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Abstract. This article investigates the properties of multistate top revision, a dichoto-

mous (AGM-style) model of belief revision that is based on an underlying model of prob-

ability revision. A proposition is included in the belief set if and only if its probability

is either 1 or infinitesimally close to 1. Infinitesimal probabilities are used to keep track

of propositions that are currently considered to have negligible probability, so that they

are available if future information makes them more plausible. Multistate top revision sat-

isfies a slightly modified version of the set of basic and supplementary AGM postulates,

except the inclusion and success postulates. This result shows that hyperreal probabilities

can provide us with efficient tools for overcoming the well known difficulties in combining

dichotomous and probabilistic models of belief change.
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1. Introduction

Some human beliefs are best described as all-or-nothing phenomena, whereas
other beliefs come in degrees. In formal epistemology, an agent’s all-or-
nothing beliefs are represented by a set of propositions, whereas degrees
of beliefs are usually represented by probabilities. Actual epistemic agents
have both types of beliefs, and we usually do not find it difficult to com-
bine them or shift between them. However, in formal models the two types
of beliefs are notoriously difficult to combine. The most obvious solution
is to equate full dichotomous belief in a proposition with assigning proba-
bility 1 to it. Unfortunately, this does not work since classical probability
theory lacks means to change the probability of a proposition once it has
obtained probability 1, whereas any reasonably realistic model of full beliefs
will have to contain means for giving them up. Probability limits below 1 give
rise to paradoxical results such as the lottery and preface paradoxes ([25],
pp. 197–198; [26], esp. pp. 54–68 and 112–158,[28]). More complex criteria,
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based on comparisons between the probabilities of believed and non-believed
propositions, have also turned out to have implausible properties [16,35].

This article is part of a project aimed at combining dichotomous and
probabilistic beliefs in formal modelling in roughly the same way that we
combine them in everyday reasoning: Having full belief in a proposition does
not mean that we consider it impossible to doubt it or to give it up. It only
means that we currently see no reason to do so. Conversely, we consider
the probability that such a proposition is false to be negligible but not nil.
Hence, there are empirical propositions which we treat as having probability
0, but we are willing to change our minds and assign a non-zero probability
to them if new information gives us reason to do so. Such changes are far
from uncommon in real life, and a person unable to change her mind in
this way would presumably be considered to be irrational. But as already
mentioned, this type of epistemic change is not representable in standard
probability theory. Once a proposition has been assigned probability 0 or
probability 1, no further revision or series of revisions can change it. One
of the major motivations behind the model of probability revision to be
discussed here is to solve this problem, and make it possible to give up zero
and unit probabilities.

In studies of changes in dichotomous beliefs, a distinction is commonly
made between change-recording and knowledge-enhancing beliefs [20,22].
Suppose that a friend tells you, looking out of the window, that there is a
raven in the garden. Believing him, you walk up to the window to have a
look at the bird. If you find your friend pointing at a rook, which he has
misidentified as a raven, then you perform a knowledge-enhancing belief
change (often called revision). The bird is the same, but you now have
improved knowledge about it. But suppose instead that when you look out
of the window, you see no bird, and your friend tells you that it just flew
away. This is a change-recording belief change (often called update).

An analogous distinction can be applied to changes in probabilities. Sup-
pose that a friend announces that she will throw nine dice at one time to see
if she can get all sixes. You make a quick calculation and tell her that the
probability of getting nine sixes is about one in ten million. She throws the
dice and to your amazement she throws nine sixes. You can now perform
two types of probability revision. One of these is the rather trivial conclu-
sion from seeing the nine sixes: After the fact, the probability that she has
thrown nine sixes is 1. This is a change-recording probability revision. The
other type of revision is more subtle. What you have seen makes you suspect
that the dice are loaded, so that the probability that she would throw nine
sixes was considerably higher than one in ten million. If you assume that she
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would only do the trick if it works at least half of the times, you might for
instance estimate the probability that she would get nine sixes to be around
50 per cent. The latter probability revision will influence your estimate of
the probability that she will get the same outcome if she makes a new throw
with the same nine dice, and in consequence your attitude to various bets on
the outcome of the next throw will also change. Such knowledge-enhancing
probability revisions have a central role in learning. It is for instance the
mechanism by which we change our opinion on the probability of nuclear
accidents, based on how many such accidents actually happen.

In Hansson [17], a multistate model of knowledge-enhancing probability
revision was presented. It is based on a two-layered model of the world. On
one layer, the world is conceived as being in one of several states, which
cannot be observed directly. The other layer consists of observable events,
whose probabilities differ between the different states. From our observations
we can therefore draw inferences on the probabilities of the states. In the
dice-throwing example, we first assumed a state of the world in which the
probability of a six was one in six for each of the nine dice. After the first
throw, we also considered a state of the world in which all the dice were
loaded to yield a six. This is a state that we had previously considered to
be negligible, or did not think of. Its probability was then representable as
infinitesimally small, which is the reason why it had no influence on our first
probability estimate of a throw resulting in nine sixes.

The multistate model of probability revision gives rise to a derived model
of dichotomous revision, in which only the full beliefs (propositions with
probabilities infinitesimally close to 1) are considered. The present contribu-
tion is devoted to an investigation of the properties of this probability-based
belief change model.

Section 2 provides some formal preliminaries. Section 3 introduces the
multistate model of probability revision and multistate top revision, the
dichotomous belief change operation that is based on it. In Section 4, se-
quential quasi-revision is introduced. It is an AGM-style operation that will
be highly useful in our analysis. In Section 5, the properties of multistate
top revision are investigated, and its relation to AGM revision is scrutinized.
All formal proofs are deferred to an appendix.

2. Formal Preliminaries

Sentences, i.e., elements of the language that express propositions, are rep-
resented by lowercase letters (a, b, . . .) and sets of sentences by capital letters
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(A,B, . . .). The object language is formed from atomic sentences with the
usual truth-functional connectives: negation (¬), conjunction (&), disjunc-
tion (∨), implication (→), and equivalence (↔). � is a tautology and ⊥ a
logically contradictory sentence.

A Tarskian consequence operation Cn expresses the logic. It satisfies the
standard conditions: inclusion (A ⊆ Cn(A)), monotony (If A ⊆ B, then
Cn(A) ⊆ Cn(B)) and iteration (Cn(A) = Cn(Cn(A))). Furthermore, Cn is
supraclassical (if p follows from A by classical truth-functional logic, then
p ∈ Cn(A)) and compact (if p ∈ Cn(A), then there is a finite subset A′

of A such that p ∈ Cn(A′)), and it satisfies the deduction property (q ∈
Cn(A ∪ {p}) if and only if p → q ∈ Cn(A)). Cn(∅) is the set of tautologies.
X � p is an alternative notation for p ∈ Cn(X) and � p for p ∈ Cn(∅).

A set A of sentences is a (consistent) belief set if and only if it is consistent
and logically closed, i.e. A = Cn(A) 	= Cn({⊥}). K denotes a belief set. The
conjunction of all elements of a finite set A of sentences is denoted &A, and
their disjunction is denoted

∨
A. For any finite set A of sentences, numb(A)

is the number of logically non-equivalent elements of A. For all sets A of
sentences and all sentences a, the remainder set A⊥a is the set of maximal
subsets of A not implying a.

The following notation will be used for finite hyperreal numbers:

Definition 1. (1) The letters s, t, u, v, x, y, and z represent hyperreal num-
bers (which may be real). The letters δ and ε represent numbers that are
either 0 or infinitesimal.

(2) The standard (real) part of a finite hyperreal number s is denoted
st(s).

(3) The symbols ≈, 	≈, �, and � are used as follows:

a ≈ b if and only if st(a) = st(b)

a 	≈ b if and only if st(a) 	= st(b)

a � b if and only if a < b and st(a) = st(b)

a � b if and only if st(a) < st(b)

Keisler [21] is an accessible introduction to hyperreal numbers. A very brief
introduction to finite hyperreal numbers can be found in Hansson ([17], p.
1024).
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3. Multistate Models and Probability Revisions

The multistate model of probability revision [17] is based on a combination
of several modifications of the standard Bayesian approach to probability re-
vision, intended to adjust the model to satisfy two major criteria, namely (1)
to allow for changes in full beliefs, and (2) to specifically mirror knowledge-
enhancing changes (“revisions”) rather than change-recording ones (“up-
dates”). The crucial means to satisfy the first of these criteria is to extend
the codomain of the probability function from the real-valued interval [0,1]
to the hyperreal-valued interval with the same limits. This means that in-
finitesimal probabilities, i.e. probabilities whose value is larger than 0 but
smaller than all positive real numbers, become available. Similarly, proba-
bilities infinitesimally smaller than 1 can be used. These are probabilities
that are smaller than 1 but larger than all real numbers smaller than 1.

Infinitesimal probabilities have mostly been used to solve problems arising
when classical, real-valued probabilities are assigned to infinite domains [4,
36].1 Here they will be used as tools to record or memorize the quantitative
relations between probabilities that the agent currently treats as negligible.
For instance, consider an epistemic agent who currently fully believes in
the statement d, “Dar es Salaam is the capital of Tanzania”. She has no
doubt about it, and expresses the same confidence in this statement as in
the statement that Paris is the capital of France. In standard probability
theory, we would represent this full belief by assigning probability 1 to d.
This has the unfortunate consequence that there is no way to give up the
belief. To give it up by Bayesian revision, there would have to be some
statement e such that p(d | e) 	= 1, or equivalently p(d&e)/p(e) 	= 1, which
is impossible since it follows from p(d) = 1 that p(d&e) = p(e).

This, however, is easily solved when we have access to hyperreal proba-
bilities.Then we can have p(d) = 1− δ, for some infinitesmal number δ. Now
we can let e be the surprising and unforeseen event that the headlines on the
front page of New York Times refer to some other city (such as Dodoma) as
the capital of Tanzania. This was something that our epistemic agent consid-
ered to be incredible before it happened, and thus p(e) had an infinitesimal
prior probability. However, she relies on this newspaper, and therefore she
assimilates the new information. The outcome of her Bayesian revision by

1Much more commonly, arbitrarily small real-valued probabilities are referred to, see
for instance Adams [1] and Pearl [31]. The latter called these probabilities “infinitesimal”,
but they are not infinitesimal in the sense in which this term is used in nonstandard
analysis and the study of hyperreal numbers.
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e will be a new probability function p′ such that p′(d) = p(d&e)/p(e). Pre-
sumably, p(d&e) is even much smaller than p(e), and consequently she will
give up her previous belief in d in this operation.

We have assumed in this example that an agent has full belief in a
statement a if and only if she assigns to it a probability that is at most
infinitesimally smaller than 1, that is, if and only if p(a) ≈ 1. This is a plau-
sible approximation, since p(a) ≈ 1 implies that p(a) is larger than all real
numbers below 1. However, it should be emphasized that infinitesimal num-
bers are used here only for modelling purposes. Their structure makes them
suitable as tools to represent beliefs that are currently but not unchange-
ably undoubted (probability close to 1) or currently but not unchangeably
considered negligible (probability close to 0). This does not imply that prob-
abilistic beliefs have any metaphysical properties imputed to infinitesimal
numbers.

In the above example, we applied Bayesian revision to hyperreal prob-
abilities. In other words, we assumed that, when we revise a probability
function p by a sentence a that has non-zero probability, the outcome will
be a new probability function p′, such that:

p′(e) =
p(e&a)
p(a)

for all e. However, this has the unfortunate consequence that p′(a) = 1. If
we use this method to revise, then each revision input will be ineradicably
inserted into the belief set. Even if we start out with a probability function
that allows all empirical beliefs to be revised (i.e., does not assign probability
0 or 1 to any of them), this openness to new information will gradually be
lost as we make more and more revisions. To avoid this, and make full use of
the openness achieved with hyperreal probabilities, we need to apply some
revision method that does not share this disadvantage. For that purpose,
we can apply Jeffrey conditionalization ([19], pp. 171–172) in such manner
that, when we revise a probability function p by a sentence a with non-zero
and non-unit probability, the outcome will be a new probability function p′

defined as follows:

p′(e) = (1 − δ) × p(a&e)
p(a)

+ δ × p(¬a&e)
p(¬a)

Provided that we always set δ > 0 for revisions by empirical inputs, this
revision method will ensure that all beliefs that are given up in a revision
process will be accessible for future reinsertion, if the need arises.

Let us now turn to the other major adjustment of traditional probability
revision that we set out to achieve, namely to make it specifically model
a knowledge-enhancing rather than a change-recording process (revision
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rather than update). The best way to see what this requires of the model is
to consider a couple of examples. We can begin with the dice example from
Section 1, in which we first assumed that the true state was b1, in which
the probability that a dice throw yields a six is 1/6. After observing the
surprising outcome of a throw with nine dice, we reduced the probability of
b1, and instead assigned a considerable amount of probability to a state b2
in which the dice are loaded. Changes in other probabilities were a conse-
quence of the changes of the probabilities of these two states. This was a
knowledge-enhancing belief change.

For another example, suppose that a large pressure tank has been in-
stalled close to a playground in your neighbourhood. Government experts
assured that the probability that the tank would explode in its expected life-
time of 50 years is about 1 in 1,000,000,000. Therefore, you did not worry
about it. But after less than two months, the tank exploded, luckily in the
middle of the night and with no casualties or injuries. Your judgment of
the safety situation will then depend on the knowledge-enhancing revision
of your probabilistic beliefs (“Given what we now know, how probable was
it that the tank would explode?”), which has important implications for
future instalments of similar tanks. (The outcome of the change-recording
revision, namely that the probability is 1 that the tank exploded, is much less
informative for that purpose.) When performing the knowledge-enhancing
revision, your focus will be on the situation before the explosion, i.e., on
the properties of the tank and in particular on how probable the event that
took place was. The crucial issue is: Was the tank in a state with a very low
probability of an accident, as you had been assured before, or was it in a
state with a considerably higher risk of an accident?

Thus, in both examples, knowledge-enhancing revision has a focus on
identifying possible states of the world and their probabilities. To construct a
formal framework it is therefore useful to introduce separate representations
for such states and for observable events:

Definition 2. [17] Let p be a (hyperreal-valued) probability function.2

(1) An observational language for p is a non-empty set LE of sentences
within its domain, such that:

(a) If a1, a2 ∈ LE, then a1&a2 ∈ LE .
(b) If a ∈ LE , then ¬a ∈ LE .

2By this is meant a function with a logical language as its domain and the closed
hyperreal interval [0,1] as codomain. LE and B are subsets of its domain.
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(2) A state catalogue for p is a non-empty set B of atomic sentences within
the domain of p, such that:

(a) If b ∈ B, then p(b) 	= 0.
(b) If b1, b2 ∈ B and � b1 ↔ b2, then p(b1&b2) = 0.
(c)

∑

b∈B

p(b) = 1

(3) An observational language LE for p is logically disjoint from a state
catalogue B for p if and only if no logically contingent truth-functional
combination of elements of LE follows logically from some logically con-
tingent truth-functional combination of elements of B.

Probability revision will be expressed in formal notation in much the same
way as revision in (dichotomous) belief change theory. When the probabil-
ity function p is revised by the input sentence a, this gives rise to a new
probability function, denoted p★a. Hence the probability of the state of the
world b after revision by a will be denoted (((p ★ a)))(b). The major advantage
of this notation over the traditional conditional notation p(b | a) is that it-
erated revisions (iterated conditionalizations) can be clearly expressed, e.g.
(((p ★ a1 ★ a2)))(b). (To facilitate reading of the formulas, boldface brackets are
placed around subformulas expressing a revised probability function.)

The following definition of the multistate model summarizes the above
considerations:

Definition 3. [17] A multistate model of (hyperreal) probability revision
is a quadruple 〈p, B, LE,★〉. p is a (hyperreal-valued) probability function,
B a state catalogue for p, and LE an observational language for p that is
logically disjoint from B. ★ is a two-place operation of revision for p that
takes a pair consisting of a number δ with 0 ≤ δ ≈ 0 and a sentence a as
input, and produces a new probability function as output. The output is
denoted p ∗δ a. Furthermore, for all a1, a2 ∈ LE , all b ∈ B, and all δ with
0 ≤ δ ≈ 0:

If p(a1) = 0 or p(a1) = 1, then:

(0) p ★δ a1 = p

If 0 	= p(a1) 	= 1, then:

(1) (((p ★δ a1)))(b) =
p(a1&b)
p(a1)

+ δ ×
(
p(¬a1&b)
p(¬a1)

− p(a1&b)
p(a1)

)

(2) (((p ★δ a1)))(a2 | b) = p(a2 | b) =
p(a2&b)
p(b)
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(3) (((p★δ a1)))(a2) =
∑

b∈B

(
p(a1&b)
p(a1)

+ δ

(
p(¬a1&b)
p(¬a1)

− p(a1&b)
p(a1)

))

× p(a2&b)
p(b)

As can be seen from clauses (1) and (2), revisions change the probabilities
of the alternative states of the world (elements of B), whereas the states
themselves are not changed. For any observable a ∈ LE and state b ∈ B, the
conditional probability of a given b is taken to be constant.3 Thus this model
is based on the (idealized) assumption that all states, i.e., all elements of
the state catalogue B, are well-defined in terms of their observational con-
sequences. The probabilities of elements of B are the primary objects of
(knowledge-enhancing) change, and changes in the probabilities of observ-
ables are secondary to these primary changes. This is the pattern we saw
in the above two examples in which the primary objects of change were the
properties of the dice, respectively the pressure tank.

The following definition provides some further specifications:

Definition 4. Let 〈p, B, LE ,★〉 be a multistate model of probability revi-
sion.

(1) It is finite if and only if both B and LE are finite.
(2) It is orderly if and only if it holds for all a ∈ LE and b ∈ B that

p(a | b) is a real number.
(3) The model 〈p, B, LE ,★0〉 is the zero restriction of 〈p, B, LE,★〉 if and

only if ★0 coincides with ★ for the index 0, but takes no other index than
δ = 0.

Orderliness, as defined here, implies that non-standard (hyperreal but not
real) probabilities are primarily assigned only to elements of B, and not
to the event probabilities that are conditional on elements of B (such as
p(a | b)). This is plausible, since the only role of infinitesimals in this model
is to preserve information about currently unconsidered elements of B for
possible future reconsideration. There is therefore no need to assign non-
standard values to expressions such as p(a | b).

We are now ready to introduce the dichotomous belief change operation
that can be derived from a multistate model of probability revision. It will
be called a multistate top revision since the belief set it revises is the “top”
of the probability function, namely the set of beliefs to which it assigns
probabilities at most infinitesimally smaller than 1.

3This is somewhat similar to Kern-Isberner’s notion of a c-change, an operation of
change in which some conditionals are kept constant [3,23].
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Definition 5. Let p be a hyperreal probability function. The set
�p� = {a ∈ LE | st(p(a)) = 1}

is the belief set generated by p.

Observation 1. Let p be a hyperreal probability function. Then:
�p� = Cn(�p�) (top closure)

Definition 6. Let K be a consistent belief set and ∗ a sentential operation
on K.4 Then ∗ is a multistate top revision on K if and only if there is some
multistate model 〈p, B, LE,★〉 such that K = �p� and K ∗ a = �p ★δ a� for
all a ∈ LE and all δ.5

A multistate top revision is finite if and only if it is based on some finite
multistate model. It is orderly if and only if it is based on some orderly
multistate model.

The following observation may at first sight seem to undermine our use of
infinitesimals.

Observation 2. Let p be the probability function of a multistate model
〈p, B, LE ,★〉 of probability revision, such that B is finite, and let 0 ≤ δ ≈ 0.
Then: �p ★δ a� = �p ★0 a�.

If it makes no difference for the outcome what index we use for the Jeffrey
conditionalization, why not just use standard conditionalization and leave
out the infinitesimals? The answer is that the infinitesimals are needed as a
“memory function” for future revisions. The effects on the belief set of in-
troducing infinitesimals through Jeffrey conditionalization will not be seen
in the revision in which they are introduced, but they can have large im-
pacts in later revisions. To see how this works, consider a simple example
in which B = {b1, b2}, p(b1) = p(b2) = 0.5, and p(a | b1) = p(¬a | b2) = 1.
Let 0 < δ ≈ 0 and 0 ≤ δ′ ≈ 0. Then �p ★δ a� = �p ★0 a�, whereas
¬a ∈ �p ★δ a ★δ′ ¬a� and a ∈ �p ★0 a ★δ′ ¬a�. In order to obtain one
of the main advantages of the multistate model, namely the revisability
of full beliefs in a probabilistic model, revision indices should be infin-
itesimal rather than 0. However, since we are concerned here only with
single-step revision, the index 0 will be used in proofs for technical conve-
nience.

4A sentential operation on a belief set K is an operation ◦ such that for any input
sentence a, it produces a new belief set, denoted K ◦ a.

5In principle, the dichotomous operation should have a δ index in the last equation
(K ∗δ a = �p★δ a� instead of K ∗a = �p★δ a�). We will see in Observation 2 that this index
can be omitted.
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4. Sequential Quasi-revision

When we perform knowledge-enhancing probability revision – which is what
the multistate model is constructed to mirror – the temporal position of
the probability function is left unchanged. In our dice example, the out-
come of the knowledge-enhancing revision referred to what the probability
of nine sixes was at the same time that the original probability referred to
(namely just before the dice were thrown), contrary to the change-recording
revision, which involved a shift to a later point in time. In consequence,
the derived revision of dichotomous belief – the multistate top revision –
should also leave the time perspective unchanged. When we learn that an
event a has taken place, we cannot in general draw the conclusion that
just before it happened, it was certain to take place. What we can con-
clude from observing a, however, is that just before a happened, it was not
certain that a would not take place (or in other words, we can conclude
that a was possible at the time, cf. [27] and [9]).6 This means that for a
knowledge-enhancing revision, it is sensible to weaken the standard success
criterion of belief revision, a ∈ K ∗ a [2], to ¬a /∈ K ∗ a (excepting the
limiting case in which a is inconsistent and thus ¬a is a tautology). An
operation with that success criterion will be called an operation of quasi-
revision.7

The following definition introduces a model of quasi-revision. As will
be seen in what follows, it coincides in the finite case with multistate top
revision (Definition 6). This equivalence significantly simplifies formal inves-
tigations of multistate top revision.

Definition 7. Let K be a consistent belief set in a finite language LE and
∗ a sentential operation on K. Then ∗ is a sequential quasi-revision on K
if and only if there is a series 〈X0, . . . , Xn〉 of sets of consistent belief sets,
such that K ∈ X0, K =

⋂
X0, and for all a:

6Furthermore, our estimate of what the probability was that a would happen will not
decrease when we learn that a did in fact take place. In some cases, it can be expected to
increase. If an event occurs that was previously considered to be extremely unlikely, then
this can be a rational reason to believe that the previous estimate was an underestimate.
In other cases, there will be no change. For instance, if you toss an ordinary coin, and it
yields heads, this does not make you change your previous belief that the probability that
it would yield heads was 0.5. (The probability that it yielded heads is 1.0, but that is the
outcome of a change-recording, not a knowledge-enhancing revision.)

7The success criterion of revocation ( .−) by a is a /∈ K .− a ([15], p. 133). Therefore
quasi-revision by a coincides with revocation by ¬a.
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(1) if ¬a ∈ ⋂
(X0 ∪ · · · ∪ Xn), then K ∗ a = K, and

(2) otherwise, K ∗ a =
⋂{X | ¬a /∈ X ∈ Xk}, where Xk is the first element

in the sequence 〈X0, . . . , Xn〉 whose intersection does not contain ¬a (i.e.
¬a ∈ ⋂

(X0 ∪ · · · ∪ Xk−1) and ¬a /∈ ⋂
Xk).

A sequential quasi-revision on K is finite if and only if it is based on a
finite sequence 〈X0, . . . , Xn〉, such that its elements and the elements of its
elements are all finite. It is accumulative if and only if it is based on some
sequence 〈X0, . . . , Xn〉 such that Xk−1 ⊆ Xk for all k with 0 < k ≤ n.

5. Properties of the Probability-based Operation of Belief Revision

Our main result is an equivalence result for multistate top revision in the
finite and orderly case:

Theorem 1. Let K be a consistent belief set in a finite language LE, and
let ∗ be a sentential operation on K. Then the following conditions are
equivalent:

(1) ∗ is a finite and orderly multistate top revision on K,

(2) ∗ is a finite sequential quasi-revision on K, and

(3) ∗ is a finite and accumulative sequential quasi-revision on K.
Furthermore, an operation satisfying these conditions also satisfies the
following postulates:

• K ∗ a = Cn(K ∗ a) (Closure)
• If � a1 ↔ a2, then K ∗ a1 = K ∗ a2. (Extensionality)
• ¬a /∈ K ∗ a or K ∗ a = K. (Relative quasi-success)
• If ¬a ∈ K ∗ a, then ¬a ∈ K ∗ d. (Quasi-regularity)
• K ∗ � = K (Tautology inertness)
• If ¬a1 /∈ K ∗a1, ¬a2 /∈ K ∗a2, and K ∗a1 = K ∗a2, then K ∗ (a1 ∨d) =

K ∗ (a2 ∨ d). (Disjunctive equivalence)
• K ∗ (a1 ∨ a2) is equal to one of K ∗ a1, K ∗ a2, and K ∗ a1 ∩ K ∗ a2.
(Disjunctive factoring)

• If ¬a /∈ K ∗ d, then K ∗ (a ∨ d) ⊆ K ∗ a. (Linearity)

Closure and extensionality are standard properties in the AGM tradition,
used in Alchourrón et al. [2] and numerous other publications on belief
change.

Relative quasi-success and quasi-regularity are similar in structure to two
weakenings of success that are known from the literature on non-prioritized
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belief revision, namely relative success (a ∈ K∗a or K∗a = K) and regularity
(if a /∈ K ∗ a then a /∈ K ∗ d).8

Tautology inertness is a weak postulate that also holds in AGM. It is
highly plausible; we do not expect the addition of a tautology to an already
logically closed belief set to make any difference.

Disjunctive factoring, which holds in full AGM revision and is closely re-
lated to the AGM supplementary postulates, seems to have been introduced
by Hans Rott ([11], pp. 57 and 244). Disjunctive equivalence also holds in full
AGM revision, but does not seem to have been mentioned in the literature.9

Linearity is probably the postulate in Theorem 1 that is most in need of
explanation. If quasi-regularity holds, then linearity is equivalent with:

If ¬a /∈ K ∗ d and ¬a /∈ K ∗ a, then K ∗ (a ∨ d) ⊆ K ∗ a

Let us assume that different quasi-revision outcomes (outcomes of appli-
cations of ∗) differ in how “costly” they are in terms of the disadvantages
associated with them. We can then expect the epistemic agent to have a
preference ordering over the quasi-revision outcomes, and always to choose
the most preferred outcome among those that satisfy the purpose of the
operation. Since ties have to be excluded, this must be a strict ordering. In
quasi-revising by a, the purpose is to open up for a (make sure that a is not
held to be impossible). K ∗ a, the quasi-revision by a, should therefore be
the most preferred way to open up for a. If ¬a /∈ K ∗ d, then quasi-revising
by d is one of the ways to open up for a. This means that the most preferred
way to open up for a is at least as preferred as the most preferred way to
open up for d. The operation K ∗(a∨d) has the purpose to open up for a∨d,
which is equivalent with opening up for a or for d.10 The most preferred way
to do so should then quasi-revise by a. Thus we should expect K ∗ (a ∨ d)
to be a subset of K ∗ a.

It may be surprising that the AGM postulate consistency (if a � ⊥, then
K ∗ a � ⊥) does not appear in the theorem. But in fact an even stronger
postulate of consistency holds. It follows from two of the other postulates:

Observation 3. Let ∗ be a sentential operation on a consistent belief set
K. If it satisfies closure and relative quasi-success, then it satisfies:

8[14], pp. 417–418. Both postulates also have analogues among the axioms for non-
prioritized contraction ([33], p. 54; [8], p. 86).

9Possibly the best way to see that disjunctive equivalence holds in full AGM revision
is to use Grove spheres [12].

10Note that a set X of propositions is consistent with a∨d if and only if it is consistent
with a or consistent with d. (X ∪ {a ∨ d} � ⊥ if and only if X ∪ {a} � ⊥ or X ∪ {d} � ⊥.)
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K ∗ a � ⊥ (strong consistency)

Closure is incompatible with quasi-success (¬a /∈ K ∗a), but it is compatible
with the following weakened version:

If a � ⊥, then ¬a /∈ K ∗ a (consistent quasi-success)

The following observation specifies the conditions under which consistent
quasi-success holds.

Observation 4. Let ∗ be a sentential operation on a consistent belief set K.

(1) If ∗ is a finite and orderly multi-state top revision, based on a zero-
restricted multistate model 〈p, B, LE ,★0〉, then ∗ satisfies quasi-success
if and only if it holds for all a ∈ LE that if a � ⊥, then there is some
b ∈ B with p(a | b) 	= 0.

(2) If ∗ is a finite sequential quasi-revision, based on a series 〈X0, . . . , Xn〉 of
sets of consistent belief sets with K ∈ X0 and K =

⋂
X0, then ∗ satisfies

quasi-success if and only if
⋂

(X0 ∪ · · · ∪ Xn) = Cn(∅).

The following analogous postulate is also of considerable interest:

If a � ⊥, then a ∈ K ∗ a (consistent success)

Observation 5. Let ∗ be a sentential operation on a consistent belief set K.

(1) If ∗ is a finite and orderly multi-state top revision, based on a multistate
model 〈p, B, LE ,★〉, then ∗ satisfies consistent success if and only if it
holds for all a ∈ LE that if a � ⊥, then (i) there is some b ∈ B with
p(a | b) 	= 0, and (ii) for all b ∈ B it holds that p(a | b) = 0, p(a | b) = 1,
or p(b)/p(a) ≈ 0.

(2) If ∗ is a finite sequential quasi-revision, based on a series 〈X0, . . . , Xn〉 of
sets of consistent belief sets with K ∈ X0 and K =

⋂
X0, then ∗ satisfies

consistent success if and only if it holds for all a ∈ LE that if a � ⊥,
then (i) there is some X such that a ∈ X ∈ X0∪· · ·∪Xn, and (ii) for all
X ∈ X0 ∪ · · · ∪ Xn, at least one of the following is true: a ∈ X, ¬a ∈ X,
or there are Xk and Xm with 0 ≤ k < m ≤ n, ¬a /∈ ⋂

Xk and X ∈ Xm.

The condition that is shown in part (1) of Observation 5 to be equivalent
with consistent success comes close to saying that if something has hap-
pened, then it must have happened in a state of the world in which its
probability was 1. This condition can be interpreted as a formal represen-
tation of determinism. It implies that all possible states of the world are
deterministic, so that all uncertainties about the world concern which of
these deterministic states is true.
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The confirmation postulate ([15], p. 118) holds for multistate top revision:

Observation 6. Let ∗ be a finite and orderly multistate top revision on the
consistent belief set K in a finite language. Then it satisfies:

If a ∈ K, then K ∗ a = K (confirmation)

It follows from Definition 6 and Observation 6 that if a ∈ �p�, then �p★δ a� =
�p�. However, it does not follow in general that if a ∈ �p�, then p ★δ a = p.
To the contrary, this only holds in four rather special limiting cases:

Observation 7. Let 〈p, B, LE ,★〉 be a multistate model of probability revi-
sion. Then p = p ★δ a if and only if

(i) p(a) = 0, or

(ii) p(a) = 1, or

(iii) p(a) = 1 − δ, or

(iv) p(a | b) = p(a) for all b ∈ B.

As was noted by Gärdenfors ([11], p. 54), in the presence of closure, the
AGM postulate

If ¬a /∈ K, then Cn(K ∪ {a}) ⊆ K ∗ a (vacuity)

is equivalent with the conjunction of the following two conditions:

(i) If ¬a /∈ K, then a ∈ K ∗ a

(ii) If ¬a /∈ K, then K ⊆ K ∗ a (preservation)11

Since (i) follows from success, preservation can replace vacuity in the AGM
axiomatization. Whereas (i) does not hold for multistate top revision, three
of the eight postulates of Theorem 1 are sufficient for preservation to hold:

Observation 8. Let ∗ be a sentential operation on the consistent belief set
K. If ∗ satisfies extensionality, tautology inertness, and linearity, then it
satisfies preservation.

As shown by Hans Rott, in the presence of the six basic AGM postulates, the
two supplementary AGM postulates, superexpansion and subexpansion, hold
if and only if disjunctive factoring holds.12 However, although multistate top
revision satisfies disjunctive factoring, it satisfies neither superexpansion nor
subexpansion:

11The preservation postulate was introduced by Gärdenfors ([10], p. 82). For a clarifying
discussion, see Rott ([34], p. 109).

12This result was first reported by Peter Gärdenfors, with due acknowledgement to
Hans Rott ([11], pp. 57, 212, and 244).
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Observation 9. Let ∗ be a finite sequential quasi-revision on the consistent
belief set K.

(1) It does not hold in general that

K ∗ (a1&a2) ⊆ Cn((K ∗ a1) ∪ {a2}) (superexpansion)

(b) It does not hold in general that

If ¬a2 /∈ K ∗ a1, then Cn((K ∗ a1) ∪ {a2}) ⊆ K ∗ (a1&a2) (subexpansion)
What is lacking here is success:
Observation 10. Let ∗ be a sentential operation on the consistent belief set
K. If ∗ satisfies closure, extensionality, success and disjunctive factoring,
then it satisfies superexpansion and subexpansion.
Summarizing the above, the following five postulates are all satisfied both
by multistate top revision and by AGM revision:

Closure

Preservation

Extensionality

Consistency

Disjunctive factoring

Due to the above-mentioned derivations of vacuity (from preservation, clo-
sure, and success), and the two supplementary postulates (from closure,
extensionality, success and disjunctive factoring ; Observation 10), if the
success postulate is added to the list, then we obtain a set of postulates
that contains all the AGM postulates except inclusion. The relevance of
multistate top revision is enhanced by the fact that the success postulate is
the most controversial among the AGM revision postulates. Many proposals
have been made to avoid success while retaining the other main features of
AGM.13 This approach is commonly called “non-prioritized belief revision”,
since it does not give the input sentence absolute priority over previous be-
liefs. Most variants of non-prioritized belief revision are all-or-nothing in the
sense that either the input sentence is fully assimilated in the resulting new
belief set (a ∈ K ∗a), or it does not at all change the belief set (K ∗a = K).
However, variants have also been studied in which only a part of the in-
formation contained in the input sentence is accepted in the new belief set

13See for instance Chopra et al. [5], Falappa et al. [6], Fermé and Hansson [7], Hansson
[13], Hansson et al. [18], Hansson ([15], pp. 117–131), Konieczny and Pino Perez [24],
Makinson [29], Mazzieri and Dragoni [30], and Perrotin and Velázquez-Quesada [32].
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[7]. Since multistate top revision satisfies relative quasi-success, it clearly
belongs to the all-or-nothing variant, albeit with quasi-success substituted
for success.

Acknowledgements. This work was supported by the Swedish Research Coun-
cil, Grant 2020-01460.

Funding Open access funding provided by Uppsala University.

Open Access. This article is licensed under a Creative Commons Attribution 4.0 Interna-

tional License, which permits use, sharing, adaptation, distribution and reproduction in

any medium or format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons licence, and indicate if changes were

made. The images or other third party material in this article are included in the article’s

Creative Commons licence, unless indicated otherwise in a credit line to the material. If

material is not included in the article’s Creative Commons licence and your intended use

is not permitted by statutory regulation or exceeds the permitted use, you will need to

obtain permission directly from the copyright holder. To view a copy of this licence, visit

http://creativecommons.org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

6. Appendix: Proofs

Definition 8. A hyperreal number y is an infinitesimal of the first order
if and only if 0 	= y ≈ 0 but there is no z such that 0 	= z ≈ 0 and y/z ≈ 0.
An infinitesimal y is an infinitesimal of the nth order, for some n > 1, if and
only if:

(1) There is a series z1, . . . , zn−1 of non-zero hyperreal numbers, such that
z1 ≈ 0, zk/zk−1 ≈ 0 whenever 1 < k ≤ n − 1 and y/zn−1 ≈ 0, and

(2) There is no series z′
1, . . . , z

′
n of non-zero hyperreal numbers, such that

z′
1 ≈ 0, z′

k/z′
k−1 ≈ 0 whenever 1 < k ≤ n and y/z′

n ≈ 0.

Lemma 1. If y and y′ are both nth order infinitesimals, then y/y′ is a real
number.

Proof of Lemma 1. Suppose that this is not the case. Then y/y′ ≈ 0 or
y′/y ≈ 0. Suppose the former. Then we have a series:

z1 ≈ 0, z2/z1 ≈ 0, . . . y′/zn−1 ≈ 0, y/y′ ≈ 0
so that y is of at least (n + 1)th order, contrary to the assumption.

http://creativecommons.org/licenses/by/4.0/


528 S. O. Hansson

Postulate 1. The codomain of the probability function p consists of num-
bers in the closed hyperreal interval [0, 1] that are either real or the sum of
a real number and an infinitesimal of some finite order.

Lemma 2. Let ∗ be the multistate top revision that is based on a finite and
orderly multistate model 〈p, B, LE ,★〉. Let a ∈ LE and let p(a) 	= 0. Then
a ∈ K ∗ a if and only if it holds for all b ∈ B that p(a | b) = 0, p(a | b) = 1,
or p(b)/p(a) ≈ 0.

Proof of Lemma 2.
a ∈ K ∗ a

iff a ∈ �p ★δ a� Definition 6
iff a ∈ �p ★0 a� Observation 2
iff (((p ★0 a)))(a) ≈ 1 Definition 5

iff
∑

b∈B

p(a&b)2

p(a)p(b)
≈ 1 Definition 3, p(a) 	= 0

iff
∑

b∈B

p(a&b)
p(a)

−
∑

b∈B

p(a&b)2

p(a)p(b)
≈ 0 Since

∑

b∈B

p(a&b)
p(a)

= 1

iff for all b ∈ B:
p(a&b)
p(a)

− p(a&b)2

p(a)p(b)
≈ 0

p(a&b)
p(a)

≥ p(a&b)2

p(a)p(b)
for all

b ∈ B, B is finite

iff for all b ∈ B:
p(a&b)
p(a)

×
(

1 − p(a&b)
p(b)

)

≈ 0

iff for all b ∈ B:
p(a&b)
p(b)

× p(b)
p(a)

×
(

1 − p(a&b)
p(b)

)

≈ 0

iff for all b ∈ B: p(a | b) ≈ 0, p(a | b) ≈ 1, or p(b)/p(a) ≈ 0
iff for all b ∈ B: p(a | b) = 0, p(a | b) = 1, or p(b)/p(a) ≈ 0 p is orderly

Proof of Observation 1. [17]: It is sufficient to prove that (1) If a ∈ �p� and
a � d, then d ∈ �p�, and (2) If a1 ∈ �p� and a2 ∈ �p�, then a1&a2 ∈ �p�.

For (1), let a ∈ �p� and a � d. Then d is equivalent with a∨(d&¬a), and it
follows from the third Kolmogorov axiom that p(a) ≤ p(a∨ (d&¬a)) = p(d),
hence p(d) ≈ 1.

For (2), let p(a1) = 1 − δ1 and p(a2) = 1 − δ2. Then p(¬a1) = δ1 and
p(¬a2) = δ2, and:

p(a1&a2) = 1 − p(¬(a1&a2))
p(a1&a2) = 1 − p(¬a1 ∨ ¬a2)
p(a1&a2) ≥ 1 − (p(¬a1) + p(¬a2)) = 1 − (δ1 + δ2) Since

p(¬a1 ∨ ¬a2) ≤ p(¬a1) + p(¬a2)
a1&a2 ∈ �p� Since 1 − (δ1 + δ2) ≈ 1
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Proof of Observation 2. d ∈ �p ★δ a�

iff (((p ★δ a)))(d) ≈ 1 Definition 5

iff
∑

b∈B

(
p(a&b)
p(a)

+ δ

(
p(¬a&b)
p(¬a)

− p(a&b)
p(a)

))

× p(d&b)
p(b)

≈ 1 Definition 3

iff
∑

b∈B

p(a&b) × p(d&b)
p(a) × p(b)

≈ 1 A finite number of infinitesimal terms

omitted
iff (((p ★0 a)))(d) ≈ 1 Definition 3
iff d ∈ �p ★0 a� Definition 5

Proof of Theorem 1. The proof consists of four parts, proving the implica-
tions:

(I) from (1) a finite and orderly multistate top revision to (2) a finite
sequential quasi-revision,

(II) from (2) a finite sequential quasi-revision to (1) a finite and orderly
multistate top revision,

(III) from (2) a finite sequential quasi-revision to (3) a finite and accumu-
lative sequential quasi-revision, and

(IV) from (2) a finite sequential quasi-revision to the postulates.

Part I: from a finite and orderly multistate top revision to a finite sequential
quasi-revision
Our starting-point is a finite and orderly multistate top revision ∗ on K,
based on a multistate model of probability revision according to Defini-
tions 3, 4, and 6. Due to Observation 2 we can assume that the multistate
model is zero-restricted, i.e. it is a model 〈p, B, LE ,★0〉 as described in Def-
inition 4. We are going to construct a sequential quasi-revision ∗̂ on K and
show that it coincides with ∗.

Based on Definition 8 and Postulate 1 we construct a series of mutually
exclusive “plausibility levels” 〈B0, . . . , Bn〉 for the elements of B, such that:

(1) If 0 � p(b), then b ∈ B0, and

(2) If p(b) is a kth order infinitesimal, then b ∈ Bk.

We construct a set X of belief sets with a one-to-one correspondence with
B, such that for each b′ ∈ B there is an element X ′ of X such that X ′ =
{a | p(a | b′) = 1}. We will refer to such a pair of an element of B and one
of X as corresponding to each other.
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Furthermore, we introduce an ordered partitioning 〈X0, . . . , Xn〉 of X. An
element X ′ of X is an element of Xk if and only if the element b′ of B that
corresponds to X ′ is an element of Bk. We further note:

a ∈ K iff a ∈ �p�

iff p(a) ≈ 1
iff

∑

b∈B

p(a | b) × p(b) ≈ 1

iff
∑

b∈B

p(b) − p(a | b) × p(b) ≈ 0

iff
∑

b∈B

p(b) × (1 − p(a | b)) ≈ 0

iff p(a | b) = 1 for all b ∈ B with 0 � p(b)
iff p(a | b) = 1 for all b ∈ B0

iff a ∈ X for all X ∈ X0

iff a ∈ ⋂
X0

Thus, K =
⋂

X0.
Finally, we let ∗̂ be the sequential quasi-revision that is based on our

series 〈X0, . . . , Xn〉 according to Definition 7.
We are going to show that K ∗ a = K∗̂a for all a. There are three cases.
First case, p(a) = 0: It follows from clause (0) of Definition 3 that p★0a =

p, thus K ∗a = K. Since all elements of B have non-zero probability, we can
conclude from

0 = p(a) =
∑

b∈B

(p(b) × p(a | b))

that p(a | b) = 0 for all b ∈ B, thus p(¬a | b) = 1 for all b ∈ B, thus ¬a ∈ X
for all X ∈ X0 ∪ · · · ∪ Xn. It follows from clause (1) of Definition 7 that
K∗̂a = K.

Second case, p(a) = 1: It follows from clause (0) of Definition 3 that
p ★0 a = p, thus K ∗ a = K. We have:

p(a) = 1∑

b∈B

(p(b) × p(a | b)) = 1

∑

b∈B

(p(b) − (p(b) × p(a | b))) = 0 Since
∑

b∈B

p(b) = 1

∑

b∈B

p(b) × (1 − p(a | b)) = 0

For all b ∈ B: p(a | b) = 1 Since p(b) > 0 for all b ∈ B

For all X ∈ X0: a ∈ X and ¬a /∈ X Definition of X

K∗̂a =
⋂

X0 = K Clause (2) of Definition 7, proof above that K =
⋂

X0
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Third case, 0 < p(a) < 1: We have:
K ∗ a = �p ★0 a� Definition 6
d ∈ K ∗ a iff (((p ★0 a)))(d) ≈ 1 Definition 5

d ∈ K ∗ a iff
∑

b∈B

(
p(a&b) × p(d&b)

p(a) × p(b)

)

≈ 1. Definition 3 (1)

Let Bk be the first level (level with the lowest index k) in 〈B0, . . . , Bn〉 that
contains some b with p(¬a | b) 	= 1. Then all b′′ in B0 ∪ · · · ∪ Bk−1 have
p(a&b′′) = 0 and thus do not contribute to the sum in Eq. 1. We are going
to show that a term in the sum of Eq. 1 does not make a non-infinitesimal
contribution to that sum if it comes from some b′′ with b′′ ∈ Bm and k < m.

Let b′′ ∈ Bm, with k < m. Let b′ be an element of Bk that contributes a
non-zero amount to the probability of d, as summed up in Eq. 1. We assume
that b′′ also contributes a non-zero amount to that sum. Then p(a&b′′),
p(d&b′′), p(a&b′) and p(d&b′) are all non-zero, and consequently so are p(a |
b′′), p(d | b′′), p(a | b′) and p(d | b′). The ratio between the term contributed
by b′′ and that contributed by b′ is:

p(a&b′′) × p(d&b′′)
p(a) × p(b′′)

/
p(a&b′) × p(d&b′)

p(a) × p(b′)

=
p(a&b′′) × p(d&b′′) × p(b′)
p(a&b′) × p(d&b′) × p(b′′)

=
p(a | b′′) × p(b′′) × p(d | b′′) × p(b′′) × p(b′)
p(a | b′) × p(b′) × p(d | b′) × p(b′) × p(b′′)

=
p(a | b′′) × p(d | b′′)
p(a | b′) × p(d | b′)

× p(b′′)
p(b′)

Since ∗ is orderly (cf. Definitions 4 and 6), p(a | b′′), p(d | b′′), p(a | b′) and
p(d | b′) are all real-valued, and p(b′′)/p(b′) is by construction infinitesimal.
Therefore, the contribution of b′′ to the sum in Eq. 1 is an infinitesimal
fraction of that of b′. We conclude that all non-infinitesimal contributions
to the sum in Eq. 1 derive from elements of Bk. Since the sum has a finite
number of terms, all infinitesimal terms can be eliminated without affecting
the standard part of the sum. Thus, Eq. 1 is equivalent with:

d ∈ K ∗ a iff
∑

b∈Bk

(
p(a&b) × p(d&b)

p(a) × p(b)

)

≈ 1,

or equivalently:

d ∈ K ∗ a iff
∑

b∈Bk

p(b | a) × p(d | b) ≈ 1, (2)

where Bk is the first level with some b such that p(¬a | b) 	= 1.
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Next we need to show that
∑

b∈Bk

p(b | a) ≈ 1. Since
∑

b∈B

p(b | a) ≈ 1, we can

do this by showing that if b′′ ∈ Bm for some m 	= k, then p(b′′ | a) is either
zero or infinitesimal. If m < k, then p(a | b′′) = 0, i.e. p(a&b′′)/p(b′′) = 0,
and consequently p(a&b′′) = 0 and p(b′′ | a) = 0. For the case k < m we
note that due to the construction of Bk, there is some b′ ∈ Bk such that
p(¬a | b′) 	= 1, thus p(a | b′) 	= 0, and since p is orderly it follows that
0 � p(a | b′). We then have:

p(b′′ | a)
p(b′ | a)

=
(
p(a | b′′) × p(b′′)

p(a)

) / (
p(a | b′) × p(b′)

p(a)

)

=
p(a | b′′)
p(a | b′)

× p(b′′)
p(b′)

Since p is orderly, p(a | b′′) is either 0 or a positive real number. In the
former case, p(b′′ | a)/p(b′ | a) = 0. In the latter case, it follows from
the construction of Bk and Bm that p(b′′)/p(b′) ≈ 0, and consequently
p(b′′ | a)/p(b′ | a) ≈ 0. Thus all terms in

∑

b∈B

p(b | a) with b /∈ Bk are zero or

infinitesimal, and since there is only a finite number of such terms they can
all be deleted without effect on the standard part of the sum, and we have:∑

b∈Bk

p(b | a) ≈
∑

b∈B

p(b | a) =
∑

b∈B

p(a&b)/p(a) = 1.

Inserting this into Eq. 2 we continue:
d ∈ K ∗ a iff

∑

b∈Bk

p(b | a) × p(d | b) ≈
∑

b∈Bk

p(b | a)

d ∈ K ∗ a iff
∑

b∈Bk

p(b | a) × (1 − p(d | b)) ≈ 0

d ∈ K ∗ a iff for all b ∈ Bk : If p(b | a) 	≈ 0 then p(d | b) ≈ 1. (3)

Furthermore:
∑

b∈Bk

p(a&b)
p(a)

≈ 1
∑

b∈Bk

p(a&b)

p(a)
≈ 1

∑
b∈Bk

p(a | b) × p(b)
p(a)

≈ 1

Let B↓a
k = {b ∈ Bk | p(a | b) 	= 0}. Then

∑

b∈B↓a
k

p(a | b) × p(b)

p(a)
≈ 1 (4)
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Since all p(b) with b ∈ Bk belong to the same order of infinitesimals, and
all p(a | b) with b ∈ B↓a

k are positive real numbers, we can conclude from
Eq. 4 that all p(b) with b ∈ Bk belong to the same order of infinitesimals
as p(a). Thus, p(b)/p(a) is a positive real number for all b ∈ Bk. (Note that
p(b) 	= 0 by definition.) Since p(b | a) = (p(a | b) × p(b))/p(a), it holds for
all b ∈ Bk that p(b | a) ≈ 0 if and only if p(a | b) ≈ 0. Since p(a | b) is by
definition real-valued, it follows that for all b ∈ Bk: p(b | a) ≈ 0 if and only
if p(a | b) = 0. It also follows that p(d | b) ≈ 1 if and only if p(d | b) = 1.
Thus Eq. 3 is equivalent with the following:

d ∈ K ∗ a iff for all b ∈ Bk: If p(a | b) 	= 0, then p(d | b) = 1
Equivalently:

d ∈ K ∗ a iff for all X ∈ Xk: If ¬a /∈ X, then d ∈ X,
where Xk is the first element in 〈X0, . . . , Xn〉 with ¬a /∈ ⋂

Xk. Equivalently:
K ∗ a =

⋂{X | ¬a /∈ X ∈ Xk}, and
K ∗ a = K∗̂a

Part II: From a finite sequential quasi-revision to a finite and orderly mul-
tistate top revision
Let ∗ be the sequential quasi-revision on K that is based on the series
〈X0, . . . , Xn〉 of finite sets of finite belief sets in LE , such that the conditions
of Definition 7 are satisfied. We are going to construct a finite and orderly
multistate top revision operation ∗̄ on K and show that it coincides with ∗.

The construction: We introduce a set B of logical atoms not in LE , one for
each element of X0∪· · ·∪Xn, and divide it into the mutually exclusive classes
B0, . . . , Bn so that each element X ′ in Xk has a corresponding element in
b′ in Bk, and vice versa. Furthermore, we introduce a probability function p

over the language that is formed by closing LE ∪ B under truth-functional
combinations, with the following properties:

(1) For all a∈LE and b′∈B, p(a | b′)=
numb({W ∈LE⊥⊥ | X ′∪{a}⊆W})
numb({W ∈ LE⊥⊥ | X ′ ⊆ W})

,

where X ′ is the set corresponding to b′, and14

(2) For all k, if b ∈ Bk then

p(b) =
tk

numb(Bk)
,

where 〈t0, . . . , tn〉 is a series of hyperreal numbers such that if 0 <

14Note that LE⊥⊥ is the set of maximal consistent subsets of LE .
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k ≤ n, then tk is a kth order infinitesimal (Definition 8), and t0 =
1 − (t1 + · · · + tn).

Let ★0 be the zero-restricted probability revision based on p, B, and LE

according to Definitions 3 and 4. This construction satisfies the definition of
a finite and orderly multi-state model. Note in particular that p(b′) 	= 0 for
all b′ ∈ B and that p(a | b′) is always a real number in the interval [0, 1], as
required in Definition 4.

Let ∗̄ be the multistate top revision based on 〈p, B, LE ,★0〉 according to
Definition 6. Then ∗̄ is a finite and orderly multistate top revision. We are
going to prove that K∗̄a = K ∗ a for all a ∈ LE . There are two cases.

First case, ¬a ∈ ⋂
(X0∪· · ·∪Xn): It follows from Clause (1) of Definition 7

that K ∗ a = K. It follows from our construction of p for this part of the
proof that p(a | b) = 0 for all b ∈ B, and consequently

p(a) =
∑

b∈B

p(a&b) =
∑

b∈B

(p(a | b) × (p(b)) = 0

Clause (0) of Definition 3 yields p ★0 a = p. Definition 6 yields K∗̄a = K.
Thus K∗̄a = K ∗ a.

Second case, ¬a /∈ ⋂
(X0 ∪ · · · ∪ Xn): Let k be the lowest number such

that ¬a /∈ ⋂
Xk. Two preparatory steps are needed before we can proceed

to the actual proof of this case.
First preparatory step: We are going to show that if m < k, then p(a&b′) =

0 for all b′ ∈ Bm.
Let X ′ be the element of Xm that corresponds to b′. Then ¬a ∈ X ′. It

follows from the construction of p for this part of the proof that p(a | b′) = 0,
thus p(a&b′) = p(a | b′) × p(b′) = 0.

Second preparatory step: We are going to show that if k < m, then there
is some b′′ ∈ Bk such that p(b′ | a)/p(b′′ | a) ≈ 0 for all b′ ∈ Bm.

By assumption, there is some X ′′ ∈ Xk such that ¬a /∈ X ′′. Let b′′ be the
element of Bk that corresponds to X ′′. It follows from the construction of p
for this part of the proof that 0 � p(a | b′′). We then have:

p(a&b′)
p(a&b′′)

=
p(a | b′)
p(a | b′′)

× p(b′)
p(b′′)

It follows from the construction of p that p(a | b′)/p(a | b′′) is a non-negative
real number, whereas p(b′)/p(b′′) is infinitesimal. Thus, their product is
either 0 or infinitesimal. It follows that p(a&b′)/p(a&b′′) ≈ 0 for all b′ ∈ Bm.
Consequently, p(b′ | a)/p(b′′ | a) ≈ 0 for all b′ ∈ Bm.

The actual proof:

d ∈ K∗̄a iff
∑

b∈B

p(a&b) × p(d&b)
p(a) × p(b)

≈ 1 Definitions 3 and 6
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d ∈ K∗̄a iff
∑

b∈B

p(b | a) × p(d | b) ≈ 1

d ∈ K∗̄a iff
∑

b∈Bk

p(b | a) × p(d | b) ≈ 1 The two preparatory steps

d ∈ K∗̄a iff
∑

b∈Bk

p(b | a) × p(d | b) ≈
∑

b∈Bk

p(b | a) The two preparatory

steps

d ∈ K∗̄a iff
∑

b∈Bk

p(b | a) × (1 − p(d | b)) ≈ 0

d ∈ K∗̄a iff for all b ∈ Bk : If p(b | a) 	≈ 0, then p(¬d | b)) ≈ 0 (5)

We are now going to show that for for all b ∈ Bk, p(b | a) ≈ 0 holds if
and only if p(a | b) = 0. Let b′ ∈ Bk. For one direction, let p(a | b′) =
0, i.e. p(a&b′)/p(b′) = 0. It follows that p(a&b′) = 0, and consequently
p(b′ | a) = 0. For the other direction, let p(a | b′) 	= 0. Due to the con-
struction of p, p(a | b′) is then a positive real number. It holds for all
b′′ ∈ Bk that 0 � p(b′)/p(b′′). From this it follows that if b′, b′′ ∈ B↓a

k =
{b ∈ Bk | p(a | b) 	= 0}, then 0 � (p(a | b′) × p(b′))/(p(a | b′′) × p(b′′)),
i.e. 0 � p(a&b′)/p(a&b′′). It follows from the two preparatory steps that∑

b∈B↓a
k

p(a&b)/p(a) ≈ 1. Due to the finite number of terms in this sum we

can conclude that 0 � p(a&b′)/p(a), i.e. p(b′ | a) 	≈ 0, as desired. This
concludes our proof that p(b | a) ≈ 0 if and only if p(a | b) = 0. We can now
use this proof to conclude that Eq. 5 is equivalent with:

d ∈ K∗̄a iff for all b ∈ Bk: If p(a | b) 	= 0, then p(¬d | b) ≈ 0
d ∈ K∗̄a iff for all b ∈ Bk: If p(a | b) 	= 0, then p(¬d | b) = 0 Construction

of p
d ∈ K∗̄a iff for all X ∈ Xk: If ¬a /∈ X, then d ∈ X Construction of p
d ∈ K∗̄a iff d ∈ ⋂{X | ¬a /∈ X ∈ Xk}
K∗̄a = K ∗ a

Part III: from a finite sequential quasi-revision to a finite and accumulative
sequential quasi-revision

Let ∗ be a sequential quasi-revision on K, based on some sequence
〈X0, . . . , Xn〉 of finite sets of finite belief sets, as described in Definition 7.
Let 〈X′

0, . . . , X
′
n〉 be a sequence such that

(1) X
′
0 = X0, and

(2) X
′
k = X

′
k−1 ∪ Xk for all k such that 0 < k ≤ n
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Let ∗′ be the sequential quasi-revision on K that is based on 〈X′
0, . . . , X

′
n〉. It

is clearly a finite and accumulative sequential quasi-revision. We are going
to show that K ∗′ a = K ∗ a for all a. There are two cases.

Case 1, ¬a ∈ ⋂
(X0 ∪ · · · ∪ Xn): Then ¬a ∈ ⋂

(X′
0 ∪ · · · ∪ X

′
n). It follows

from clause (1) of Definition 7 that K ∗ a = K = K ∗′ a.
Case 2, ¬a /∈ ⋂

(X0∪· · ·∪Xn): Let Xk be the first element in the sequence
〈X0, . . . , Xn〉 for which ¬a /∈ ⋂

Xk. Then X
′
k is the first element in the

sequence 〈X′
0, . . . , X

′
n〉 for which ¬a /∈ ⋂

X
′
k. Clause (2) of Definition 7 yields:

K ∗′ a =
⋂{X | ¬a /∈ X ∈ X

′
k}

=
⋂{X | ¬a /∈ X ∈ (X0 ∪ · · · ∪ Xk)}

=
⋂{X | ¬a /∈ X ∈ Xk} Since ¬a ∈ ⋂

Xm for all m with 0 ≤ m < k

= K ∗ a

Part IV: from a finite sequential quasi-revision to the postulates

• K ∗ a = Cn(K ∗ a) (closure)

• If � a1 ↔ a2, then K ∗ a1 = K ∗ a2 (extensionality)

• ¬a /∈ K ∗ a or K ∗ a = K (relative quasi-success)

• If ¬a ∈ K ∗ a, then ¬a ∈ K ∗ d. (quasi-regularity)

• K ∗ � = K (tautology inertness)

These five postulates all follow directly from the construction.

• If ¬a1 /∈ K ∗a1, ¬a2 /∈ K ∗a2, and K ∗a1 = K ∗a2, then K ∗ (a1∨d) =
K ∗ (a2 ∨ d). (disjunctive equivalence)

There are two main cases:
Case 1, ¬d ∈ K ∗ d: Then ¬d ∈ ⋂

(X0 ∪ · · · ∪ Xn), and it holds for all
X ∈ X0 ∪ · · · ∪ Xn that ¬a1&¬d ∈ X iff ¬a1 ∈ X, thus ¬(a1 ∨ d) ∈ X iff
¬a1 ∈ X, and it follows from Definition 7 that K ∗ (a1 ∨ d) = K ∗ a1. It
follows in the same way that K ∗ (a2 ∨ d) = K ∗ a2, and we can conclude
that K ∗ (a1 ∨ d) = K ∗ (a2 ∨ d).

Case 2, ¬d /∈K∗d: Let Xk be the first element in the sequence 〈X0, . . . , Xn〉
that has an intersection not containing ¬(a1 ∨d). We are first going to show
that it is also the first element in the sequence that has an intersection not
containing ¬(a2 ∨ d). We have:

¬(a1 ∨ d) ∈ ⋂
(X0 ∪ · · · ∪ Xk−1) and ¬(a1 ∨ d) /∈ ⋂

Xk

(¬a1&¬d) ∈ ⋂
(X0 ∪ · · · ∪ Xk−1) and (¬a1&¬d) /∈ ⋂

Xk

¬a1 ∈ ⋂
(X0 ∪ · · · ∪Xk−1) and ¬d ∈ ⋂

(X0 ∪ · · · ∪Xk−1) and (¬a1 /∈ ⋂
Xk

or ¬d /∈ ⋂
Xk)
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¬a2 ∈ ⋂
(X0 ∪ · · · ∪Xk−1) and ¬d ∈ ⋂

(X0 ∪ · · · ∪Xk−1) and (¬a2 /∈ ⋂
Xk

or ¬d /∈ ⋂
Xk)

Since K ∗ a1 = K ∗ a2

(¬a2&¬d) ∈ ⋂
(X0 ∪ · · · ∪ Xk−1) and (¬a2&¬d) /∈ ⋂

Xk

¬(a2 ∨ d) ∈ ⋂
(X0 ∪ · · · ∪ Xk−1) and ¬(a2 ∨ d) /∈ ⋂

Xk

It holds for all Xg that ¬(a1 ∨ d) /∈ ⋂
Xg if and only if (¬a1 & ¬d) /∈ ⋂

Xg,
i.e. if and only if ¬a1 /∈ ⋂

Xg or ¬d /∈ ⋂
Xg. Consequently, there are three

subcases: (2A) ¬a1 /∈ ⋂
Xk and ¬d /∈ Xk, (2B) ¬a1 /∈ ⋂

Xk, and the first
element in the sequence whose intersection does not contain ¬d is Xm, with
k < m, and (2C) ¬d /∈ ⋂

Xk, and the first element in the sequence whose
intersection does not contain ¬a1 is Xm, with k < m.

Subcase 2A, ¬a1 /∈ ⋂
Xk and ¬d /∈ Xk:

K ∗ (a1 ∨ d) =
⋂{X ∈ Xk | ¬(a1 ∨ d) /∈ X}

=
⋂{X ∈ Xk | (¬a1&¬d) /∈ X}

=
⋂{X ∈ Xk | (¬a1 /∈ X) ∨ (¬d /∈ X)}

=
⋂
({X ∈ Xk | ¬a1 /∈ X} ∪ {X ∈ Xk | ¬d /∈ X})

= (
⋂{X ∈ Xk | ¬a1 /∈ X})∩(⋂{X ∈ Xk | ¬d /∈ X})

= (K ∗ a1) ∩ (K ∗ d)
= (K ∗ a2) ∩ (K ∗ d)
= (

⋂{X ∈ Xk | ¬a2 /∈ X})∩(⋂{X ∈ Xk | ¬d /∈ X})
=

⋂
({X ∈ Xk | ¬a2 /∈ X} ∪ {X ∈ Xk | ¬d /∈ X})

=
⋂{X ∈ Xk | (¬a2 /∈ X) ∨ (¬d /∈ X)}

=
⋂{X ∈ Xk | (¬a2&¬d) /∈ X)}

=
⋂{X ∈ Xk | ¬(a2 ∨ d) /∈ X}

= K ∗ (a2 ∨ d)

Subcase 2B, ¬a1 /∈ ⋂
Xk, and the first element in the sequence whose

intersection does not contain ¬d is Xm, with k < m:

K ∗ (a1 ∨ d) =
⋂{X ∈ Xk | ¬(a1 ∨ d) /∈ X}

=
⋂{X ∈ Xk | (¬a1&¬d) /∈ X}

=
⋂{X ∈ Xk | (¬a1 /∈ X) ∨ (¬d /∈ X)}

=
⋂{X ∈ Xk | ¬a1 /∈ X} Since ¬d ∈ ⋂

Xk

= K ∗ a1

= K ∗ a2

=
⋂{X ∈ Xk | ¬a2 /∈ X}

=
⋂{X ∈ Xk | (¬a2 /∈ X) ∨ (¬d /∈ X)} Since ¬d ∈ ⋂

Xk

=
⋂{X ∈ Xk | (¬a2&¬d) /∈ X)}

=
⋂{X ∈ Xk | ¬(a2 ∨ d) /∈ X)}

= K ∗ (a2 ∨ d)
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Subcase 2C, ¬d /∈ ⋂
Xk, and the first element in the sequence whose

intersection does not contain ¬a1 is Xm, with k < m:

K ∗ (a1 ∨ d) =
⋂{X ∈ Xk | ¬(a1 ∨ d) /∈ X}

=
⋂{X ∈ Xk | (¬a1&¬d) /∈ X}

=
⋂{X ∈ Xk | (¬a1 /∈ X) ∨ (¬d /∈ X)}

=
⋂{X ∈ Xk | ¬d /∈ X} Since ¬a1 ∈ ⋂

Xk

=
⋂{X ∈ Xk | (¬a2 /∈ X) ∨ (¬d /∈ X)} Since ¬a2 ∈ ⋂

Xk

=
⋂{X ∈ Xk | (¬a2&¬d) /∈ X)}

=
⋂{X ∈ Xk | ¬(a2 ∨ d) /∈ X}

= K ∗ (a2 ∨ d)

• K ∗ (a1 ∨ a2) is equal to one of K ∗ a1, K ∗ a2, and K ∗ a1 ∩ K ∗ a2.
(disjunctive factoring)

There are three cases.
Case 1, ¬a1 ∈ K ∗ a1 and ¬a2 ∈ K ∗ a2: It follows from the construction

of ∗ that K ∗ a1 = K ∗ a2 = K. Furthermore, ¬a1 ∈ ⋂
(X0 ∪ · · · ∪ Xn)

and ¬a2 ∈ ⋂
(X0 ∪ · · · ∪ Xn), thus ¬a1&¬a2 ∈ ⋂

(X0 ∪ · · · ∪ Xn), thus
¬(a1 ∨ a2) ∈ ⋂

(X0 ∪ · · · ∪ Xn), and consequently K ∗ (a1 ∨ a2) = K.
Case 2, ¬a1 ∈ K ∗ a1 and ¬a2 /∈ K ∗ a2: In this case it holds for all

X ∈ X0 ∪ · · · ∪ Xn that ¬a1 ∈ X, thus ¬a1&¬a2 ∈ X iff ¬a2 ∈ X, thus
¬(a1 ∨ a2) ∈ X iff ¬a2 ∈ X. It follows from Clause (2) of Definition 7 that
K ∗ (a1 ∨ a2) = K ∗ a2.

Case 3, ¬a1 /∈ K ∗ a1 and ¬a2 /∈ K ∗ a2: Let Xk be the first element in
the sequence 〈X0, . . . , Xn〉 whose intersection does not contain ¬a1, and let
Xm be the first element whose intersection does not contain ¬a2. We can
assume without loss of generality that k ≤ m. First suppose that ¬(a1∨a2) /∈⋂

Xg for some g < k. Then equivalently (¬a1&¬a2) /∈ ⋂
Xg, equivalently:

¬a1 /∈ ⋂
Xg or ¬a2 /∈ ⋂

Xg, which is impossible since g < k ≤ m. Thus,
¬(a1 ∨ a2) ∈ ⋂

Xg for all g < k.
Next, suppose that ¬(a1 ∨ a2) ∈ ⋂

Xk. Then equivalently (¬a1&¬a2) ∈⋂
Xk, thus ¬a1 ∈ ⋂

Xk, contrary to our assumption. We have shown that
¬(a1∨a2) ∈ ⋂

(X0∪· · ·∪Xk−1) and ¬(a1∨a2) /∈ ⋂
Xk, from which it follows

that K ∗ (a1 ∨ a2) =
⋂{X ∈ Xk | ¬(a1 ∨ a2) /∈ X}. There are two cases:

Case 3A, k < m:
K ∗ (a1 ∨ a2) =

⋂{X ∈ Xk | ¬(a1 ∨ a2) /∈ X}
=

⋂{X ∈ Xk | (¬a1&¬a2) /∈ X}
=

⋂{X ∈ Xk | ¬a1 /∈ X} Since ¬a2 ∈ ⋂
Xk

= K ∗ a1

Case 3B, k = m:
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K ∗ (a1 ∨ a2) =
⋂{X ∈ Xk | ¬(a1 ∨ a2) /∈ X}

=
⋂{X ∈ Xk | (¬a1&¬a2) /∈ X}

=
⋂{X ∈ Xk | (¬a1 /∈ X) ∨ (¬a2 /∈ X)}

=
⋂

({X ∈ Xk | ¬a1 /∈ X} ∪ {X ∈ Xk | ¬a2 /∈ X})
= (

⋂{X ∈ Xk | ¬a1 /∈ X}) ∩ (
⋂{X ∈ Xk | ¬a2 /∈ X})

= K ∗ a1 ∩ K ∗ a2

• If ¬a /∈ K ∗ d, then K ∗ (a ∨ d) ⊆ K ∗ a. (linearity)

There are two main cases.
Case 1, ¬d ∈ K ∗d: Then K ∗a =

⋂{X | ¬a /∈ X ∈ X0}. From ¬d ∈ ⋂
X0

it follows for all X ∈ X0 that ¬(a ∨ d) ∈ X iff ¬a ∈ X, thus K ∗ (a ∨ d) =⋂{X | ¬(a ∨ d) /∈ X ∈ X0} = {X | ¬a /∈ X ∈ X0} = K ∗ a.
Case 2, ¬d /∈ K ∗ d: It follows from ¬a /∈ K ∗ d and the construction

of ∗ that ¬a /∈ K ∗ a. Let Xk be the first element of 〈X0, . . . , Xn〉 such
that ¬a /∈ ⋂

Xk, and let Xm be the first element of 〈X0, . . . , Xn〉 such that
¬d /∈ ⋂

Xm. It follows from ¬a /∈ K ∗ d and Definition 7 that k ≤ m. There
are two subcases, k = m and k < m.

Subcase 2A, k = m: It holds for all X ∈ X0 ∪ · · · ∪ Xn that ¬(a ∨ d) /∈ X
iff ¬a&¬d /∈ X, iff ¬a /∈ X or ¬d /∈ X. Thus Xk is the first element of
〈X0, . . . , Xn〉 such that ¬(a ∨ d) /∈ ⋂

Xk, and consequently:
K ∗ (a ∨ d) =

⋂{X ∈ Xk | ¬(a ∨ d) /∈ X}
K ∗ (a ∨ d) =

⋂{X ∈ Xk | (¬a&¬d) /∈ X}
K ∗ (a ∨ d) =

⋂{X ∈ Xk | (¬a /∈ X) ∨ (¬d /∈ X)}
K ∗ (a ∨ d) ⊆ ⋂{X ∈ Xk | ¬a /∈ X}
K ∗ (a ∨ d) ⊆ K ∗ a.
Subcase 2B, k < m: Just as in the previous subcase, Xk is the first element

of 〈X0, . . . , Xn〉 such that ¬(a ∨ d) /∈ ⋂
Xk. Consequently:

K ∗ (a ∨ d) =
⋂{X ∈ Xk | ¬(a ∨ d) /∈ X}

K ∗ (a ∨ d) =
⋂{X ∈ Xk | (¬a&¬d) /∈ X}

K ∗ (a ∨ d) =
⋂{X ∈ Xk | (¬a /∈ X) ∨ (¬d /∈ X)}

K ∗ (a ∨ d) =
⋂{X ∈ Xk | ¬a /∈ X} Since ¬d ∈ ⋂

Xk

K ∗ (a ∨ d) = K ∗ a

Proof of Observation 3. Suppose to the contrary that K ∗ a � ⊥. It follows
from relative quasi-success that ¬a /∈ K ∗ a or K ∗ a = K. Due to closure,
the former is incompatible with K ∗ a � ⊥. The latter is incompatible with
K∗a � ⊥ since K is by definition consistent. It follows from this contradiction
that K ∗ a � ⊥.

Proof of Observation 4. Part 1: From Definitions 3 and 6.
Part 2: From Definition 7.
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Proof of Observation 5. Part 1: For one direction, let ∗ satisfy consistent
success and let a � ⊥. Then a ∈ K ∗ a, and it follows directly that (i) holds
and that p(a) 	= 0. It follows from Lemma 2 that (ii) is satisfied.

For the other direction, we assume that (i) and (ii) both hold for all a
with a � ⊥. Let a � ⊥. Then it follows from (i) that p(a) 	= 0 and from
Lemma 2 that a ∈ K ∗ a. Thus consistent success holds.

Part 2 is left to the reader.

Proof of Observation 6. We use the equivalence with finite sequential quasi-
revision. It follows from a ∈ K that a ∈ X for all X ∈ X0, thus ¬a /∈ X for
all X ∈ X0, thus K ∗ a =

⋂{X | ¬a /∈ X ∈ X0} =
⋂

X0 = K. �

Proof of Observation 7. Options (i) and (ii) follow directly from clause (0)
of Definition 3, and we can focus on the case when 0 	= p(a) 	= 1. It follows
from Definition 3 that p = p ★δ a if and only if (((p ★δ a)))(b) = p(b) for all
b ∈ B. We have:

for all b ∈ B: (((p ★δ a)))(b) = p(b)

iff for all b ∈ B:
p(a&b)
p(a)

+ δ

(
p(¬a&b)
p(¬a)

− p(a&b)
p(a)

)

= p(a&b) + p(¬a&b)

Definition 3
iff for all b ∈ B: p(a&b)× 1 − δ

p(a)
+p(¬a&b)× δ

1 − p(a)
= p(a&b)+p(¬a&b)

iff for all b ∈ B: p(a&b)(1 − δ)(1 − p(a)) + δ × p(¬a&b)p(a) =
= p(a&b)p(a)(1 − p(a)) + p(¬a&b)p(a)(1 − p(a))

iff for all b ∈ B: p(a&b)(1−p(a))−δ×p(a&b)(1−p(a))+δ×p(¬a&b)p(a) =
= p(a&b)(1 − p(a)) − p(a&b)(1 − p(a))2 + p(¬a&b)p(a)(1 − p(a))

iff for all b ∈ B: δ(p(¬a&b)p(a) − p(a&b)(1 − p(a)) =
= (1 − p(a))(p(¬a&b)p(a) − p(a&b)(1 − p(a))

iff for all b ∈ B: (1 − p(a) − δ) × (p(¬a&b)p(a) − p(a&b)(1 − p(a)) = 0
iff for all b ∈ B: p(a) = 1 − δ or p(¬a&b)p(a) = p(a&b)(1 − p(a))
iff for all b ∈ B: p(a) = 1 − δ or p(¬a | b)p(b)p(a) = p(a | b)p(b)(1 − p(a))
iff for all b ∈ B: p(a) = 1 − δ or (1 − p(a | b))p(a) = p(a | b)(1 − p(a))

p(b) 	= 0
iff for all b ∈ B: p(a) = 1−δ or p(a)−p(a)p(a | b) = p(a | b)−p(a)p(a | b)
iff for all b ∈ B: p(a) = 1 − δ or p(a | b) = p(a)

Thus, (iii) or (iv) must hold.

Proof of Observation 8.
¬a /∈ K
¬a /∈ K ∗ � tautology inertness
K ∗ (� ∨ a) ⊆ K ∗ a linearity
K ∗ � ⊆ K ∗ a extensionality
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K ⊆ K ∗ a tautology inertness �

Proof of Observation 9. Let the sequence on which ∗ is based be 〈X1, X2〉,
with X1 = {Cn({¬a1 ∨ ¬a2, a3})} and X2 = {Cn({a1&a2})}. We then have:

K ∗ a1 = Cn({¬a1 ∨ ¬a2, a3})
Cn((K ∗ a1) ∪ {a2}) = Cn({¬a1&a2&a3})
K ∗ (a1&a2) = Cn({a1&a2}),

and neither superexpansion nor subexpansion holds.

Proof of Observation 10. 15: Part 1, superexpansion: Let d ∈ K ∗ (a1&a2).
We are going to show that d ∈ Cn((K ∗ a1) ∪ {a2}). Closure yields a2 →
d ∈ K ∗ (a1&a2). From success follows a1&¬a2 ∈ K ∗ (a1&¬a2), and since
a1&¬a2 � a2 → d, closure yields a2 → d ∈ K ∗ (a1&¬a2).

It follows from disjunctive factoring that K∗(a1&a2)∩K∗(a1&¬a2) ⊆ K∗
((a1&a2)∨(a1&¬a2)). We can therefore conclude from a2 → d ∈ K∗(a1&a2)
and a2 → d ∈ K ∗ (a1&¬a2) that a2 → d ∈ K ∗ ((a1&a2) ∨ (a1&¬a2)).
Extensionality yields a2 → d ∈ K ∗ a1, thus d ∈ Cn((K ∗ a1) ∪ {a2}).

Part 2, subexpansion: Let ¬a2 /∈ K ∗ a1. We are going to show that
Cn((K ∗ a1) ∪ {a2}) ⊆ K ∗ (a1&a2).

Due to extensionality, K ∗ a1 = K ∗ ((a1&a2) ∨ (a1&¬a2)), thus due to
disjunctive factoring, K ∗ a1 is equal to one of K ∗ (a1&a2), K ∗ (a1&¬a2)
and K ∗ (a1&a2)∩K ∗ (a1&¬a2). If K ∗a1 = K ∗ (a1&¬a2), then success and
closure yield ¬a2 ∈ K ∗ a1, so that case can be excluded. Two cases remain
to be treated:

Case 1, K ∗ a1 = K ∗ (a1&a2): Due to success and closure, a2 ∈ K ∗
(a1&a2), thus a2 ∈ K ∗ a1, and:

Cn((K ∗ a1) ∪ {a2}) = Cn(K ∗ a1)
= K ∗ a1 closure
= K ∗ (a1&a2) Definition of this case
Case 2, K ∗a1 = K ∗(a1&a2)∩K ∗(a1&¬a2): Let d ∈ Cn((K ∗a1)∪{a2}).

We are going to show that d ∈ K ∗ (a1&a2):
d ∈ Cn((K ∗ a1) ∪ {a2})
d ∈ Cn((K ∗ (a1&a2) ∪ {a2}) K ∗ a1 ⊆ K ∗ (a1&a2) in this case
d ∈ Cn(K ∗ (a1&a2)) a2 ∈ K ∗ (a1&a2) due to success and closure
d ∈ K ∗ (a1&a2) closure

15This is based on the version in Hansson ([14], pp. 272–273) of Hans Rott’s proof,
which was reported by Gärdenfors ([11], p. 212).
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