abelian group by Lemma 3.2.
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(c) {x ∈ Sp(X,H) : x is invertible in Sp(X,H)} = H.

(2) Let Y be an even involutive FLe-algebra with an idempotent falsum con-
stant. Then

(a) there exists a unique pair 〈X,H〉 of an odd involutive FLe-algebra
X = (X, ∧̇, ∨̇, ·,→, t, t) and a cancellative subalgebra H of X such
that Y is Sp(X,H), the H-split of X. X and H are given by π1(Y)
and π2(Y), respectively.

(b) If for x ∈ Y , x � x′� = f holds then X is cancellative.
(c) hY is a surjective homomorphism (called the canonical homomor-

phism of Y) from Y onto X, that is, it holds true that

X = hY(Sp(X,H)).

Proof. (a): It is obvious from (6.6) that

for a ∈ H, a is the unique cover of a•. (6.10)

Therefore, by letting k : X → Y ,

k(x) =
{

x if x ∈ X \ H
x• if x ∈ H

,

a moment’s reflection shows that ≤Y is a lattice ordering on Y and the
corresponding lattice operations are given by

x ∧Y y = y ∧Y x =
{

y if h(y) ≤ h(x), y ∈ H•

h(x) ∧ h(y) otherwise ,

x ∨Y y = y ∨Y x =

⎧
⎪⎪⎨

⎪⎪⎩

h(x) ∨ h(y) if h(x) ∨ h(y) /∈ H
k(h(x) ∨ h(y)) if {h(x), h(y)} 	� h(x) ∨ h(y) ∈ H
h(x) ∨ h(y) if h(x) ≤ h(y), y ∈ H
k(h(x) ∨ h(y)) if h(x) ≤ h(y), y ∈ H•

.

It is straightforward from (6.8) that � is commutative. t is the unit element
of �: using that t is the unit element over X,

x � t
(6.8), (6.7)

(6.7) =
{

h(x)t = h(x) = x if h(x) /∈ H orx ∈ H
(h(x)t)↓ = h(x)↓ = x if x /∈ H and h(x) ∈ H

.

We obtain a• = a↓ < a for a ∈ H from (6.10), therefore, ′� in (6.9) is clearly
an order reversing involution by (3.1).

As for the associativity of �, first notice that

x � y ∈ H if and only if x, y ∈ H. (6.11)
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Indeed, if x, y ∈ H then x � y
(6.8)
= h(x)h(y)

(6.7)
= xy ∈ H since H is closed

under ·. If ¬(x, y ∈ H) then either h(x)h(y) ∈ H in which case x�y
(6.8)∈ H•

implies x � y /∈ H, or h(x)h(y) /∈ H in which case x � y
(6.8)
= h(x)h(y) /∈ H,

hence we are done. Next notice that

forx, y ∈ Y, h(x � y) = h(x)h(y). (6.12)

Indeed, if the first row of (6.8) defines the value of x � y then x � y =

(h(x)h(y))↓ and h(x)h(y) ∈ H, and hence h(x � y) = h((h(x)h(y))↓)
(6.7)
=

(h(x)h(y))↓↑ = h(x)h(y), whereas if x � y
(6.8)
= h(x)h(y) then h(x � y) =

h(h(x)h(y)) = h(x)h(y) since h maps to X, X is closed under ·, and h is
the identity on X.

Now, h((x � y) � z) = h(x � (y � z)) readily follows from (6.12) and the asso-
ciativity of ·. Therefore, by (6.7), (x � y)�z 	= x�(y � z) can only be possible
if one side is in H and the other side is in H•. However, (6.11) shows that
if one side is in H then x, y, z ∈ H, and hence, since H is closed under � by
(6.11), also the other side must be in H.

It is easily seen that

� is isotone with respect to ≤Y . (6.13)

Indeed, let x, y, z ∈ Y with y <Y z. Since h and · are increasing with respect
to ≤, it follows that h(x)h(y) ≤ h(x)h(z). Now by (6.8), x�y ≤Y x�z clearly
holds if h(x)h(y) < h(x)h(z), hence we may assume h(x)h(y) = h(x)h(z).
But then the only way for x � y 	≤Y x � z to hold is if x � y = h(x)h(y)
and x � z = (h(x)h(z))↓, which by (6.8) leads to assuming ¬(x, z ∈ H),
h(x)h(z) ∈ H and either h(x)h(y) /∈ H or x, y ∈ H. It follows that x, y ∈ H.
But then h(x)h(y) = xy < xh(z) ≤ h(x)h(z) is a contradiction, where the
strict inequality follows from y < h(z) and since x has an inverse.

To prove that � is residuated, and that x→�y = (x � y′� )
′�
, by Lemma 3.3

it suffices to verify that t• is a dualizing element of (Y,≤, �). Since ′� is clearly
an order reversing involution, it suffices to verify that that x →� t↓ exists
and is equal to x′� . It amounts to verifying only three cases. (i) If x ∈ H

then x′� = (x′)↓ ∈ H• and x � x′� (6.9)
= x � (x′)↓

(6.8)
= (xx′)↓ = t↓, where in

the last equality we used that H is a subgroup, hence x′ is the inverse of
x in X. On the other hand, for z > x′� it follows that z ≥ x′ and hence

x � z
(6.13)

≥ x � x′ x′∈H, (6.8)
= xx′ = t > t↓. Therefore, by residuation, x →� t↓

exists and is equal to x′� . (ii) If x ∈ H• then x = y↓ for some y ∈ H and
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x′� = y′ = (x↑)′ (3.1)
= x′↓ > x′. We obtain x � x′� = y↓ � y′ (6.8)

= (yy′)↓ = t↓.

On the other hand, for z > x′� it follows that z ≥ x′ and hence x � z
(6.13)

≥
y↓�x′ (6.8)

= (yx′)↓ = (yy′↑)↓. Here yy′↑ > t holds by residuation since y′↑ > y′,
hence x�z > t↓ follows. (iii) Finally, if x ∈ X \H then x′� = x′ ∈ X \H. The

case x � x′� = x � x′ ∈ H leads to x � x′� = x � x′ (6.8)
= (xx′)↓ ≤ t↓, whereas

if x � x′� = x � x′ ∈ X \ H then x � x′� = x � x′ (6.8)
= xx′ ≤ t, but due to

x � x′� ∈ X \ H and t ∈ H equality cannot hold, hence here too, x � x′� ≤ t↓
follows. On the other hand if z > x′� = x′ then x � z ≥ (xz)↓ > t↓ holds by
(6.8) and by residuation, respectively.
Summing up, the falsum-free reduct of Y is an involutive commutative resid-
uated lattice with residual complement operation ′� . By the second row of
(6.9), t′

�

= (t′)↓ = t↓, and t↓ is idempotent by the second row of (6.8). A
particular instance of (6.10) shows that t is the unique cover of t•, hence
t• = t↓ and thus Y is even.

(b): Since

h(x)h(x′) = xx′ L3.1(x)
= f = t ∈ H, (6.14)

for x ∈ Y , x � x′� (6.9)
=

⎧
⎪⎪⎨

⎪⎪⎩

x � x′ (6.8), (6.14)
= (h(x)h(x′))↓ = t• if x ∈ X\H

x � (x′)↓
(6.8)
= (h(x)h(x′↓))↓

x′∈H, (6.7)
= (xx′)↓

(3.5)
= (xx−1)↓ = t• if x ∈ H

x � (x↑)′ (6.8)
= (h(x)h(x↑′))↓

(6.7)
= (x↑x↑′)↓

(3.5)
= (x↑x↑−1)↓ = t• if x ∈ H•

.

(c): Since t ∈ H and H• is disjoint from H, referring to (6.7), it follows
from (6.8) that x � y can be equal to t only if x, y ∈ H. On the other hand,
every element of H is invertible in X by claim (xi) in Lemma 3.1, since H

is cancellative by assumption. Hence x � x−1 (6.8)
= h(x)h(x−1)

(6.7)
= xx−1 = t.

(a): Unicity of H follows from claim (c), and it readily implies the unicity
of X, too, by (6.5). Let X = π1(Y) and H = π2(Y). Denote x• = x � f for
x ∈ H.

(i) Any element x of H is invertible, that is, x � x′t = t holds, where ′t

is given by

x′t = x →� t.

Indeed, t ≥ x � (x →� t)
L3.1(ii)

= x � (x � t′
�

)
′� L3.1(i)

= x � (x � f)′� 	≤ f ,
where the latest step holds by residuation since x ∈ H, that is x�f <
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Table 3. Product Table

� y ∈ X\H l ∈ H l• ∈ H•

x ∈ X\H ∈ (X\H) ∪ H• ∈ X\H x � l ∈ X\H

m ∈ H ∈ (X\H) ∈ H (m � l)• ∈ H•

m• ∈ H• m � y ∈ X\H (m � l)• ∈ H• (m � l)• ∈ H•

x, and it implies (x � f)′�
> x′� . Since Y is even, t ≥ x � x′t 	≤ f

implies x � x′t = t.

(ii) H ∩ H• = ∅. Indeed, if x ∈ H•, that is, if x = y � f for some y ∈ H
then x � f = (y � f) � f = y � (f � f) = y � f = x ensures x /∈ H.

(iii) t ∈ H ⊆ X. Indeed, t ∈ H because of t � f = f < t, and H ⊆ X
readily follows from (6.1) and claim (ii). Hence it holds true that

Y = (X \ H)
·∪ H

·∪ H•. (6.15)

(iv) Next we prove m• = m↓ < m for m ∈ H. Indeed, the assumption

m � f < z < m would yield f = t � f
(i)
= (m′t � m) � f = m′t �

(m � f)
L3.1(viii)

< m′t � z
L3.1(viii)

< m′t � m = t, a contradiction to t
covering f .

(v) For m ∈ H and y ∈ (X \ H) ∪ H• it holds true that

m• � y = m � y.

Indeed, (X \ H) ∪ H• = Y \ H holds by (6.15), therefore y � f = y.
We obtain m � y = m � (y � f) = (m � f) � y = m• � y, as stated.

(vi) For m ∈ H, m′t ∈ H: m′t /∈ H would imply t
(i)
= m � m′t (v)

=

m•�m′t = (m � f)�m′t = (m � m′t )�f
(i)
= t�f = f , a contradiction.

The following product table holds true16, see Table 3.

�(2,2): Since m is invertible by claim (i), (m � l) � f = m � (l � f) < m � l
follows by claim (viii) in Lemma 3.1.

�(2,3): m � l• = m � (l � f) = (m � l) � f
�(2,2)= (m � l)• ∈ H•.

�(3,3): m• � l• = (m � f) � (l � f) = (m � l) � (f � f) = (m � l) � f
�(2,2)=

(m � l)• ∈ H•.

16We shall refer to the (i, j) cell of this product table by �(i,j).
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�(1,2): By (6.15) the opposite of the statement is x � l ∈ H ∪ H•. Then,
by claims (i) and (vi) , x = x � t = x � (l � l′

t

) = (x � l) � l′
t ∈

(H ∪ H•)�H ⊆ H∪H• follows using �(2,2) and �(2,3), a contradiction
to (6.15).

�(1,3): It follows from claim (v) and �(1,2).

�(1,1): Since y /∈ H, y = y�f holds. Therefore, x�y = x�(y � f) = (x � y)�f
follows, hence x � y cannot be in H.

We are ready to prove that X = (X, ∧̇, ∨̇, ·,→, t, t) is an odd involutive FLe-
algebra. (X, ∧̇, ∨̇) is a lattice. Indeed, all elements of H• are meet-irreducible
because of claim (iv), hence X is closed under ∧̇ (clearly, ∧̇ is the restriction
of ∧ to X). Commutativity of ∨̇ is straightforward, and using claim (iv) a
moment’s reflection shows that ∨̇ is associative, too, and the absorption law
holds for ∨̇ and ∧̇. Commutativity of · is straightforward. X is closed under
· since by claim (iv), (x � y)↑ ∈ H if x � y ∈ H•. t ∈ X holds by claim (iii).
Since t ∈ H, �(2,1) and �(2,2) show that for y ∈ X, t � y /∈ H• holds, hence

ty
(6.3)
= hY(t � y)

(6.2)
= t � y and thus t is the unit element for · over X since

it is the unit element for � over Y .
As for the associativity of ·, notice that

forx, y ∈ Y, hY(x � y) = hY(x)hY(y) holds. (6.16)

Indeed, by (6.3), hY(x)hY(y) = hY(hY(x) � hY(y)), and Table 3 readily
confirms that hY(hY(x) � hY(y)) = hY(x � y). Hence, (X, ·) being the ho-
momorphic image of a semigroup, is a semigroup.

Next we prove that · is residuated. For x, y ∈ X, x → y = max{z ∈ X :
xz ≤ y}. Here

xz
(6.3)
=

{
x � z if x � z /∈ H•

(x � z)↑ if x � z ∈ H• .

If x�z ∈ H• then since y ∈ X, (x�z)↑ ≤ y holds if and only if x�z ≤ y holds
by claim (iv). Therefore, max{z ∈ X : xz ≤ y} = max{z ∈ X : x � z ≤ y}
holds yielding x → y = x →� y. Since x → y ∈ X, it also follows that

x → y
(6.2)
= hY(x → y) = hY(x →� y), as stated.

Involutivity of ′t is seen as follows. We will verify that

x′t = x′�
↑ ifx ∈ H, andx′t = x′� ifx ∈ X\H.

This, combined with (3.1) and that x′t ∈ H if and only if x ∈ H (shown
by claims (vi) and (i) ) concludes the proof of the statement. Clearly, x′t =
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x →� t ≥ x →� f = x′� . Let x ∈ H. Equality cannot hold since x � x′t = t

by claim (i), whereas x � x′� ≤ f < t by residuation and since Y is even.
Assume that there exits a ∈ X such that x′t > a > x′� . Then x′t = x →�

t
L3.1(ii)

= (x � t′
�

)
′� L3.1(i)

= (x � f)′�
> a > x′� , and hence x � f < a′� < x,

a contradiction to claim (iv). Let x ∈ X\H. If x′t > x′� then, as above,
x � f < x follows, a contradiction to x /∈ H.
Finally, X is clearly odd, since the constant which defines the involution ′t

is the unit element.
Next we prove that H is a cancellative subalgebra of X. Indeed, H is closed
under �, shown by �(2,2), t ∈ H holds by claim (iii), and H has an inverse
operation ′t , see claims (i) and (vi) , hence H is cancellative by claim (xi)
in Lemma 3.1. It is a subalgebra of X by claim (iii).
Finally, we verify that Y is the H-split of X. Indeed, the universe is as ex-
pected, see (6.15). The elements of H• are just below the respective elements
of H, as they should be, see claim (iv). Finally we verify that � coincides
with the product operation of the H-split of X.

If x, y ∈ H then x � y ∈ H by �(2,2). Hence x � y /∈ H• by claim (ii),

yielding x � y
(6.3)
= xy

(6.2)
= hY(x)hY(y), as required in (6.8).

If hY(x)hY(y) /∈ H then since hY(x), hY(y) ∈ X and X is closed under
·, hY(x)hY(y) ∈ X \ H follows. Therefore, by �(1−1,2−2)

17, either hY(x)

or hY(y) (say hY(x)) must be in X \ H, yielding hY(x)
(6.2)
= x ∈ X \ H.

By the first row of Table 3, for any y ∈ Y , x � y = x � hY(y). Since

H 	� hY(x)hY(y)
(6.16)

= hY(x � y), it follows that x � y /∈ H• and hence

x � hY(y) /∈ H•. Therefore, x � y = x � hY(y)
(6.2)
= hY(x � hY(y))

(6.3)
=

xhY(y)
(6.2)
= hY(x)hY(y), as required in (6.8).

Assume ¬(x, y ∈ H) and hY(x)hY(y) ∈ H. By (6.16), hY(x � y) ∈ H,
hence x � y ∈ H ∪ H•. Since ¬(x, y ∈ H), by Table 3 it follows that
x � y ∈ H•. Table 3 and x � y ∈ H• also implies that either x, y ∈ X \ H,
or at least one of x and y is in H• and the other is in H ∪ H•. In all
these cases, by Table 3 and (6.2) it follows that x � y = hY(x) � hY(y).

Hence hY(x)�hY(y) ∈ H• and it yields (hY(x)�hY(y))↑
(6.2)
= hY(hY(x)�

hY(y))
(6.3)
= hY(x)hY(y), that is, x�y = hY(x)�hY(y) = (hY(x)hY(y))↓,

as required in (6.8).

17This notation refers to the submatrix containing �(1,1), �(1,2), �(2,1), �(2,2).
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(b): Since hY maps onto X, to prove that X is cancellative it suffices to
prove that each element of hY(Y) has inverse, which holds since for x ∈ Y ,

hY(x)hY(x′� )
(6.16)

= hY(x � x′� ) = hY(f) Y is even= hY(t↓)
t∈H, (6.7)

= t.
(c): It is obvious that hY preserves the unit element and the falsum

constant. The definitions in (6.2)-(6.4) readily yield that hY preserves the
meet, the join, the product and the residual operation.

7. Bunches of Layer Algebras vs. Bunches of Layer Groups

We introduce the notion of bunches of layer groups, and show that every
bunch of layer algebras can be represented by a unique bunch of layer groups.

Definition 7.1. Let (κ,≤κ) be a totally ordered set with least element t,
and let an ordered triple 〈κ̄I , κ̄J , {t}〉 be a partition of κ, where κ̄I and κ̄J

can also be empty. Define κo, κJ , and κI by one of the rows of Table 1, and
let κ = 〈κo, κJ , κI ,≤κ〉. Let Gu = (Gu,�u, ·u, −1u , u) be a family of abelian
o-groups indexed by elements of κ, an let Hu = (Hu,�u, ·u, −1u , u) be a
family of abelian o-groups indexed by elements of κI , such that

foru ∈ κJ ,Gu is discrete,

foru ∈ κI ,Hu ≤ Gu, (7.1)

and such that for u, v ∈ κ, u ≤κ v, there exist

homomorphisms ςu→v : Gu → Gv

satisfying

(G1) ςu→u = idGu
and ςv→w ◦ ςu→v = ςu→w (direct system property),

(G2) for v >κ u ∈ κJ , ςu→v(u) = ςu→v(u↓u
),

(G3) for u <κ v ∈ κI , ςu→v maps into Hv.

Call G = 〈Gu,Hu, ςu→v〉κ a bunch of layer groups.

Lemma 7.2. The following statements hold true.

(1) Given a bunch of layer algebras A = 〈Xu, ρu→v〉κ with κ =
〈κo, κJ , κI ,≤κ〉,

GA = 〈Gu,Hu, ςu→v〉κ
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is bunch of layer groups, where

Gu = (Gu,�u, ·u, −1u , u) =

⎧
⎪⎨

⎪⎩

λ(Xu) if u ∈ κo

λ
(
Xu↑↑

)
if u ∈ κJ

λ(π1(Xu)) if u ∈ κI

, (7.2)

for u ∈ κI ,

Hu =
(
Hu,�u, ·u, −1u , u

)
= λ (π2 (Xu)) , (7.3)

κ = κo ∪ κJ ∪ κI , and for u, v ∈ κ such that u ≤κ v, ςu→v : Gu → Gv is
defined by

ςu→v = ρu→v|Gu
. (7.4)

Call GA the bunch of layer groups derived from A .

(2) Given a bunch of layer groups G = 〈Gu,Hu, ςu→v〉κ with κ =
〈κo, κJ , κI ,≤κ〉,

AG = 〈Xu, ρu→v〉κ

is bunch of layer algebras, called the bunch of layer algebras derived
from G, where

Xu = (Xu,≤u, ·u,→u, u, u′u ) =

⎧
⎨

⎩

ι (Gu) if u ∈ κo

ι(Gu)↓↓ if u ∈ κJ

Sp (ι(Gu), ι (Hu)) , if u ∈ κI

, (7.5)

κ = κo ∪ κJ ∪ κI , and for u, v ∈ κ such that u ≤κ v, ρu→v : Xu → Xv

is defined by

ρu→v =

⎧
⎨

⎩

ςu→v if u /∈ κI

ςu→v ◦ hu if v > u ∈ κI

idXu
if v = u ∈ κI

, (7.6)

where hu is the canonical homomorphism of Xu.

(3) Given a bunch of layer groups G, it holds true that G(AG) = G, and given
a bunch of layer algebras A, it holds true that A(GA) = A.

Proof. (1): For u ∈ κ, Gu defined by (7.2) is an abelian o-group. Indeed,
being totally ordered is granted since so is the original algebra. If u ∈ κo

then see (4.1) and Lemma 3.2, if u ∈ κJ then see (4.1) and Lemmas 5.2 and
3.2 , it also confirms (7.1), whereas if u ∈ κI then see (4.1), Theorem 6.3
and Lemma 3.2. The ς’s defined in (7.4) satisfy
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(G1) for x ∈ Gu, ςu→u(x)
(7.4)
= ρu→u(x)

(A1)
= x and (ςv→w ◦ ςu→v)(x)

(7.4)
=

(ρv→w ◦ ρu→v)(x)
(A1)
= ρu→w(x)

(7.4)
= ςu→w(x).

(G2) Let u ∈ κJ . Then ςu→v(u↓u
)

(7.4)
= ρu→v(u↓u

)
(4.1)
= ρu→v(u′u )

(A2)
=

ρu→v(u)
(7.4)
= ςu→v(u).

(G3) Let v ∈ κI . Then Xv = Sp(π1(Xv), π2(Xv)) holds by Theorem 6.3.

For x ∈ Gu, ςu→v(x)
(7.4)
= ρu→v(x) ∈ Xv, and by claim (C1) in the

proof of claim (2) of Lemma 4.2, ρu→v(x) is invertible in Xv. There-

fore, ρu→v(x) is an element of π2(Xv)
(7.3)
= Hu by claim (c) in Theo-

rem 6.3.

(2): Xu defined in (7.5) is an involutive FLe-chain satisfying (4.1): if
u ∈ κo then see Lemma 3.2, if u ∈ κJ then see Lemmas 3.2 and 5.2 , if
u ∈ κI then see Lemma 3.2 and Theorem 6.3.

The ρ’s defined in (7.6) are well defined since Xu = Gu holds by (7.5) if
u /∈ κI , and if u ∈ κI then hu maps to the universe of ι(Gu) (see (6.2)),
which is Gu.

The ρ’s are residuated lattice homomorphisms, since the (totally ordered
group) homomorphisms ςu→v from Gu to Gv naturally extend to homomor-
phisms from the residuated lattice reduct of ι(Gu) to the residuated lattice
reduct of ι(Gv) via claim (2) of Lemma 3.3, and hence ρu→v can be regarded
as the composition of residuated lattice homomorphisms (ς’s and h’s).

The ρ’s satisfy

(A1): Notice that for u < v,

ρu→v maps Xu toGv, (7.7)

since so does ςu→v. Over Xu,

ρu→u
(7.6)
=

{

ςu→u
(G1)
= idGu

(7.5)
= idXu

if u /∈ κI

idXu
if v = u ∈ κI

.

Therefore, it suffices to prove the other condition in (A1) for u < v < w
only:

ρv→w ◦ ρu→v
(7.6)
=

{
ςv→w ◦ ρu→v if v /∈ κI

ςv→w ◦ hv ◦ ρu→v
(7.7) (6.7)

= ςv→w ◦ ρu→v if v ∈ κI

}

=

ςv→w ◦ρu→v
(7.6)
=

{
ςv→w ◦ ςu→v

(G1)
= ςu→w if u /∈ κI

ςv→w ◦ ςu→v ◦ hu
(G1)
= ςu→w ◦ hu if u ∈ κI

}
(7.6)
= ρu→w.
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(A2): For u /∈ κo we have already seen that

Xu is even, (7.8)

therefore, ρu→v(u′u )
(7.6)
=

⎧
⎪⎪⎨

⎪⎪⎩

ςu→v(u′u )
(7.8)
= ςu→v(u↓u

)
(G2)
= ςu→v(u)

(7.6)
= ρu→v(u) if u ∈ κJ ,

(ςu→v ◦ hu)(u′u )
(6.7)
= ςu→v(u′u

↑ )
(7.8)
= ςu→v(u)

(6.7)
= (ςu→v ◦ hu)(u)

(7.6)
= ρu→v(u) if u ∈ κI .

(3): If u = κo then λ(ι(Gu)) = Gu and ι(λ(Xu)) = Xu by Lemma 3.2. If
u = κJ then λ

(
ι(Gu)↓↓↑↑

)
= λ(ι(Gu)) = Gu and ι

(
λ

(
Xu↑↑

))

↓↓
= Xu↑↑↓↓ =

Xu follow from Lemma 5.2 and Lemma 3.2. In these two cases Gu = Xu,
thus it is obvious from (7.6) and (7.4) that G(AG) and G have the same ho-
momorphisms (the same ς’s) from the uth-layer, and that A(GA) and A have
the same homomorphisms (the same ρ’s) from the uth-layer. If u ∈ κI then
λ(π1(Sp(ι(Gu), ι(Hu)))) = λ(ι(Gu)) = Gu, λ(π2(Sp(ι(Gu), ι(Hu)))) =
λ(ι(Hu)) = Hu and Sp(ι(λ(π1(Xu))), ι(λ(π2(Xu)))) = Sp(π1(Xu), π2(Xu))
= Xu follow from Theorem 6.3 and Lemma 3.2. As for the homomor-
phisms, hu maps Xu to Gu by (7.2), hence the composition ςu→v ◦ hu is
well-defined. By the construction in Definition 6.1, Gu can also be regarded
as a subset of Xu, and hu is the identity mapping on Gu by (6.2). Therefore,
(ςu→v ◦ hu)|Gu

= ςu→v holds on the one hand. On the other hand, to prove
ρu→v|Gu

◦ hu = ρu→v, first notice that for x ∈ Xu \ Gu,

ρu→v(x↑u
) = ρu→v(x). (7.9)

Indeed, ρu→v(x↑u
) = ρu→v(x↑u

·u u)
(4.2)
= ρu→v(x↑u

) ·v ρu→v(u)
(A2)
=

ρu→v(x↑u
) ·v ρu→v(u′u )

Xu is even, see (4.1)
= ρu→v(x↑u

) ·v ρu→v(u↓u
)

(4.2)
=

ρu→v(x↑u
·u u↓u

)
(6.8)
= ρu→v(x↑u↓u

) = ρu→v(x). Therefore, (ρu→v|Gu
◦hu)(x)

(6.7)
=

(6.7)
=

{
(ρu→v|Gu

)(x) = ρu→v(x) if x ∈ Gu

(ρu→v|Gu
)(x↑u

)
x↑u∈Hu⊆Gu= ρu→v(x↑u

)
(7.9)
= ρu→v(x) if x ∈ Xu\Gu

.

8. The Representation Theorem

The main theorem of the paper is a representation theorem of odd or even
involutive FLe-chains by bunches of layer groups. Lemmas 4.2 and 7.2 prove
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Theorem 8.1. The second part of Theorem 8.1 presents the direct con-
structional correspondence between odd or even involutive FLe-chains and
bunches of layer-groups, that is, one without referring to the intermediate
explanatory step of layer algebras.

Theorem 8.1. For every odd or even involutive FLe-chain X there exists
a unique bunch of layer groups G such that X is the involutive FLe-chain
derived from the bunch of layer algebras derived from G, in notation, X =
XAG . Conversely, for every bunch of layer groups G there exists a unique
odd or even involutive FLe-chain X such that G is the bunch of layer groups
derived from the bunch of layer algebras of X, in notation, G = GAX

. In
more details:

(A) Given an odd or an even involutive FLe-chain X = (X, ≤, ·,→, t, f)
with residual complement operation ′,

GX = 〈Gu,Hu, ςu→v〉〈κo,κJ ,κI ,≤κ〉

is bunch of layer groups, called the bunch of layer groups of X, where

κ = {x → x : x ∈ X} = {u ≥ t : u is idempotent} is ordered by ≤,

κ̄I = {u ∈ κ \ {t} : u′ is idempotent},

κ̄J = {u ∈ κ \ {t} : u′ is not idempotent},

κo, κJ , κI are defined by Table 4,

Gu = (Gu,≤, ·, −1, u) if u /∈ κI ,
Gu = (Gu,≤, ·u, −1, u) if u ∈ κI ,
Hu = (Hu,≤, ·, −1, u) if u ∈ κI ,

where Xu = {x ∈ X : x → x = u}, Hu = {x ∈ Xu : xu′ < x} = {x ∈
Xu : x is u-invertible in Xu

18}, •
Hu = {xu′ : x ∈ Hu},

Gu =
{

Xu if u /∈ κI

Xu \ H•
u if u ∈ κI

x ·u y = (xy → u) → u

x−1 = x → u,

and for u, v ∈ κ such that u ≤ v, ςu→v : Gu → Gv is defined by
ςu→v(x) = vx.

(B) Given a bunch of layer groups G = 〈Gu, Hu, ςu→v〉〈κo,κJ ,κI ,≤κ〉 with
Gu = (Gu,�u, ·u, −1u , u)

18There exists y ∈ Xu such that xy = u.
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XG = (X, ≤, ·,→, t, t′)

is an involutive FLe-chain with residual complement ′, called the invo-
lutive FLe-chain of X , where κ = κo ∪ κJ ∪ κI , for u ∈ κ,

Xu =
{

Gu if u 	∈ κI ,
Gu ∪ H•

u if u ∈ κI ,

(where H•
u = {h• : h ∈ Hu} is a copy of Hu which is disjoint from

Gu),
X =

⋃̇

u∈κ
Xu,

if u /∈ κI then ≤u = �u, if u ∈ κI then ≤u extends �u to Xu by letting

a• <u b• andx <u a• <u y if a, b ∈ Hu, x, y ∈ Gu, a ≺u b, x ≺u a �u y,

for v ∈ κ, ρv : X → X is defined by

ρv(x) =
{

ςu→v(x) if x ∈ Gu and u <κ v,
x if x ∈ Gu and u ≥κ v,

ρv(
•
x) =

{
ςu→v(x) if x• ∈ H•

u and κI � u <κ v,
x• if x• ∈ H•

u and κI � u ≥κ v,

by denoting for u, v ∈ κ, uv = maxκ(u, v), for x ∈ Xu and y ∈ Xv,
x < y iff ρuv(x) <uv ρuv(y) or ρuv(x) = ρuv(y) andu <κ v,

for u ∈ κI , hu : Xu → Gu,
hu(x) = x if x ∈ Gu,
hu(x•) = x if x• ∈ H•

u,

for x, y ∈ Xu,

x •u y=

⎧
⎨

⎩

(hu(x) ·u hu(y))• if u ∈ κI , hu(x) ·u hu(y) ∈ Hu and ¬(x, y∈Hu)
hu(x) ·u hu(y) if u ∈ κI , hu(x) ·u hu(y) /∈ Hu or x, y ∈ Hu

x ·u y if u /∈ κI

,

for x ∈ Xu and y ∈ Xv,

xy = ρuv(x) •uv ρuv(y),

for x ∈ X,

(x•)′ =
{

x−1 if u ∈ κI and x• ∈ H•
u

x′ =

⎧
⎪⎪⎨

⎪⎪⎩

(
x−1

)• if u ∈ κI and x ∈ Hu

x−1 if u ∈ κI and x ∈ Gu\Hu

x−1 if u ∈ κo and x ∈ Gu

x−1↓ if u ∈ κJ and x ∈ Gu

,
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Table 4. Three cases—three classes

κo κJ κI

{t} κ̄J κ̄I if X is odd

∅ κ̄J ∪ {t} κ̄I if X is even and f is not idempotent

∅ κ̄J κ̄I ∪ {t} if X is even and f is idempotent

for x, y ∈ X,

x → y = (xy′)′,

→ is the residual operation of ·,
t is the least element ofκ,

f is the residual complement of t,

and is given by

t′ =

⎧
⎨

⎩

(t−1)• if u ∈ κI

t−1 if u ∈ κo

t−1↓ if u ∈ κJ

.

In addition,

ρv(x) = vx for v ∈ κ andx ∈ X,

XX is odd if t ∈ κo, even with a non-idempotent falsum if t ∈ κJ , and
even with an idempotent falsum if t ∈ κI .

(C) Items (A) and (B) describe a one-to-one correspondence between the
class containing all odd and all even involutive FLe-chains and the class
of bunches of layer groups: given a bunch of layer groups X it holds
true that X(XX ) = X , and given an odd or even involutive FLe-chain
X it holds true that X(XX) � X.19

Example 8.2. We present the bunch representation of a few known struc-
tures, among which are the two extremal classes (abelian o-groups and odd

19If Definition 7.1 is slightly modified in such a way that the
•
Hu ’s are “stored” in the

definition of a bunch (like X = 〈Gu ,Hu ,
•
Hu , ςu→v〉〈κo,κJ ,κI ,≤κ〉) and instead of taking a

copy
•
Hu of Hu, that stored copy is used in the construction of Theorem 8.1, then also

X(XX) = X holds. Then, Theorem 8.1 describes a bijection, in a constructive manner,
between the classes of odd or even involutive FL e-chains and the class of bunches of layer
groups.
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Sugihara chains) mentioned in the introduction. Denote by 1 the trivial
(one-element) group.

• If G is an abelian o-group then G = XG where

G = 〈G, ∅, ∅〉〈{t},∅,∅,≤κ〉.

• Even Sugihara chains are exactly the algebras XG , where

G = 〈1u,1u, ςu→v〉〈∅,∅,κ,≤κ〉.

• Odd Sugihara chains are exactly the algebras XG , where

G = 〈1u,1u, ςu→v〉〈{t},∅,κ\{t},≤κ〉.

• Finite partial sublex products of abelian o-groups have been shown in
[31,32] to be exactly those odd involutive FLe-chains which have finitely
many positive idempotent elements. These are exactly the algebras XG ,
where κ is finite in

G = 〈Gu,H u, ςu→v〉〈{t},κ̄J ,κ̄I ,≤κ〉.

• Algebras which can be constructed by the involutive ordinal sum con-
struction of [28] are exactly the algebras XG , where

G = 〈Gu,1u, ςu→v〉〈{t},∅,κ\{t},≤κ〉.

By (G3), also the homomorphisms are trivial.

• Algebras which can be constructed by the consecutive application of the
ordinal sum construction as defined in [18] are exactly the algebras XG ,
where κ is finite in

G = 〈Gu,1u, ςu→v
0 〉〈{t},∅,κ\{t},≤κ〉.

By (G3), also the homomorphisms are trivial.

Remark 8.3. If X is densely ordered in Theorem 8.1 then the Hu’s in the
representation G = 〈Gu,Hu, ςu→v〉κ of X are uniquely determined by the
rest of G. Therefore, if X is densely ordered then the representation of X by
layer groups can be written in a simpler form of 〈Gu, ςu→v〉〈κo,κJ ,κI ,≤κ〉. To
prove it we state that for u ∈ κI ,

Hu =
⋃

κs<κu

ςs→u(Gs).

Indeed, Hu ⊇ ⋃
κs<κu ςs→u(Gs) follows from (G3). Since u ∈ κI , and

since κ is the same in GAX
and in AX, the uth-layer algebra Xu of X
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has idempotent falsum constant u′ by (4.1). Therefore, by Theorem 6.3,
Xu = Sp(π1(Xu), π2(Xu)), where π2(Xu) = Hu comprises the following
elements Hu = {x ∈ Xu : xu′ < x} = {x ∈ X : τ(x) = u, xu′ < x}. Hence
proving Hu ⊆ ⋃

κs<κu ςs→u(Gs) amounts to showing that in every densely
ordered, odd or even involutive FLe-chain X = (X, ≤, ·,→, t, f) with resid-
ual complement operation ′, if u ≥ t and u′ are idempotent, and x ∈ X such
that τ(x) = u and xu′ < x then there exist a positive idempotent element
X � s < u and y ∈ X such that τ(y) = s and yu = x. Let xu′ < y < x
(such y exists since X is densely ordered). Now, y′ < (xu′)′ ≤ y′u follows by
claim (iv) in Lemma 3.1. Therefore, u 	∈ Staby′ and s := τ(y) = τ(y′) < u

follows. Since yu
(4.4)
= ρs→u(y)

(4.6)
= ρu(y)

(4.18)
= min{z ∈ Xu : z ≥ y} and

since Xu � xu′ < y < x ∈ Xu, to see that yu = x, it suffices to prove
that xu′ = x↓u

20. But it holds true since x ∈ Hu and u′ ∈ H•
u, and hence

xu′ = xu↓u
= xu• Table 3/�(2,3)= x• = x↓u

follows from claim (iv) in the proof
of Theorem 6.3/(a), and we are done.

Remark 8.4. The easiest way of generalizing Theorem 8.1 to conic algebras
is to observe that there exist no conic odd or even involutive FLe-algebras
which are not linearly ordered. Indeed, let a, b ∈ X. Proving that a and b are
comparable, that is, a ≤ b or b ≤ a amounts to proving at ≤ b or bt ≤ a, or
equivalently, a→b ≥ t or b→a ≥ t by adjointness. If a→b 	≥ t then a→b < t
since X is conic, hence a → b ≤ f since X is odd or even. By claims (i) and
(ii) in Lemma 3.1, ab′ ≥ t follows. Therefore, (a′b)′ ≥ t holds by claim (iii)
in Lemma 3.1, hence b → a ≥ t holds by claim (ii) in Lemma 3.1.
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Hungary
jenei@ttk.pte.hu


	Group Representation for Even and Odd Involutive Commutative Residuated Chains
	Abstract
	1. Introduction
	2. Preliminaries
	3. The Local Unit Element Function
	4. Odd and Even Involutive FLe-chains vs.Bunches of Layer Algebras
	5. Even Involutive FLe-Chains with Non-idempotent Falsum Constants – Changing the Falsum Constant
	6. Even Involutive FLe-Algebras with Idempotent Falsum Constants – Subgroup Splits of Odd Involutive FLe-Algebras
	7. Bunches of Layer Algebras vs.Bunches of Layer Groups
	8. The Representation Theorem
	Acknowledgements
	References


